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Abstract—Metering fluids is critical in various industries, and 
researchers have extensively explored factors affecting measurement 
accuracy. As a result, numerous sensors and methods are developed 
to precisely measure volume fractions in multi-phase fluids. 
A significant challenge in multi-phase fluid pipelines is the formation 
of scale within the pipes. This issue is particularly problematic in 
the petroleum industry, leading to narrowed internal diameters, 
corrosion, increased energy consumption, reduced equipment 
lifespan, and, most crucially, compromised flow measurement 
accuracy. This paper proposes a non-destructive metering system 
incorporating an artificial neural network with capacitive and 
photon attenuation sensors to address this challenge. The system 
simulates scale thicknesses from 0 mm to 10 mm using COMSOL 
multiphysics software and calculates counted rays through Beer-
Lambert equations. The simulation considers a 10% interval 
of volume variation in each phase, generating 726 data points. 
The proposed network, with two inputs-measured capacity and 
counted rays-and three outputs-volume fractions of gas, water, 
and oil-achieves mean absolute errors of 0.318, 1.531, and 1.614, 
respectively. These results demonstrate the system’s ability to 
accurately gauge volume proportions of a three-phase gas-water-oil 
fluid, regardless of pipeline scale thickness.

Index Terms—Non-destructive metering, Scale thickness 
in pipelines, Multi-phase fluids, Artificial neural network, 
Capacitive sensors, Gamma-ray attenuation sensor.

I. Introduction
Measuring the volume fraction (VF) of multiphase flows is 
a critical task and so important in a number of fields such as 
gas, oil, and water. This is because of many subjects, such 
as financial matters and environmental-oriented concepts. 

Hence, researchers have been strived a lot to present new 
and optimized methods to avoid making delay and separation 
in the process being the worst part of conventional methods. 
Among introduced techniques, gamma-ray attenuation and 
capacitance-based sensors are so intriguing and this is because 
of their natures, which are non-destructive, non-invasive, and 
applicable to be utilized in harsh conditions unlike mechanical 
solutions, such as turbo meters, sampling tubes, and vibrating 
densitometers, which are intrusive in measurement and 
complex in their structures (Mayet, et al., 2024a). Regarding 
the gamma attenuation sensor, many works can be found that 
authors have utilized this type of sensor to measure volume 
fractions of fluids. In 1999, Abro and his coworkers developed 
a technique that used multiple radiation beams to detect flow 
patterns in two-phase flow within a narrow pipe (Åbro, et al., 
1999). In a sophisticated system, Salgado et al. employed dual-
energy gamma emitter radioisotopes. They had an emphasis 
on investigations into the complex nature of gas-oil-water 
multiphase flow in mostly understanding and identification 
of different flow patterns (Salgado, et al., 2010). Roshani and 
his colleagues conducted an analysis of the performance of a 
radial basis function (RBF) neural network alongside a photon 
attenuation sensor to predict various phases’ proportions in 
water, oil, and gas annular mixtures. They evaluated 3 different 
structures of the mentioned model. The first one aimed at 
predicting the proportions of water and oil, the second focused 
on gas and water, and the third on gas and oil. They reported 
that the first RBF model was the most accurate in forecasting 
proportions in the three-phase annular mixture (Roshani, 
et al., 2017a). In the aspect of capacitive sensors, many works 
have been published so far. Researchers have used capacitive 
plates to measure both the resistance and capacitance of a 
three-phase blended liquid without physical intrusion. The 
examined Plexiglas pipeline was equipped with two semi-
cylindrical electrodes each one of them covered about half of 
the pipeline’s circular perimeter (Sheikh, Hassan and Iqbal, 
2019). Fouladinia et al. have employed a capacitive sensor 
in a three-phase homogeneous regime to measure volumes 
of all phases. They have concluded that just one capacitive 
sensor is unable to do this action and there is a need for other 
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methodologies or using other types of sensors along with the 
utilized sensor. Hence, they measured the proportion of water, 
precisely (Mayet, et al., 2024b). Proposing new and optimized 
capacitance-oriented sensor is a hot topic and many papers can 
be found in this regard. For example, in (Syah, et al., 2023), 
a new sensor called arrow-shaped has been presented which 
has a good level of sensitivity for two-phase annular fluids. 
Similarly, a capacitive sensor called skewed has been proposed 
by authors which is able to measure volume fractions of oil and 
gas two-phase flows in stratified, annular, and homogeneous 
regimes (Iliyasu, et al., 2024). Scale layers that are formed 
within pipelines face oil and water industries with a number 
of challenges such as drilling tools, increasing the consumed 
energy, decreasing the efficiency, and the most important one, 
reducing the accuracy of flow measurement. Flowing water in 
pipes introducing some materials, such as calcium, barium, and 
strontium sulfate, leads to the forming of these challengeable 
layers. Therefore, many papers have been published to measure 
scale-oriented matters in pipelines. For instance, in (Oliveira, 
et al., 2015), authors have used a detector paired with a source 
to investigate the accumulation of scale within transmission 
channels. The authors collected gamma spectra at intervals of 
0.5 cm. Their findings indicated that while gamma transmission 
scanning is capable of identifying the existence of scale in a 
pipe carrying a single-phase flow, it cannot accurately map the 
exact distribution of the scale. Salgado and his coworkers have 
employed a method for measuring the thickness of scale inside 
pipelines. Their introduced method included a source, a steel 
pipe, and a detector. The collected gamma spectra were given to 
an artificial neural network (ANN) resulting in the estimating of 
the scale thickness. The weakness of this approach is that it was 
able to measure the scale’s thickness in pipelines with a one-
phase flow, while in real conditions more phases inflows exist 
(Teixeira, et al., 2018). Authors in (Roshani, et al., 2021) tried 
to measure void fraction in two-phase gas and oil regardless of 
the effect of the scale layer in the measurement. This study was 
done by combining photon attenuation with artificial intelligence 
methods. They employed an ANN to classify the flow regimes 
and predict the void fraction. However, their outputs declared 
that the proposed method was unable to accurately identify all 
three flow regimes. Utilizing ANN in flow measurement is a 
popular tool that can be found in many studies such as (Mayet, 
et al., 2023), which has used a multilayer perceptron (MLP) 
ANN along with two capacitive sensors, ring, and concave, 
to measure void fraction of a two-phase water and gas fluid 
independent of temperature and pressure. Authors have utilized 
a combination of capacitive and gamma-ray attenuation sensors 
to measure volumes of oil, gas, and water by an ANN. They 
did this mission without any attention to the effect of scale in 
measurement accuracy (Fouladinia, et al., 2024). A gamma-
based system including two sources and two detectors along 
with a couple of machine learning tools were used to analyze 
the water-airflow in a horizontal pipe. To do this mission, the 
cross-spectral density and 8 extracted parameters from the 
signal spectrum for one detector acted as input features for used 
machine learning (Hanus, et al., 2024). Authors have utilized 
a particle swarm optimization based feature selection system, 
and an ANN to detect a void fraction of a two-phase liquid-gas 

fluid. The used sensor was a gamma-based sensor with one 
source and two detectors (Iliyasu, et al., 2023). In the aspect of 
homogeneous two-phase fluids, a study was conducted being 
measuring void fraction independent of the liquid phase density 
changes by an MLP model (Iliyasu, et al., 2023). Authors have 
done this for an annular two-phase fluid (Veisi, et al., 2023). 
The same can be found for an annular regime while authors 
have utilized concave and TRFLC sensors to measure void 
fraction regardless of liquid type (Al-Fayoumi, et al., 2023). 
In another study, capacitive and photon attenuation sensors 
were used to collect data for an MLP ANN. The model was 
able to measure a void fraction of an oil-gas annular regime, 
precisely (Mohammed, et al., 2022). By employing two 
different capacitance-oriented sensors (concave and ring), 
the void fraction of a two-phase homogeneous regime was 
measured independent of temperature and pressure changes 
(Chen, et al., 2023). Moreover, a temperature-independent 
measurement was done for a two-phase fluid by employing 
an ANN and an 8-electrode sensor (Qaisi, et al., 2023). While 
these papers have reported good accuracies, they have not 
considered the impact of scale thickness.

In this paper, the main idea is to eliminate the impact of the 
scale layer in volume fractions measuring. Scale is a common 
phenomenon in pipelines and highly effects the accuracy of 
measurement. While in many previous published papers, the 
impact of this material is not applied, the proposed metering 
system’s objective is to solve this challenge by measuring 
all phases’ volume fractions independent of scale thickness, 
precisely. This mission is done by combining an MLP ANN, 
capacitive and gamma-ray attenuation sensors. Investigated fluid 
is a homogeneous regime containing gas, water, and oil. To 
generate data for the proposed network, the concave sensor is 
simulated in the COMSOL software and acts as the first input of 
the network. The second input is then produced by calculating 
Beer-Lambert equations to count gamma rays in each ratio of the 
materials mixture. Moreover, the scale’s thickness is considered 
from 0 mm to 10 mm of BaSO4 being one of the most common 
materials in pipelines. After investigating a number of networks 
with various hyperparameters, the best one is proposed which 
has a mean absolute error (MAE) of 0.318, 1.531, and 1.614, 
for the gas, water, and oil phases, respectively. These errors 
illustrate the novelty of the approach being able to measure the 
volume proportions of a three-phase gas-water-oil homogeneous 
fluid independent of the scale thickness. This study includes 4 
more main sections. While in section 2 the details of simulations 
and calculations are presented, the proposed network’s details 
are reported in section 3. In section 4, the obtained results are 
illustrated and discussed. Finally, the conclusion of the whole 
paper is done in section 5.

II. Describing Sensors Utilized in The Proposed 
Approach

As it was mentioned, the main aim of this paper is to 
present an approach being able to measure the VFs of all 
three phases, precisely. To do this mission, the first step is 
selecting an appropriate sensor. Capacitive and gamma-based 
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sensors are highly popular among researchers to measure 
VFs of various fluids. One of the key reasons in this regard 
is their non-invasive nature. Another reason is their accuracy 
along with their installation being easy. The principle behind 
capacitive sensors is based on the variation in measured 
capacitance, which occurs due to changes in the material 
between the sensor’s electrodes, referred to as the dielectric. 
In the case of a capacitance-based sensor, the material inside 
the pipe serves as the dielectric. Therefore, any alteration in 
the composition or ratio of the materials results in a change 
in the sensor’s measured capacitance. This variation is 
attributed to the dielectric properties of the materials, with the 
most significant being their relative permittivity. Capacitive 
sensors are influenced by relative permittivity, and due to the 
similarity in the relative permittivity values of gas and oil, 
these sensors are unable to accurately measure the volume 
fractions of all three phases. As a result, an additional sensor 
based on a different physical property is required. A gamma-
ray attenuation sensor, which operates based on density, is 
a suitable option. However, due to the similar densities 
of water and oil, it cannot effectively measure all three 
phases. While the gas phase has the lowest linear absorption 
coefficient, the challenge arises from the similarity between 
the liquid phases, making it difficult for the gamma sensor 
to differentiate between them. Therefore, both capacitive 
and gamma-ray sensors are used in conjunction to achieve 
the accurate measurement of all three phases. As it was 
mentioned before, the selected sensors must be non-
destructive and non-invasive because the proposed approach 
is expected to do measurements without doing any separation 
or delay in the process. One critical point that must be 
considered is the parameters that impact the results produced 
by sensors. Since water and oil have close densities and oil 
and gas have close relative permittivity, the chosen sensors 
must be dependent on different parameters to generate 
various inputs to train and test the network much better 
and make it able to predict volumes. Density and relative 
permittivity are so important across various scientific and 
engineering disciplines. While density refers to the amount 
of mass contained within a specific volume, indicating how 
tightly matter is packed in a substance, relative permittivity 
indicates how effectively a material can save electrical-
oriented energy within an electric-style field compared to 
empty space. Since capacitive and gamma-ray attenuation 
sensors are related to relative permittivity and density, 

respectively, they can be good choices for this research’s 
purpose. Therefore, these sensors along with an MLP ANN 
are utilized to measure the volumes of the phases. It is to be 
noted that, fluids could be divided into three main regimes, 
annular, stratified, and homogeneous shown in Fig. 1. Due to 
the main aim of this investigation being independent of scale 
thickness measurement of a homogeneous flow, the scale can 
be seen in Fig. 1 with brown color.

Capacitance-based sensors have two electrodes with an 
insulating material in between. The mix of three phases 
in the fluid affects its overall dielectric properties, which 
in turn, alters the capacitive sensor’s capacitance. This 
shows how much capacitive sensors depend on relative 
permittivity. These sensors have several perks, including a 
straightforward design, low-cost implementation, the use of 
non-ionizing radiation, fast response times, and easy, non-
intrusive installation (Heindel, Gray and Jensen, 2008 and 
Hammer, et al., 2006).

As it is clear from equation (1), the capacity of the 
capacitance-based sensor (C) and relative permittivity or εr of 
material flowing inside the pipe are highly connected 
together. This parameter illustrates the amount of electrostatic 
energy that can be stored per unit of applied voltage. While 
A takes place as the area of electrodes, D is the gap between 
them. Finally, the permittivity of free space or ε0 appears 
being about 8.854 × 10 12− F

m
 (Cui, et al., 2021).

0C
ε ε× ×

= r A
D

 (1)

Since both of the used sensors, capacitive and gamma-
based sensors, have been utilized in a number of previously 
published papers to measure VFs of various fluids, their 
application is proved. Hence, in the current study, a 
combination of them along with an ANN is applied to reach 
the main goal of this study being measuring volumes of all 
three phases regardless of scale thickness. According to 
previous studies by authors. A static experimental study was 
conducted to validate the generated data by COMSOL 
software. After measuring sensor capacity in various VFs 
by an LCR meter, collected data were compared with that 
of simulated data. After comparing both data, it was 
observed that they have similar trends and generated data 
by the software are valid. This approach canbe found in a 
number of previous published studies (Veisi, et al., 2023 
and Al-Fayoumi, et al., 2023 and Qaisi, et al., 2023).. Due 

Fig. 1. Three main regimes of fluids.
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to its good level of sensitivity and being easy to install on 
pipelines, the chosen sensor is concave being one of the 
most popular ones in this regard. To design and simulate 
this sensor the COMSOL software is utilized which is 
completely valid and has been benchmarked in a number of 
previous studies (Syah, et al., 2023 and Iliyasu, et al., 
2024). The first stage of simulating this sensor in the 
mentioned software is creating an area to make an isolated 
condition for the study. Next, is the time for adding pipe 
followed by adding electrodes, both GND and VCC, to the 
surface of it. The liquid being a mixture of oil, water, and 
gas is then added inside the pipe. While (Fig. 2a) shows the 
3D view of the simulated sensor, (Fig. 2b) do that of Mesh 
which was set on a Fine level before running the sensor for 
measuring capacities as much as accurate. In this figure, 
GND is gray and VCC is red. In Fig. 3, different lengths, 
radiuses, and the gap between electrodes are presented. 
While Lp is the length of the pipe and is equal to 180 mm, 
the length of the electrodes is depicted by Le and is equal to 
120 mm. Last but not least, the distance between electrodes 
is shown as Ge  and is equal to 3 mm. Since the thickness 
of scale (Rs) made of BaSO4 is alternative, Rl being the 
radius of the mixture is alternative, too. This happens while 
the radius of the pipe shown as Rp is equal to 32 mm. 
According to Fig. 4, various thicknesses of scale are 
considered for simulation ranging from 0 mm to 10 mm. 
The formula of Rl is 26 - Rs  and is alternative from 26 mm 
to 16 mm based on each amount of scale. In this figure, 
pipe, scale, and liquid are shown with orange, brown, and 
green colors, respectively. There are 11 states of scale and 
by considering 10% of interval for changing in materials’ 

volumes, 66 simulations are needed for each thickness of 
scale. Hence, by consuming a great amount of time, the 
simulations are done 726 times to generate the first input of 
the network.

As it was mentioned in (Mayet, et al., 2024b), just one 
capacitive sensor is unable to predict all phases and due to the 
closeness of the oil and gas phases’ relative permittivity, this 
happens. To solve this problem, the solution is employing another 
type of sensor being sensitive to another physical parameter. 
Hence, a gamma-ray sensor could be a good choice because it is 
highly dependent on density and is non-destructive, too.

Since 1950s, gamma attenuation sensor has been utilized 
to measure volume fractions. The one-beam version of this 
density-dependent sensor works with the attenuation of 
the rays when cross the liquid. In fact, the ray starts from 
the source side and traverses the pipe (its diameter) to reach 
the detector side and be counted. It is obvious that the counted 
rays or the output of the sensor depends on the flow regime 
inside the pipe and for this reason, in this investigation, a 
homogeneous fluid of oil, gas, and water was considered. 
When gamma rays (like a narrow beam) move from a source 
has an initial intensity (I1). After passing the first wall of the 
pipe (the wall near the source side) it penetrates to the fluid 
and after exiting from the second wall (the wall near the 
detector side) rays reach the detector with the final intensity 
(I2). By these two intensities, the output of the sensor is 
calculated. Fig. 5 shows the details related to a gamma ray 
crossing the pipe and reaches to the detector to be counted.

The Beer-Lambert law is presented in equation (2) proving 
the fact of high impact of density on the gamma-ray 
attenuation sensor. In this equation, I1(E) and I2(E) are the 
energy of the ray emitted and the energy of the ray collected, 
respectively. While η is the absorption coefficient, ρ is the 
density of the material within the pipe and L stands for its 
thickness (Dong-hui, et al., 2005). By putting equation (3) 
being about the linear attenuation coefficients (µ(E)) in 
equation (2), equation (4) is earned giving the amount of I

I
2

1

, 
the second input for the network. Since the investigated fluid 
is a three-phase oil-water-gas flow, equation (5) is replaced in 
equation (4) to reach the final equation being equation (6). α, 
β, and γ in equation (6) are VF of oil, water, and gas, 
respectively. Finally, L is the thickness of materials inside the 
pipe and is equal to 52 mm.

( ) ( ) ( )2 1 exp( ZE L)= −η ρI E I E  (2)

( ) ( ZE)µ =E η ρ  (3)

( ) ( ) ( )2 1 exp( E L)= −I E I E  (4)

( )  ( ) ( ) ( )µ αµ βµ γµ= + +o w gE E E E  (5)

( ) ( ) ( )2

1

] ( ) [αµ βµ γµ=− + + ×o w g

ILn E E E L
I

 (6)

In this study, Cesium-137, emitting radiation at 0.662 MeV, 
was chosen. According to the linear attenuation coefficient 
of all three phases in (National Institute of Standards and 
Technology, 2023), equation (6) is calculated for various 

Fig. 2. (a) Simulated concave sensor and (b) Mesh view.
ba

Fig. 3. Various dimensions of the simulated sensor.
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Fig. 4. Various thicknesses of the scale considered during simulations.

ratios of materials and the second input of the network is 
generated. Table I presents all parameters and materials 
which are utilized in done simulations and calculations. 
Statistical analysis is a systematic process that involves 
selecting appropriate techniques, utilizing relevant software 
tools, and adhering to specific guidelines to facilitate the 
efficient collection and analysis of data. In this study, the 
statistical technique of data splitting was applied, where 
the dataset was randomly divided into training and testing 
subsets. Microsoft Excel, software offering basic statistical 
features useful for straightforward analyses, was employed. 
The criteria for data collection and analysis were based on 
data quality and sampling methods. Several steps were taken 
to process, clean, and prepare the data for analysis after 
extraction. First, the extracted data were examined to identify 
any missing values, outliers, duplicates, or inconsistencies, 
none of which were found. As the data were on the same 
scale, normalization and conversion were unnecessary. 

Table I
Characteristics of the scale and phases of the investigated fluid

Characteristic Value or Name
Utilized material for the scale BaSO4
Relative permittivity of gas 1
Relative permittivity of water 81
Relative permittivity of oil 2.2
Relative permittivity of the used scale 11.4
Density of gas 0.001 g/cm3

Density of water 1 g/cm3

Density of oil 0.9 g/cm3

Density of the used scale 4.48 g/cm3

The range of volume fractions 0–100%
The step of volume fractions 10%
The number of simulations and calculations 11×66=726
Type of the investigated fluid Homogeneous

Subsequently, the data were randomly split into training and 
testing sets. Finally, the verified data were saved using Excel 
software for further analysis. Last but not least, since the 
used data are simulated-based data, there is nothing about 
unreliability to do with this data because they are generated 
by software and ideal conditions are considered and noise is 
not considered a brining error to the results and decreases the 
reliability of outcomes.

It is to be noted that, before a sensor can be manufactured, 
it must undergo calibration using a reliable reference. This is 
essential because the sensor is designed to measure dynamic 
values for which no prior data exists. To achieve this, several 
studies are conducted using a static model across various 
phase ratios to produce calibration points. These points 
are then used to calibrate the sensor and can be generated 
using advanced software, such as the validated COMSOL 
Multiphysics software.

Fig. 5. The travel of gamma ray from source to detector to be counted.
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III. Utilizing Ann as A Powerful Tool to Predict 
Volumes

ANN are utilized in many areas, such as signal processing 
and pattern recognition. The selection of ANNs was based on 
their demonstrated effectiveness in handling complex, non-
linear relationships between input variables, such as those 
encountered in multiphase fluid measurement. Multiphase 
flow systems are highly dynamic, and the capacitance and 
gamma-ray sensor outputs often exhibit non-linearity and 
interdependence, which ANNs are well-suited to model due 
to their ability to learn complex mappings from data. As it 
was mentioned, due to the inherent complexity of multi-
phase fluids and the non-linear behavior between sensors’ 
outcomes and volume proportions, ANNs are so intriguing 
for researchers in the aspect of flow measurement because 
they are so appropriate in non-linear-style systems. Among 
various types of ANN, such as Support Vector Machines 
(SVM) and XGBoost, Multi-Layer Perceptron (MLP) ANNs 
are widely used in measuring volumes. This is because of 
offering a more versatile framework, accommodating a wide 
range of configurations and activation functions being non-
linear (Goodfellow, Bengio and Courville, 2016; Zhang and 
Suganthan, 2016). Another merit related to MLP ANNs is 
their flexibility in predicting continuous function providing 
enough data and appropriate architecture for modeling 
unpredictable systems, such as multi-phase fluids. Moreover, 
while some networks such as Gaussian process regression 
can become computationally challengeable in handling 
extensive data, MLP ANNs are compatible with advanced 
hardware such as GPUs resulting in enhancing training 
speeds (Hinton, et al., 2012; He, et al., 2016). Next, due to 
their learning and generalization capabilities of MLP ANNs, 
they exhibit robustness in dealing with noisy data. Hence, 
they are useful in the flow measurement industry (Bishop 
and Nasrabadi, 2006; Geman, Bienenstock and Doursat, 
1992). According to all provided reasons, an MLP ANN is 
chosen and by using it, the metering of all phases of the 
investigated fluid is done. This kind of network has some 
layers, input, output, and hidden layers. Each one of these 
layers has neurons and activation functions, such as linear, 
sigmoid, tansig, and purelin. When the training process is in 
process, weights and biases are iteratively tuned to reach the 
lowest MAE. Convergence plays a crucial role in network 
performance, and its relationship with the learning rate is 
well-established. If the learning rate is set too high, it can 
cause instability or lead to oscillations in the algorithm, 
while a rate that is too low may result in extremely slow 
convergence. Therefore, determining the optimal learning 
rate often requires experimentation. In this study, the learning 
rate was set at 0.01 based on such considerations. Non-linear 
systems, such as multi-phase flow measurement, often prompt 
researchers to employ optimization algorithms to address 
complex challenges. One of the most commonly utilized 
algorithms is the Levenberg-Marquardt (LM) algorithm, 
which combines the features of both Gradient Descent and 
Gauss-Newton iteration, offering numerous advantages. 
For example, it reduces the demand for high-performance 

computing resources while ensuring a fast convergence rate. 
As a result, the learning process for the network in this study 
was based on the LM algorithm, which has a broad spectrum 
of engineering applications, making it well-suited for this 
research (Levenberg, 1944; Marquardt, 1963). Data were 
generated by simulating a concave sensor in the COMSOL 
Multiphysics software under varying ratios of oil, water, 
and gas, along with solving the Beer-Lambert equations 
for a gamma-ray attenuation sensor using Cesium-137. The 
collected data were then normalized before being fed into 
the MLP ANN. In the next phase, multiple iterations were 
implemented in MATLAB to explore and evaluate different 
combinations of hyperparameters, including the number of 
hidden layers, neurons per hidden layer, activation functions 
for the input, output, and hidden layers, as well as the 
number of epochs, among other parameters. Ultimately, the 
model with the lowest MAE was selected and is presented 
in this paper. The proposed network has 2 inputs generated 
from simulations of a concave sensor in COMSOL software 
to measure capacitance of various ratios and calculations 
of the Beer-Lambert equations related to counted rays with 
Cesium-137 in its source side. Since the scale from 0mm 
to 10mm is investigated and the volume interval is 10%, 
totally, simulations and calculations are done for 726 times. 
After normalizing all data, 70% of them being 508 data are 
considered for training and the rest of them belong to testing 
the network. This data consideration is done, randomly. This 
network has 2 hidden layers, both of them have 10 neurons 
and their activation function is tansig. The activation function 
of both input and output layers is purelin. In Equation 
(7) and Equation (8), the function of tansig and purelin is 
presented, respectively. Last but not least, the best network 
with the lowest desired MAEs trained over 2100 epochs. The 
proposed network is illustrated in Fig. 6.

Tansig n
e n( ) =

+
−−

2

1
1

2
 (7)

Purelin n n( ) =  (8)

In the measurement of volume fractions of a multiphase 
fluid using multiple sensors, such as a capacitance-based 
sensor and a gamma-ray attenuation sensor, the accurate 
and real-time transmission of sensor data are critical. The 
sensors generate continuous data regarding VFs of the 
fluid phases and this data can be transferred by various 
transferring protocols, one of the most popular ones is 
message queuing telemetry transport (MQTT). MQTT 
ensures that the sensor outputs are transmitted efficiently to 
the server in a way being lightweight, low-bandwidth, and 
reliable data transfer over networks with minimal latency. 
Once the data are received at the server, the modeled ANN 
starts to process and analyze the input, enabling the real-
time estimation of the multiphase fluid’s volume fractions. 
The combination of MQTT’s protocol for data transmission 
and ANN’s computational capabilities allows for robust 
and precise monitoring of the fluid composition, ensuring 
that the system is both scalable and adaptable to complex 
environments.
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Fig. 6. Various layers of the proposed network.

IV. Results and Discussion
After doing all required simulations and calculations, the 

obtained results are presented in this section. The main aim of 
this investigation was to measure the volume proportions of 
all three phases of a homogeneous fluid including gas, water, 
and oil independent of scale thickness presented in the wall 
of pipelines. To achieve this task, an MLP ANN along with 
capacitive and photon attenuation sensors were employed. As 
it was mentioned before, the proposed network had 2 distinct 
inputs generated from simulating the concave sensor in the 
COMSOL software and calculating Beer-Lambert equations 
for a gamma attenuation sensor with Cesium-137 in its source 
part. All 726 obtained data were randomly divided between 
the test and train sets of the network. The proposed metering 
system had 3 outputs, a void fraction of gas, and volumes of 
water and oil having MAE equal to 0.318, 1.527, and 1.608, 
respectively. These errors illustrate the novelty of the system 
being able to gauge volumes of a three-phase gas-water-oil 
homogeneous fluid regardless of the scale thickness. The 
flowchart of the way that the presented approach combined 
sensors and network is illustrated in Fig. 7. As it was said 
before, the main reason for choosing two types of sensors was 
dependent on the very close relative permittivity of oil and 
gas resulting in an inability of the capacitive sensor in VFs of 
all three phases. Hence, another kind of sensor being sensitive 
to another parameter was employed and it was a gamma-ray 
attenuation sensor being highly dependent to density. The 
combination of these two different sensors along with an MLP 
could measure all three phases’ volumes, precisely.

When just one capacitance-oriented sensor is utilized 
for measuring VFs, due to the closeness of materials’ 
relative permittivity, similar capacities for different ratios of 
combinations are generated and this confuses the network to 
predict volumes. In fact, some ratios of combinations exist 
that are different in the amount of materials but similar in 
the measured capacity. Therefore, to make the network able 

to predict correct volumes, a gamma-ray attenuation sensor, 
being sensitive to density, can be used to generate another 
set of data being different with the first set, which were 
measured capacities. That is why; the combination of this 
sensor was used and made the proposed network able to 
measure all volume fractions regardless of the effect of scale 
thickness. The obtained results, test and train set from the 
proposed network for all phases are shown in Fig. 8. From 
the mentioned figure, it is clear that both overfitting and 
underfitting did not happen for the obtained outcomes.

After reaching the best network, the MAE of all three phases 
was calculated by Equation (9) (Chicco, Warrens and Jurman, 
2021). The proposed metering system had 3 outputs, a void 
fraction of gas, and volumes of water and oil having MAE 
equal to 0.318, 1.527, and 1.608, respectively. These numbers 
were related to the test set, the train sets’ MAE for gas, oil, 
and water was 0.304, 1.348, and 1.403, respectively. This very 
low error depicts the ability of the proposed metering system, 
a combination of two sensors and an MLP ANN, in gauging 
oil, gas, and water phases regardless on scale thickness in a 
homogeneous flow. In addition, other error metrics are also 
discussed in this paper. The formulas for root mean square 
error (RMSE), coefficient of determination (R-squared or R²), 
and symmetric mean absolute percentage error (SMAPE) are 
provided in equations (10), (11), and (12), respectively, as 
referenced in (Chicco, Warrens and Jurman, 2021).
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Fig. 7. The flowchart of the proposed approach contains an artificial neural network along with capacitive and photon attenuation sensors.
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In the aforementioned equations, 𝑛 represents the total 
number of data points, 𝑋𝑖 refers to the actual value for the 
𝑖th data point, 𝑌𝑖 is the predicted value for the 𝑖th data point, 
and 𝑌 denotes the mean of all actual values. Similar to MAE, 
RMSE equals zero when the linear regression model perfectly 
matches the data, while a positive value indicates an imperfect 
fit. The R² metric ranges from 0 to 1, with 1 indicating a 
perfect fit and 0 representing the worst fit. On the other hand, 
SMAPE ranges from 0% to 100%, where a perfect alignment 
between actual and predicted values results in a value of 0%, 
while the worst alignment leads to SMAPE = 100%. For 
the proposed model, R² values were found to be 0.9997 for 
gas, 0.9908 for water, and 0.9897 for oil phases. In terms 
of SMAPE, the gas, water, and oil phases showed values of 
0.0012%, 0.0057%, and 0.0060%, respectively. In addition, the 
RMSE for the gas phase was 0.4105, whereas it was 2.5706 
for the water phase, which was 0.1474 lower than that of the 
oil phase. In Fig. 9, various Error illustrations regarding the 
obtained results are shown. Error histograms for gas, water, 
and oil are presented in (a), (b), and (c) parts of this figure 
showing a great distribution of data around 0. While errors of 
all three phases are depicted in (d), (e), and (f), the figure for 
target versus predicted is illustrated in (g), (h), and (i) parts.

To highlight the novelty and performance of the metering 
system, its details are compared to that of some similar 
previous published works in Table II.

In the above table, 6 previously published papers were 
compared with the proposed metering system. Except for 
the presented approach, just authors in (Roshani, et al., 
2021) have tried to eliminate the impact of scale thickness 
in their measurement being measuring the void fraction of a 
two-phase annular system including oil and gas. However, 
the proposed system is able to measure all three phases of a 
three-phase flow regardless of the scale’s impact with a lower 
amount of MAE for all phases in comparison with reference 
(Roshani, et al., 2021). Moreover, authors in (Roshani, 
et al., 2021) have utilized 2 sources and 2 detectors for their 
investigations, 2 times higher than that of the presented 
method. It is obvious that when the number of sources and 
detectors increases, a much more accurate result is expected 
but the problem is rising in both complexity and cost of the 
system. This point is another merit of the presented metering 
system in comparison with references (Roshani, et al., 2021) 
and (Salgado, Dam and Salgado, 2021). While all phases 
including gas, water, and oil were presented in the proposed 
approach, references (Mayet, et al., 2024b) and (Pan, et al., 
2019) have reported just one phase’s volume. Last but not 
least, reference (Mayet, et al., 2024a) have reported all 
three phases’ volumes with a good level of accuracy. Aside 
from having a lower amount of MAE in gas and oil phases, 
the presented method measures volumes independent of 
scale thickness, the point that the reference (Mayet, et al., 
2024a) is unable to do it. Finally, reference (Peyvandi and 
Rad, 2017) can be seen that not only is not able to measure 
volumes regardless of scale but also have a higher amount 
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Fig. 8. The proposed network’s test and train performance for all three phases.

Table II
Comparing The Proposed Approach With A Couple Of Similar Previous Works

Study Presented 
phases

Utilized sensors Utilized 
sources

Utilized 
detectors

Mean Absolute 
Error

Independent of 
scale thickness

(Mayet, et al., 2024a) Gas
Water
Oil

Capacitive+Gamma 
attenuation

1 1 1.6
0.29
1.67

No

(Mayet, et al., 2024b) Water Capacitive --- --- 1.66 No
(Roshani, et al., 2021) Gas

Oil
Gamma attenuation 2 2 2.81

---
Yes

(Salgado, Dam, Salgado 
et al., 2021)

Water
Gas

Gamma attenuation 2 2 1.79
0.4

No

(Pan, et al., 2019) Gas Gamma attenuation 1 1 7.72 No
(Peyvandi and Rad, 2017) Gas

Water
Oil

Gamma attenuation 1 1 1.87
1.88
---

No

Proposed
approach

Gas
Water
Oil

Capacitive+Gamma 
attenuation

1 1 0.318
1.531
1.614

Yes
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of MAE in comparison with this study. While the proposed 
metering system demonstrates accurate prediction of the 
volume fraction in all phases of a gas-oil-water homogeneous 
mixture, like any solution, it has certain limitations. One 
significant issue is the need to address radiation shielding, 
as it is critical to ensure the health and safety of personnel 
working with such systems. However, due to the flexibility 
in adjusting photon energy, the high intensity of photon 
emission, and the ability to switch X-ray tubes on and 
off, this method presents a viable alternative to the use of 
radioisotopes. In addition, the scope of this study is limited 
to homogeneous regimes and cannot measure VFs in other 
types of fluid mixtures. Finally, the effects of temperature and 
pressure variations, which significantly influence the liquid’s 
relative permittivity and density inside the pipe, should also 
be considered.

V. Conclusion
In this paper, a metering approach was proposed that was able 
to measure all three phases of a multi-phase fluid independent 
of scale thickness, accurately. The presented approach had 2 
employed sensors and an MPL ANN. Capacitive and gamma 

attenuation sensors were used to generate enough data for 
training and testing the network. After examining a numerous 
number of networks with various characteristics, the best one 
was presented in this study. This model had 2 inputs from 
sensors, and 3 outputs for phases’ volume. The MAE of gas, 
water, and oil was 0.318, 1.531, and 1.614, respectively. It is 
to be noted that, just 1 source and 1 detector were employed 
to generate data by the gamma-ray attenuation sensor by 
calculating Beer-Lambert equations. Moreover, the simulated 
capacitive sensor was concave geometry. This metering system 
can be used in pipelines because they are faced with a scale 
during their processes and eliminating the effects of this 
material on measuring accuracy is a vital action. Variations in 
temperature and pressure significantly influence the capacitance-
based method due to changes in liquids’ relative permittivity 
and density. The experiments in this study were performed at 
room temperature (approximately 300 K), but future research 
should account for these variables and develop metering 
systems that are not dependent on them. To further reduce 
errors, enhancing feature extraction could lead to more accurate 
volume fraction predictions. In addition, experimenting with 
different learning algorithms or activation functions could offer 
further optimization for future studies. Although scale formation 

Fig. 9. Error illustration for the proposed metering approach, (a) Gas phase’s Error histogram, (b) Water phase’s Error histogram, (c) Oil phase’s Error 
histogram, (d) target versus predicted values of gas phase, (e) target versus predicted values of water phase, (f) target versus predicted values of oil 

phase, (g) Gas phase’s error, (h) Water phase’s error, (i) Oil phase’s error.

d

ih

c

g

b

f

a

e



 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11791 177

can be non-uniform in real-world conditions, uniform scale 
formation (ideal condition) is assumed to simplify the analysis. 
Moreover, while uniform scale is a simplifying assumption, it 
serves as a baseline for further investigations to address non-
uniform scale distributions.
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