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Abstract— Cloud computing allows enterprises and individuals 
to have a less physical infrastructure of software and hardware. 
Nevertheless, there are some concerns regarding privacy protection 
which may turn out to be a strong barrier. Traditional encryption 
schemes have been used to encrypt the data before sending them to 
the cloud. However, the private key has to be provided to the server 
before any calculations on the data. To solve this security problem, 
this paper proposes a fully homomorphic encryption scheme for 
securing cloud data at rest. The scheme is based on prime modular 
operation, its security depends on factoring multiple large prime 
numbers (p1, p2,...pn) up to n, which is formed from very large prime 
numbers up to hundreds of digits as this is an open problem in 
mathematics. In addition, the elements of the secret key are derived 
from a series of mathematical operations and the calculation of an 
Euler coefficient within the modular of integers. Furthermore, it 
adds the complexity of noise to the plaintext using the number of 
users of the Cloud Service Provider. Moreover, its randomness is 
evaluated by the National Institute of Standards and Technology 
statistical tests, and the results demonstrating that the best statistical 
performance was obtained with this algorithm.

Index Terms— Cloud Computing Security, Cryptography, Fully 
Homomorphic Encryption, Information Security.

I. Introduction
Cloud computing plays an important role in storing and 
processing huge amounts of data since the fast progress 
of computer networks and big data (Hashem, et al. 2015). 
It provides flexible and on-demand remote storage and 
computing capabilities to its users. Nevertheless, as Gonzales 
et al. (2017) stated that cloud computing is not fully 
trustable since its users do not have full control over their 
data. Privacy protection and data leakage are the main risks 
for individuals and enterprises when it comes to migrating 

their data to cloud storage. The encryption techniques that 
require encrypted data on the cloud to be decrypted before 
performing any computation is still portend the privacy of 
stored data. Whereas, in Homomorphic Encryption operations 
can be performed directly on encrypted data without 
decrypting it. In addition, the result of the operation on 
encrypted data is equivalent to the result of its corresponding 
plaintext operation. This paper attempts to add an extra value 
to the privacy protection of cloud’s data through proposing a 
new FHE scheme based on prime modular operation, which 
security depends on factoring multiple large prime numbers 
(p1, p2,…,pn) up to n, which is formed from very large prime 
numbers up to hundreds of digits as this is an open problem 
in mathematics. Moreover, the randomness of the proposed 
work is evaluated by the well-known National Institute of 
Standards and Technology (NIST) test suite, which is widely 
used as a standard battery of tests to test randomness. The 
results of the proposed algorithm in the NIST statistical tests 
show that it produces the best statistical performance through 
passing all the tests.

II. Problem Statement
Nowadays, individuals and enterprises are seeking to 

access their private information anytime and anywhere. 
This leads them to deploy it onto cloud storage. However, 
they will be facing an extra amount of risks, which makes 
it challenging to maintain the security of outsourced data 
such as confidentiality, integrity, authentication, and privacy. 
For example, the hacking attack on PlayStation network in 
2011 led it to leak millions of user accounts’ passwords, 
physical addresses, credit card information, and other 
personal information. Later, the company stated that they 
could have encrypted the data on their network (Sangani, 
2011). In addition, as reported by the Identity Theft Resource 
Center on May 31, 2018, thousands of FedEx customer 
records were exposed due to an unsecured server; some of 
the documents were passports, driving licenses, and security 
IDs (CyberScout, 2018). Therefore, Cloud Service Providers 
(CSPs) are required to keep an encrypted version of user’s 
information on their storage. There is a variety of different 
techniques used for data encryption. Nevertheless, as the 
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data resides on the cloud storage, it required to be decrypted 
before performing any operation on the data. This might 
cause privacy and confidentiality problems to the stored 
data. Whereas, homomorphic encryption allows performing 
computations on the encrypted data without decrypting it. 
Thus, HE solves the problems of confidentiality and privacy 
of the stored data inside the cloud. Therefore, this paper 
presents a new FHE scheme based on multiple large prime 
modular operation which is formed from very large prime 
numbers up to hundreds of digits. Hence, it makes the secret 
key very complicated which is difficult to retrieve it and 
resistance to different types of attacks.

III. Literature Review
Rivest et al. (1978) were proposed the first homomorphic 

encryption scheme and were partially homomorphic encryption 
(PHE). Then, Yao (1982) was also presented a PHE scheme. 
After that, RSA which was a multiplicative homomorphism 
introduced by Rivest et al. (1983). Afterward, several authors 
such as Goldwasser and Micali (1984), Elgamal (1985), 
and Paillier (1999) were also presented their PHE scheme. 
Subsequently, a fully homomorphic encryption (FHE) scheme 
suggested by Gentry (2009), which allows calculating of 
any number of addition and multiplication, hence compute 
arbitrary functions of encrypted data. Nevertheless, the 
scheme was based on Somewhat Homomorphic Encryption 
(SWHE), which increases the length and noise of ciphertext 
when calculation performs on the ciphertext. Consequently, 
van Dijk et al. (2010) have introduced FHE scheme that used 
elementary modular arithmetic and used Gentry’s techniques 
to convert SWHE cryptosystem to FHE scheme. In addition, 
Smart and Vercauteren (2010) have presented an improved 
version of Smart-Vercauteren encryption scheme, the scheme 
was allowed several times decrease the ciphertext and keys 
lengths. In addition, IBM has released a software package 
named HElib in 2013, the company has implemented HE with 
further optimizations (Cheon, et al. 2019). Moreover, a HE 
scheme which is security dependent on the hardness of large 
integer factorization has been proposed by Xiao et al. (2012). 
Afterward, homomorphic encryption scheme has been worked 
on and improved by numerous authors, they have also tested 
it in a cloud computing system. Alattas and Elleithy (2013) 
have presented the application of algebraic homomorphic 
encryption mechanism and it was aiming at enhancing its 
security. In addition, several HE schemes such as RSA, 
Paillier, El-Gamal, and Gentry have been examined on a cloud 
computing environment by Tebaa and El Hajii (2014). In 
addition, Hayward and Chiang (2015) have improved Gentry’s 
encryption in parallel processing and they have tested it in a 
private cloud domain. Furthermore, structured and simplified 
definitions in the homomorphic encryption discipline have 
been proposed by Armknecht et al. (2015). Moreover, SAM 
which is an FHE scheme over integers has been implemented 
by Shihab and Makki (2018). Furthermore, Li et al. (2016) 
constructed an efficient symmetric FHE scheme and utilized 
it to design a privacy-preserving-outsourced association rule 

mining scheme. Their proposal allows multiple data owners 
to jointly mine some association rules without sacrificing data 
privacy. The security of the HE scheme against the known-
plaintext attacks was established by examining the difficulty 
of solving nonlinear systems. However, Wang et al. (2018) 
illustrated that the security of Li et al.’s HE is overvalued. 
They presented the retrieval and the second part can also 
be retrieved using a Euclidean algorithm to address the 
GCD problem of the first part of the secret key. Whereas, in 
2019 (Li et al.) used a lookup table to propose a protocol to 
evaluate any function using FHE. 

Moreover, Ji and Shieh (2019) presented ways to reduce 
the computation complexity of encrypted data by adopting 
the concept of aggregate plaintext and proposing an efficient 
scheme to handle the comparison and swap operation, 
which is commonly used for sorting and searching in cloud 
computing. In late 2019, the authors of Jubrin et al. introduced 
FHE as an antidote to the challenges of security and privacy 
of cloud data computation; they also provided insight into 
future research directions in the field of FHE. Furthermore, 
Mohammed and Abed (2019) proposed an improved FHE 
based on N-primes, where the proposed model’s security 
depends on the problem of factorization the integers to their 
primary numbers. Mert et al. (2020) presented two hardware 
architectures optimized for accelerating the encryption and 
decryption operations of the BFV/HE scheme with high-
performance polynomial multipliers. In addition, in 2020, Tan 
et al. presented a private comparison algorithm on encrypted 
integers using FHE, which scales efficiently for the length of 
input integers, applying techniques from finite field theory. 
Whereas, Mohammed and Abed (2020) proposed a novel 
framework and an algorithm for securing cloud data at rest. 
The proposed framework guarantees users’ privacy protection 
as they are communicating with an intermediary rather than 
with the cloud server directly.

Despite all the works presented previously, the randomness 
and robustness of the secret keys remain an open problem 
in the area of FHE. Therefore, this paper presents a new 
algorithm in which the elements of the secret key are derived 
from a series of mathematical operations and the calculation 
of an Euler coefficient within the modular of integers. 
Furthermore, it adds the complexity of noise to the plaintext by 
using the number of users of the CSP. Moreover, the proposed 
algorithm’s randomness tests prove the best statistical 
performance was obtained with this algorithm. Furthermore, 
the algorithm works on encrypting and decrypting different 
languages such as Kurdish, English, and Arabic.

IV. Homomorphic Encryption
In this section, HE scheme and its categories will be 

presented. Homomorphic encryption is divided into different 
categories, which are SWHE, FHE, and PHE. An encryption 
scheme is said to be homomorphic over an operation “+” if 
it supports the following equation, where ms is the plaintext 
message given to the encryption algorithm E:

E(ms1) + E(ms2) = E(ms1 + ms2), ∀ms1, ms2 ∈ M
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Somewhat homomorphic encryption allows addition and 
multiplication operations, however, both operations can be 
performed in a limited number Fellows and Koblitz (1994) 
and BNG by (Boneh-Goh-Nissim) (Dan, et al. 2005). 
Whereas, PHE allows one type of operation, either addition or 
multiplication, that is, Paillier, Goldwasser-Micali, Benaloh, 
El-Gamal, and RSA. On the other hand, FHE allows an 
unlimited number of both addition and multiplication on the 
ciphertext. It can be considered as ring homomorphism. As in 
mathematics, a ring is a set R equipped with two operations, 
“+” and “×” satisfying the eight axioms, known as the ring 
axioms. Examples of FHEs are FHE schemes Over Integers 
(dos Santos, et al. 2015), Simple FHE scheme (Li, et al. 
2012), LWE-based FHE schemes (Regev, 2005), ideal lattice-
based FHE schemes (Gentry, 2009), and NTRU-like FHE 
schemes (Hoffstein, et al. 1998). Fig. 1 presents the popular 
schemes proposed after the Gentry’s discovery.

V. The Proposed Scheme
The proposed scheme works on converting each plaintext 

character into its corresponding Unicode and then encrypts 
the derived Unicode by passing it to the encryption algorithm. 
In addition, the scheme also works on encrypting plaintexts 
in several languages such as Kurdish, English, and Arabic 
languages. In addition, the algorithm uses two different 
noises r as the first noise is added to make the ciphertext 
more digestive, whereas the counter i works on converting 
repeated characters in the text into different ciphertext 
values. The detailed notations used in the key generation, 
encryption, and decryption algorithms are presented in 
Table I. Subsequently, the working flow of the algorithms is 
illustrated in pseudocode.

Generating the Secret Key Ksp 

At first choose multiple P prime numbers p p p pn1 2 3, , ...  as 
secret keys, then calculate P as P p p pn� � � �1 2 ... , calculate L 

as L p p pn� � � �( )( )...( )1 21 1 1 , then calculate M Fs ii

m
�

�� 1
, 

where Fi = set of prime numbers up to L, and then calculate the 

average value of sum of all prime numbers as M M
Lavg
s= , then 

choose a random number Rn that satisfies gcd ,R Mn avg� � �1, 

1< <R Mn avg , then select Usr as it is the number of existing 

users of the cloud system U U Usr sr srn1 2, ,...,� �, where Usr ≥1, 
calculate � P p pn� � � �� � �� �1 1 1... , and calculate 

Q U P Msr s� � � �� �� mod  and finally calculate Ksp as:

  Ksp = (Rn × Q) mod 256 (1)

Mod 255 is taken as this is because the secret key values 
are derived from a series of mathematical calculations that 
are within a certain scale between 1 and 255 so that the 
values resulting from the equation are not very large and 
prevent any slowness in the calculation process.

Encryption algorithm
  cph = ms + N (rKsp + i) (2)

Decryption algorithm
  ms = cphmodN (3)

Fig. 1. Main FHE schemes after Gentry’s discovery (Acar, et al. 2018).

Algorithm 1: Key generation
Procedure
Input : n prime numbers p1, p2, p3 … pn

for  i = 1 to n 
Pr = Pr × pi 
L = L(pi+1)

end for
for  i = 1 to L 

Ms = Ms + pi

end for
Calc : Mavg = Ms DivisibleBy L
rand := a random number Rn → gcd(Rn, Mavg) = 1 
Rn not equal ZERO AND smaller than Mavg

for  i = 1 to n 
(Pr) = (Pr)(pi−1)

end for
Input : Usr where its ≥ 1
Calc : Q = Usr ×( (Pr) mod Ms)
Calc : Ksp = (Rn × Q) mod 256
Output : Ksp as the secret key
End procedure

Algorithm 2: Encryption
Procedure
Input: N as big prime number
Input: ms the plaintext message
rand:= a random number r
for  i = 1 to length(ms) 

cph = ms + N(r Ksp+i)
end for
Output: cph as ciphertext file
End procedure

Algorithm 3: Decryption
Procedure
for  i = 1 to length(cph) 

ms = cph mod N
end for
Output: ms as plaintext file
End procedure
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A. Proof of Homomorphism
This subsection will illustrate the homomorphism of the 

proposed scheme, assume there are two ciphertexts cph1 and cph2 
where cph ms N r K i1 1 1� � �( )sup , cph ms N r K i2 2 2� � �( )sup , 

and modcph N ms≡ , where ms N< , otherwise, we must take 
( mod )ms N .
Homomorphism (Addition)

Assume that the sum of two ciphertexts cph1 and cph2 is 
denoted by ( )cph cph cph� � �1 2  so

cph cph cph ms ms N r K i N r K isp sp
� � � � �� � � �� � � �� �1 2 1 2 1 2 ,  

nonetheless N r K i N r K i NK
r r
isp sp sp1 2

1 2

2
0�� � � �� � � �

�
�

�
�

�

�
� �

( )

Then ms cph cph N ms ms� � �� � � �1 2 1 2      mod

Homomorphism (Multiplication)
Assume that the sum of two ciphertexts cph1 and cph2 is 

denoted by (cph* = cph1 * cph2) cph* = [ms1 + N (r1Ksp + i)] × 
[ms2 + N (r2Ksp + i)] cph* = [ms1 × ms2 + ms1 × N (r2Ksp + i)] 
+ N (r1Ksp + i) × ms2 + N (r1Ksp + i) × N (r2Ksp + i)] Then N × 
[ms1 × N (r2Ksp + i) + (r1Ksp + i) × ms2 N (r1Ksp + i) × N (r2Ksp 
+ i) mod N] = 0 So that, cph* = ms1 × ms2 + 0 = ms1 × ms2.

VI. Result and Analysis
In this section, the results gained from the proposed 

scheme will be presented through numerous tests on English, 
Kurdish, and Arabic languages. To test the proposed scheme, 
it is implemented with Java programming language and 
processed on a computer with the following features: Intel 
Core i7 processor, HDD hard drive, 16 GB RAM, and 
Windows 10 64-bit. At first, the generation of the secret key 
is illustrated then it will be used for all the tests presented in 
this section.

Secret key generation
Choose a set of prime numbers for as p p1 231 59= =,  and 

p3 73=  then � P� � � � � �30 58 72 125280 , 
P � � � �31 59 73 133517 . Then, calculate 

L � �� � �� � �� � �31 1 59 1 73 1 142080, so Ms =129548351731,  
Mavg = 911798 , assume Usr = 35and Rn =15 then 

Q = 4384800 , finally Ksp = 224 .

A. Test on English Language
The proposed algorithm will be tested on an English 

language text of “Hello world; this is a new Fully 
Homomorphic algorithm.” For this test, the secret key will be 
Ksp = 224  as generated previously, and N = 524287which is 

big prime number, then choose a random number as 
r = 62598  the ciphertext of the given text after applying the 
proposed algorithm on it will be:

7351527148296 7351527672612 7351528196906 
7351528721193 7351529245483 7 3 5 1 5 2 9 7 6 9 6 9 1  
7351530294065 7351530818344 7 3 5 1 5 3 1 3 4 2 6 3 4  
7351531866915 7351532391194 7 3 5 1 5 3 2 9 1 5 4 1 3  
7351533439784 7351533964059 7 3 5 1 5 3 4 4 8 8 3 4 7  
7351535012644 7351535536848 7 3 5 1 5 3 6 0 6 1 2 0 8  
7351536585505 7351537109709 7 3 5 1 5 3 7 6 3 4 0 6 1  
7351538158283 7351538682648 7 3 5 1 5 3 9 2 0 6 9 2 6  
7351539731231 7351540255431 7 3 5 1 5 4 0 7 7 9 7 5 6  
7351541304090 7351541828368 7 3 5 1 5 4 2 3 5 2 6 5 5  
7351542876955 7351543401153 7 3 5 1 5 4 3 9 2 5 4 8 0  
7351544449806 7351544974091 7 3 5 1 5 4 5 4 9 8 3 8 0  
7351546022665 7351546546954 7 3 5 1 5 4 7 0 7 1 2 4 4  
7351547595529 7351548119808 7 3 5 1 5 4 8 6 4 4 0 9 6  
7351549168377 7351549692597 7 3 5 1 5 5 0 2 1 6 9 4 9  
7351550741247 7351551265529 7 3 5 1 5 5 1 7 8 9 8 2 4  
7351552314114 7351552838392 7 3 5 1 5 5 3 3 6 2 6 9 0  
7351553886965 7351554411257

Table II and Fig. 2 illustrate the performance of the 
proposed algorithm tested on different file sizes that contain 
plaintext written in the English language.

B. Test on Kurdish Language
This test illustrates the proposed algorithm tested on a 

Kurdish language text of “سڵاو ئەمە ئەلگۆریزمەکەمە بۆ تاقیکردنەوە,” 
and the same values used for testing English language text 
and the ciphertext will be:

7351527149811 7 3 5 1 5 2 7 6 7 4 2 2 8  
7351528198373 7351528722693 7 3 5 1 5 2 9 2 4 5 4 0 4  
73515297712337351530295695 7 3 5 1 5 3 0 8 1 9 8 3 8  
7351531344269 7351531866839 7 3 5 1 5 3 2 3 9 2 6 6 8  
7351532917130 7351533441272 7 3 5 1 5 3 3 9 6 5 6 6 6  
7351534489976 7351535014114 7 3 5 1 5 3 5 5 3 8 5 5 6  
7351536062689 7351536586995 7 3 5 1 5 3 7 1 1 1 4 2 6  
7351537635669 7351538160000 7 3 5 1 5 3 8 6 8 4 1 4 3  
7351539208574 7351539731144 7 3 5 1 5 4 0 2 5 6 9 7 5  
7351540781420 7351541304005 7 3 5 1 5 4 1 8 2 9 8 3 8  
7351542354122 7351542878436 7 3 5 1 5 4 3 4 0 2 8 6 1  
7351543927113 7351544451280 7 3 5 1 5 4 4 9 7 5 5 6 5  
7351545499875 7351546024305 7 3 5 1 5 4 6 5 4 8 4 5 1  
7351547072879

Table III and Fig. 3 illustrate the performance of the 
proposed algorithm tested on different file sizes that contain 
plaintext written in the Kurdish language.

TABLE I
List of Notations

Notations Details
cph Ciphertext
ms The plaintext message
r Noise added to the ciphertext
N Big prime integer
Ksp Secret key
i Counter added as extra noise to the ciphertext works on 

converting repeated character into different ciphertext value.
p1, p2, p3 … pn Multiple prime numbers
P Is the multiplications of prime numbers
L Is the multiplication of each prime number plus one
Ms The summation of prime numbers up to L
Mavg Average of all prime numbers
Rn Is a random number where gcd(Rn, Mavg) = 1
Usr Is the number of CSP’s users
CSP: Cloud service provider
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Fig. 2. Encryption and decryption time on English language plaintext file.

Fig. 3. Encryption and decryption time on Kurdish language plaintext 
file.

TABLE II
Testing the Proposed Algorithm on Different File Sizes Written in 

the English Language

File sizes Encryption (ms) Decryption (ms)
10 KB 378 414
20 KB 397 448
40 KB 413 499
80 KB 459 570
160 KB 486 625
320 KB 529 710
500 KB 599 831
1 MB 748 1081
2 MB 981 1597
4 MB 1698 2703
8 MB 2531 4843
16 MB 4234 8432

TABLE III
Testing the Proposed Algorithm on Different File Sizes Written in 

the Kurdish Language

File sizes Encryption (ms) Decryption (ms)
10 KB 375 406
20 KB 391 438
40 KB 421 500
80 KB 437 562
160 KB 485 688
320 KB 578 766
500 KB 594 814
1 MB 734 1109
2 MB 1031 1625
4 MB 1702 2609
8 MB 2848 4582
16 MB 5471 9018

C. Test on Arabic Language
This time the proposed algorithm will be tested on an 

Arabic text of “جدیدة خوارزمیة  لكم  نقدم   also the values ”,مرحبا 
from the first test will be used and the ciphertext is as 
follow:

7351527149829 7351527674096 7351528198379 
7351528722661 7351529246947 7 3 5 1 5 2 9 7 6 9 6 9 1  
7351530295552 7351530819835 7 3 5 1 5 3 1 3 4 4 1 0 3  
7351531868412 7351532391126 7 3 5 1 5 3 2 9 1 6 9 8 5  
7351533441271 7351533965560 7 3 5 1 5 3 4 4 8 8 2 7 4  
7351535014111 7351535538424 7 3 5 1 5 3 6 0 6 2 6 7 8  
7351536586975 7351537111263 7 3 5 1 5 3 7 6 3 5 5 6 9  
7351538159861 7351538684115 7 3 5 1 5 3 9 2 0 6 8 5 7  
7351539732692 7351540256982 7 3 5 1 5 4 0 7 8 1 2 9 6  
7351541305556 7351541829837

The previous tests presented that the proposed algorithm 
can be performed on different languages, and it produces 
different cipher-values for all plaintext values and also for 
the repeated character within the same text. In addition, 
the rest of this section will present the performance of the 
proposed algorithm performed on different file sizes written 
in English, Kurdish, and Arabic languages. Table IV and 
Fig. 4 illustrate the performance of the proposed algorithm 
tested on different file sizes that contain plaintext written in 
the Arabic language.

Fig. 4. Encryption and decryption time on Arabic language plaintext file.

The results of the previous tests show that the proposed 
algorithm is capable on encrypting plaintexts written in 
different languages efficiently regardless of the file size. 
In addition, it can be observed from the results that the 
algorithm performs almost the same performance on the 
same file sizes of various languages. Table V and Fig. 5 
present a comparison of the previous tests gained from the 
proposed algorithm. As it is illustrated, the encryption and 
decryption time for all three languages are vary and almost 
works the same. Such as the encryption time of 20 KB 
Arabic text-file requires less time than the encryption time 
on its corresponding English and Kurdish text-file. Whereas, 
the encryption time of 2 MB English text-file takes less time 
than Kurdish and Arabic text-files.
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Fig. 5. Encryption and decryption time on English, Kurdish, and Arabic language plaintext file.

TABLE IV
Testing the Proposed Algorithm on Different File Sizes Written in 

the Arabic Language

File sizes Encryption (ms) Decryption (ms)
10 KB 364 414
20 KB 382 446
40 KB 395 477
80 KB 451 585
160 KB 467 590
320 KB 517 707
500 KB 614 831
1 MB 781 1042
2 MB 983 1543
4 MB 1787 2704
8 MB 2930 4612
16 MB 5741 8970

TABLE V
Time Complexity of the Basic Arithmetic Operations

Operation Time complexity 
of binary integers 

of size n

Time complexity 
of decimal digits of 

size n
Addition x + y O(n) O(log(n))
Subtraction x – y O(n) O(log(n))
Multiplication x × y O(n2) O((log(n2))
Division and Modular O(n2) O((log(n2))
Inverse x−1 O(n2log(n)) O(log(n))3)
Modular exponentiation xn O(n2log(n)) O(log(n))3)

D. Big O Notation (Time Complexity)
Searching for the “best” in algorithms is the main concern 

of algorithms’ designers, and this can be achieved through 
using O-notation. The aim of studying the time complexity 
of an algorithm is to determine whether the algorithms’ 
running time is O(f(N)) for some function f() or not. Table VI 
illustrates the complexity of the basic arithmetic operations 
in Zn (Sagheer, 2012).

The input numbers of encryption and decryption algorithms 
should be analyzed at first before performing any calculation 
of the time complexity. The input numbers are either binary 
integers or decimal digits, whereas the time complexity of the 
first mentioned is O(n) and the time complexity of decimal 
digits is O(log(n)), this excluding constant number whose 
complexity is O(1). Since, n is the size of input numbers.

1) Time complexity of DGHV scheme
Let n  be the size of input message unit.
Encryption function:
cph ms r p q� � � �2

Then: T cph O n T r O n( ) ( ) ( ) ( )� � �2
2

T r O n( ) ( )2 = , by shift operation

T cph O n O n O n( ) ( ) ( ) ( )� � �2
2 2  bit operation.

Decryption function:
ms cph p= ( mod )mod 2

Then: T ms O n( ) ( )= 2  bit operation
2) Time complexity of SDC scheme
Let nbe the size of input message unit.
Encryption function:
cph ms p r p q� � � � �

Then: T cph O n O n O n( ) ( ) ( ) ( ( ))� � � 2
2

T cph O n O n O n( ) ( ( )) ( ( )) ( )� � �2 2
2 2  bit operation.

Decryption function:
ms cph p= mod

Then: T ms O n( ) ( )= 2 bit operation.
3) Time complexity of the proposed algorithm
Let n  be the size of input message, n is decimal digit.
Encryption function:
cph ms N rK isp� � �( )

Then: T cph O n O n( ) ( (log( ))) ( (log( )) )� �2 2 2
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TABLE VI
Comparing the Results of the Algorithm Gained from Encrypting and Decrypting English, Kurdish, and Arabic Language’s Plaintexts

File sizes English Kurdish Arabic

Encryption (ms) Decryption (ms) Encryption (ms) Encryption (ms) Encryption (ms) Encryption (ms)
10 KB 378 414 375 406 364 414
20 KB 397 448 391 438 382 446
40 KB 413 499 421 500 395 477
80 KB 459 570 437 562 451 585
160 KB 486 625 485 688 467 590
320 KB 529 710 578 766 517 707
500 KB 599 831 594 814 614 831
1 MB 748 1081 734 1109 781 1042
2 MB 981 1597 1031 1625 983 1543
4 MB 1698 2703 1702 2609 1787 2704
8 MB 2531 4843 2848 4582 2930 4612
16 MB 5741 8970 5471 9018 5741 8970

T cph O n( ) (log( ) )≡ 2

Decryption function:
ms cph N= mod

Then: T ms O n( ) ((log( )) )= 2 , Where, (log )2 n is the number 
of bits of n

E. Resistance to Attacks
In this section, the resistance of the proposed algorithm 

to different types of attacks such as Key Generation and 
Character Repetition, Brute Force Attack, and Mathematical 
Attack are illustrated.

4) Key generation and character repetition
The proposed algorithm encrypts each file with a different 

key, and it depends on a variable that is different for every 
cloud user. In addition, the algorithm encrypts the repetition 
of each character into different values. Thus, the attacker 
cannot analyze character repetition in the file. Consequently, 
the combination of different keys for each file and different 
values for the same character allows our proposed algorithm 
to provide a strong encryption method.

5) Brute force attack
In the proposed algorithm, the strength of large prime 

numbers depends on the multiplication of n prime numbers p1, 
p2,… pn. Thus, it is difficult to break the large prime number 
into multiple primes as compared to the existing algorithms. 
Furthermore, the multiple prime numbers increase the level of 
difficulty to break the security of the algorithm. In addition, 
the use of the addition noises makes it more difficult to break.

6) Mathematical attack
This kind of attack occurs when the attacker determines the 

values of p and q. In our proposed algorithm, it is reduced as 
the algorithm uses multiple numbers of primes, and it is hard 
to derive any of those primes from the multiplication result.

F. Results of NIST Statistical Tests
The randomness of this novel proposal is evaluated by 

the well-known NIST test suite. Table VII shows the test 
results of the proposed algorithm from the NIST statistical 

tests, demonstrating that the best statistical performance was 
obtained with this algorithm.

VII. Conclusion
It has been said that homomorphic encryption is the change 
point of cryptography, as it protects data regardless of its 
situation, whether the data are in transit or at rest. This 
helped CSPs to use this new technique for data protection. 
This paper is proposed a new FHE scheme based on prime 
modular operation. The scheme performs encryption and 
decryption on plaintext values regardless of the written 
language of the plaintext English, Kurdish, Arabic, or any 
other languages as well as special characters. In addition, 
the scheme encrypts repeated characters of the plaintext into 
different ciphertext values which increases the security of 
the ciphertext. The randomness of the proposal scheme is 
evaluated by the well-known NIST test suite (widely used as 
a standard battery of tests to test randomness). The results of 
the proposed algorithm in the NIST statistical tests show that 
it produces the best statistical performance through passing 

TABLE VII
NIST SP 800-22 Test Results for the NAZUZ Algorithm

Tests P-value Result
Frequency (Monobits) 0.997743 Success
Block frequency 0.999936 Success
Cumulative sums (Cusum) 0.983782 Success
Runs 0.982544 Success
Longest run of ones 0.993900 Success
Rank 0.999594 Success
Discrete Fourier transform 0.074478 Success
Non-overlapping template matching 0.999975 Success
Overlapping template matching 0.856322 Success
Universal statistical 0.999620 Success
Approximate entropy 0.999961 Success
Random excursions 0.997529 Success
Random excursions variant 0.837424 Success
Serial 0.999995 Success
Linear complexity 0.999438 Success
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all the tests. Moreover, the proposed scheme demonstrates 
good security for the stored data on the cloud.
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