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Abstract—Social media is internet-based technology and an 
electronic form of communication that facilitates sharing of ideas, 
documents, and personal information. Twitter is a microblogging 
platform and is the most effective social service for posting 
microblogs and likings, commenting, sharing, and communicating 
with others. The problem we are shedding light on in this paper is 
the misuse of bots on Twitter. The purpose of bots is to automate 
specific repetitive tasks instead of human interaction. However, bots 
are misused to influence people’s minds by spreading rumors and 
conspiracy related to controversial topics. In this paper, we initiate a 
new benchmark created on a 1.5M Twitter profile. We train different 
supervised machine learning on our benchmark to detect bots on 
Twitter. In addition to increasing benchmark scalability, various 
autofeature selections are utilized to identify the most influential 
features and remove the less influential ones. Furthermore, over-/
under-sampling is applied to reduce the imbalance effect on the 
benchmark. Finally, our benchmark compared with other state-
of-the-art benchmarks and achieved a 6% higher area under the 
curve than other datasets in the case of generalization, improving 
the model performance by at least 2% by applying over-/under-
sampling.

Index Terms—Machine learning, Misinformation 
detection, Twitter bot detection, Twitter profile metadata.

I. Introduction
In the past decade, the influence of social media has increased 
rapidly; this growth will be more tangible in the upcoming 
years. One of the famous social platforms is Twitter; millions 
of people, including influential figures, have Twitter accounts 
to interact with their audiences. Besides the advantages, 
Twitter is used to exploit and delude others in many events, 
such as the COVID-19 outbreak, the Russian invasion of 
Ukraine, and the USA presidential elections in 2016 and 

2020, by spreading falsified conspiracies and manipulating 
public opinion (Khanday, Khan and Rabani, 2021; Shevtsov, 
et al., 2021).

These actions are usually performed by automated 
programs, so-called bots. Broadly speaking, bots aim to ease 
automation processes such as sending a friendly message or 
giving some instruction on social media. Yet, the automation 
capability of bots is unfavorably used for spreading spam, 
fake news, and hate speech (Davis, et al., 2016).

A botmaster manages social bot accounts, which controls 
many social bots to influence public opinion toward a specific 
ideology or purpose by spreading low credible information 
(Ferrara, et al., 2016). The social bot impact is so significant 
that some reports indicate that 9–15% of the active accounts 
on Twitter are social bots (Varol, et al., 2017). In some cases, 
the fake news reached 100K users, and false information had 
70% more retweets than trustworthy news (Hanouna, et al., 
2019; Orabi, et al., 2020a).

In this paper, the machine learning framework is proposed 
based on a novel dataset. We collected more than 1.5M 
Twitter accounts during the US presidential election in 
3 months. Our dataset only includes the metadata (profile) 
features that contain a small number of features. The benefits 
of using profile features are increasing the model’s scalability 
and decreasing training time. The main goal of this paper is 
to create a benchmark suitable for real-time bot detection by 
increasing the number of samples and reducing the number 
of features. At the same time, dataset generalization has 
increased by 6% average AUC compared to other datasets 
in this research area. Finally, we can conclude our main 
distribution as follows:
1. We collected 1.5 million users and created up-to-date 100K 

datasets; to the best of our knowledge, it is the biggest only 
metadata dataset.

2. We increase generalization, and our dataset achieves a 6% 
higher average accuracy among all datasets in the research 
area.

3. We improve the model performance by at least 2% by 
introducing over-/under-sampling algorithms with our 
dataset.

4. We interpret the prediction of our machine learning models 
with the help of Shapley Additive Explanations (SHAP)
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II. Related Work
Different types of bots target various audiences; for 

example, spam bots for spreading spam, fake follower for 
increasing followers of a particular account, COVID, or 
political bots for spreading conspiracy. Alom, Carminati and 
Ferrari (2018) and Shukla, Jagtap and Patil (2021) tried to 
detect spam bots on Twitter platform. Alom, Carminati and 
Ferrari (2018) have used metadata and graph-based features 
from the 42K dataset collected by a Social Honeypot. They 
used different ML models; the random forest (RF) achieved 
the best result compared to other models. Furthermore, 
Shukla, Jagtap and Patil (2021) have used a public dataset 
with 38K users and 19 features with different Ensemble 
models, feature engineering, feature encoding, and feature 
selection. The Ensemble model with ANN, RF, and AB 
achieved the best result and also best ensemble model 
outperformed other individual models by attaining 93% AUC.

Feng, et al. (2021); Khanday, Khan and Rabani, (2021); 
and Shevtsov, et al. (2021) focused on detecting bots that 
spread rumors. Khanday, Khan and Rabani (2021) have 
used Tweeter API to collect tweets related to the COVID19 
outbreak. Different ML applied to detect bots that spread 
COVID rumors. The decision tree (DT) gave the best result 
with a 99% F1 score; the result showed that tweets generated 
by bots have a greater length than regular tweets. Shevtsov, 
et al. (2021) have collected tweets related to the 2020 US 
presidential election to detect political bots. The data were 
collected over 2 months with a total of 15.6M tweets and 
3.2M users. Furthermore, Bot Sentinel and Botometer were 
used to label the dataset. Different ML, feature engineering, 
feature selection, and under-/over-sampling applied to the 
dataset; as a result, XGBoost achieved 92% as the best F1 
score. Feng, et al. (2021) have collected tweets related to 
different hashtags with 34M tweets and 8M users to create 
a dataset with a variety of bots in it (called TwiBot-20). 
The dataset trained with the previous works models, the 
result shows the model accuracy declined with TwiBot-20. 
They blamed the absence of user diversity, limited user 
information, and data scarcity for this decline.

On the other hand, Yang, et al. (2019) and Hayawi, et al. 
(2022) tried to increase model scalability and reduce training 
time by only using metadata to train a model. Yang, et al. 
(2019) have focused on enhancing the generalization of 
detection models. They used 14 public datasets for training 
the models; in some cases, two or more datasets have 
combined. They manually selected 20 features from datasets, 
then used the RF for training. The RF trained with the entire 
dataset and then tested with other datasets. As a result of 
this approach, the generalization between the datasets is very 
low. In the second experiment, they selected seven datasets 
for training, and all possible combinations between them 
were trained (247 combinations) and tested the model with 
the remaining datasets using the RF classifier. This approach 
improved the generalization between datasets. Hayawi, et al. 
(2022) have used public only metadata datasets to train deep 
neural networks. Furthermore, text features have transformed 
with long short-term memory (LSTM) and GLoVE. The 

same practice as Yang, et al., 2019, was followed: Training 
the model on one dataset and evaluating it with other 
datasets. The final results show improvement in the model 
generalization.

Kudugunta and Ferrara (2018), Rodríguez-Ruiz, et al. 
(2020), and Martin-Gutierrez, et al. (2021) introduced new 
detection models for detecting bots on Twitter. Kudugunta 
and Ferrara (2018) have used a neural network with 
LSTM and GloVE to detect bots. A total of 16 features 
from metadata and tweet content from the public dataset 
had used to train the model. Furthermore, the over-/under-
sampling technique used to balance the dataset. The result 
is 96% AUC for a single tweet account and 99% AUC for 
account level. Martin-Gutierrez, et al. (2021) have focused 
on detecting multilingual bots using a deep learning model. 
The BERT, Flair, and RoBERT models were used separately 
to transform text-based features into a numeric vector. The 
model was trained with a 60K public dataset and achieved a 
77% F1 score. Rodríguez-Ruiz, et al. (2020) have used a one-
class classification. This classification algorithm determines 
whether the data belong to this class or not, which usually 
uses imbalanced data. They trained public datasets with 
binary and one-class classification models with different 
algorithms. The results indicate that one-class classification 
achieved a better result than binary classification.

Finally, this paper aims to create a benchmark suitable for 
real-time bot detection by increasing the number of samples 
using labeling API to make the labeling process faster and 
having more labeled data, decreasing the number of features 
by selecting the most influential features, and ignoring 
the less influential ones. Furthermore, oversampling and 
undersampling are used to overcome the over=/under-fitting 
problem.

III. Models
A. Machine Learning Models
Different machine learning algorithms have used to train 

the proposal dataset: Adaboost Classifier (AB), Bagging 
Classifier (BC), DT, Extra Tree Classifier (ET), Gaussian 
Naive Bayes (GN), K-nearest neighbor (KNN), logistic 
regression (LR), random forest (RF), support vector machines 
(SVM), and eXtreme Gradient Boosting (XGBoost). 
However, RF and ET have tested separately with 100 and 
500 trees, and KNN with three and five neighbors. Except 
for XGBoost, the sklearn Python package was used for all 
models. Furthermore, 5-fold cross-validation with random 
shuffling splits the dataset into five parts; the training and 
validation occur in four portions, and the last portion tests the 
model performance. Accuracy, precision, recall, F1 score, and 
AUC (Huang and Ling, 2005) were used to evaluate model 
performance. (Fig. 1 shows the steps for the experiment).

B. Feature Selection Models
Feature selection is an essential part of any machine 

learning algorithm. Feature selection has many advantages, 
for example, removing irrelevant data and reducing data 
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dimensions, increasing model performances, reducing 
overfitting and underfitting, and speeding up training time 
(Shevtsov, et al., 2021).

There are two types of feature selection, manual selection 
and automatic selection. In our work, we perform both types 
of feature selections. Two types of features were excluded 
from original user metadata by manual selection. The first 
group features have different values for each Twitter account. 
The second group is the features with almost the same values 
for all Twitter accounts.

On the other hand, autoselection models use statistics 
correlation, ML algorithm, permutation importance, and 
coefficient scores to find the relationship between features; 
when features are more correlated, a higher score will assign 
to the candidate feature. In our work, we used recursive 
feature elimination (RFE) (Granitto, et al., 2006), univariate 
feature selection (UFS) (Jović, Brkić and Bogunović, 2015), 
and feature importance (FSI) (Altmann, et al., 2010). All 
three techniques are implemented in the sklearn Python 
package.

Our work used: RFE-DT, FSI-RF, FSI-XGboost, ANOVA 
F-value (Shaw and Mitchell-Olds, 1993), and information 
gain (Peng, Long and Ding, 2005); we tried to extract 10, 15, 
and 20 separately using each of the mentioned algorithms.

C. Over-/Under-Sampling Models
When one class has majority samples and others have a 

minority, oversampling and undersampling are usually used 
for balancing a dataset. There are a variety of techniques for 

balancing a dataset; in case of oversampling, the number of 
minority classes will increase, but under sampling reduces 
the sample numbers of majority classes (Shevtsov, et al., 
2021).

Moreover, some techniques combine both over-/under-
sampling. The synthetic minority oversampling technique 
(SMOTE) (Wang, et al., 2006) is the most popular technique 
to increase the number of minority classes. SMOTE uses 
KNN to generate N number of synthetic samples for each 
sample in the minority class. Furthermore, there are other 
modified versions of SMOTE, such as ADASYN, Borderline-
SMOTE, and SVM-SMOTE.

On the other hand, edited nearest neighbor (ENN) (Wilson, 
1972) is an undersampling algorithm that utilizes KNN to 
eliminate samples close to the boundary or misclassified. 
Tomek Links (Elhassan and Aljurf, 2016) is another 
undersampling model created based on condensed nearest 
neighbors (CNNs). The CNNs randomly chose samples to 
eliminate from the majority class, but in the case of Tomek 
Links, the KNN was used to find those samples with the 
lowest distance from the minority class, then remove them.

In our experiments, mentioned algorithms are applied 
individually to the dataset, and the results show little or 
no improvement in the model’s performance. As a second 
experiment, both under-/over-sampling algorithms are 
combined; first, SMOTE and Tomek links are combined 
(SMOTETomek), then SMOTE and edited nearest neighbor 
are combined (SMOTEENN). Applying both under-/over-
sampling algorithms to our datasets accelerate the model 

Fig. 1. The proposed experiments to detect the best model approaches.
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performance. We discuss their results in the performance 
evaluation section.

IV. Datasets
A. Data Collection
The lack of datasets is a barrier to social bot detection 

(Adewole, et al., 2017). Collecting data from social platforms 
are prohibited by most influential social media platforms; 
Twitter is one of a few platforms allowing collecting public 
data by providing API (Orabi, et al., 2020b). We collected 
data from Twitter using Twitter API, retrieving tweets related 
to the USA 2020 presidential election topics. The data 
collection process started 3 months before the election day 
(in July 28, 2020) and ended 16 days (November 19, 2020) 
after the election day. This topic is selected because it is a 
controversial topic on Twitter and makes all types of bot 
involvement very high. As shown in Table I, 19 hashtags 
used to collect data, and a total of 1.5M unique Twitter 
accounts were collected.

B. Profile Features
The retrieved data from Twitter API contain more than 

1000 features, mainly divided into four categories, profile 
feature (user metadata), context feature, time-based feature, 
and interaction features (Yang, et al., 2019). All categories 
have been used to detect bots on Twitter platforms (Orabi, 
et al., 2020b). Still, in our work, we only focus on the profile 
feature, a small object containing all critical information 
related to an account. The advantage of using profile features 
is reducing training time without affecting model performance. 
The user profile object contains 44 features in total, such as 
name, description, picture’s URL, colors, statistical, Boolean 
flags, language related, and other parameters. We divided the 
profile features into three groups: Newly derived, dropped, 
and direct used features. In the next sections, we describe 
each of them. It is also worth mentioning that the latest 
version of Twitter API removes some features from user 
profile object, but they are not essential features; the feature 
selection process eliminated them.

C. Dropped Features
The values of properties from profile features are different; 

some properties have different (unique) values for each 
account, and others are totally similar (include none values). 
In those cases, properties do not give any meaningful 

information to distinguish between humans and bots. After 
analyzing each property, the result shows that 23 features 
represent ineffective data, meaning either their values are 
different for each account or they have one or two unique 
values for all accounts regardless of account type (bot or 
human). id_str, translator_type, time_zone, contributors_
enabled, following, profile_text_color, profile_background_
color, profile_sidebar_border_color, profile_link_color, 
profile_sidebar_fill_color, lang, withheld_in_countries, is_
translator, utc_offset, notifications, id, follow_request_sent, 
is_translation_enabled, protected, profile_background_image_
url_https, profile_background_image_url, profile_image_url, 
and profile_image_url_https features are eliminated from our 
datasets.

D. Direct used Features
The majority of the previous works have used a set of 

features and they have proven their effectiveness (Yang, 
et al., 2019; Martin-Gutierrez, et al., 2021). Those features 
are either numeric or binary features. The numeric features 
obtain essential statistical information such as the number 
of followers. The binary features give the basic account 
information, for example, is account verified or not. 
Followers_count, friends_count, listed_count, statuses_count, 
favourites_count, has_extended_profile, default_profile, 
geo_enabled, and verified are some features that exist in a 
majority of previous works. Furthermore, we add default_
profile_image, profile_use_background_image, and profile_
background_tile features to our dataset by converting the 
Boolean values (true/false) into numerical representation 
(1/0) (Equation 6). Table II shows features: Name, types, 
and description. In our work, all features mentioned in this 
section are used directly without performing any feature 
engineering; simultaneously, we use the numeric feature to 
create new features.

E. New Derived Features
Derived features are created by performing a mathematical 

or logical operation on one or more original features. We 
made 21 new features based on calculating other features. 
The previous works proved that the extracted features 
include valuable information for the detection process 
(Hayawi, et al., 2022). We create three new feature sets for 
statistical, text, and binary features. In the case of statistical 
features, the features are divided by an account age (the 
account creation date minus the last tweet date in our 
dataset). Furthermore, we find the ratio between followers 
and friends. The second set is text features; the metadata 
object contains name, screen_name, and description as a 
text feature. We calculate the text length for name, screen_
name, and description (Equation 1); the number of digits 
(Equation 2), frequency (Equation 5 when numerator is the 
n-g (Brown, et al., n.d.), and the denominator is the total 
unique characters.), and entropy (shows in Equation 3 
when numerator is Shannon entropy (Shannon and Weaver, 
1949) and denominator is feature length) for name and 
screen_name; similarity between name and screen_name 

Table I
List of Hashtags That Used for Collecting Data

Hashtag
#democrat #politics #america
#mikepence #vote #guncontrol
#election #bluewave #getoutthevote
#republican #gop #president
#racistinchief #joebiden #trump
#biden #trumpvoters #donaldtrump

#racistpresident
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(shows in Equation 4 when numerator is the number of 
matches, and the denominator is the length of both texts). 

The last set includes features that either contains a value 
or not (Equation 6); for example, the location feature is 
either set or not (empty). In our work, we call those features 
binary-derived features; we convert them to one if it has a 
value; otherwise, we convert them to zero. Table II shows 
statistically derived features (their names end with DS), 
text-derived features (their names end with DT), and binary-
derived features (their names end with DB.)

F. Data Labeling
Data labeling is a process of giving actual labels to the 

data; labeling is a mandatory step for supervised machine 
learning (Derhab, et al., 2021). We use the data label for 
comparing with predicted results by ML models to determine 
how well the model performed. As mentioned earlier, the 
total number of users in our dataset is more than 1.5M. Two 
possible ways to know
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the actual data labels are manually checking or using 
previously trained models. In our case, manual checking 
is impossible due to dataset size; therefore, we choose 
Botometer API to classify our dataset. The Botometer has 
two versions: BotometerLite, which only uses metadata to 
classify; Botometer-V4, which predicts based on more than 
1000 features, including tweets, metadata, and other features. 
In our case, we use BotometerLite because it follows the same 
strategy as our work by only focusing on metadata features 
for labeling data. The BotometerLite allows 20K samples 
to be labeled every day. In our case, it took around 75 days 
to classify 1.5M samples. The BotometerLite score sample 
is between 0 and 1. In our case, the API could not classify 
approximately 16.9% of our data, and 83.1% remaining 
samples are classified, as shown in Table III. To create our 
dataset, we classify any account score equal to or greater 
than 0.6 as bot accounts, so 42K accounts are classified as 

Table II
List of Features used in this Paper with Their data Type and Short 

Description

Feature type Description
listed_count Numerical Public lists that use 

members of
statuses_count Numerical Total number of tweets 

and retweet
friends_count Numerical Number of users the 

account following
favorites_count Numerical Total number of tweets 

liked by an account
followers_count Numerical Number of users 

following this account
default_profile Binary If profile is set 
has_extended_profile Binary If profile is extend is true 

otherwise false
geo_enabled Binary Twitter has access to 

profile location
verified Binary If profile is verified
profile_background_tile Binary If profile is tiled is true 

otherwise false
profile_use_background_image Binary If profile has background 

image
default_profile_image Binary If profile image is default
profile_has_banner_url (DB) Binary If profile has banner URL
has_entities (DB) Binary If entities is set is true 

otherwise false
has_location (DB) Binary If location is set is true 

otherwise false
has_url (DB) Binary If URL is set is true 

otherwise false
account_age (DB) Numerical last_tweet_date - account_

created_date
name_length (DT) Numerical Length of name feature
screen_name_length (DT) Numerical Length of screen_name 

feature
description_length (DT) Numerical Length of description 

feature
num_digits_in_name (DT) Numerical Number of digit in name 

feature
num_digits_in_screen_name (DT) Numerical Number of digit in 

screen_name feature
name_entropy (DT) Numerical Entropy of name feature
screen_name_entropy (DT) Numerical Entropy of screen_name 

feature
screen_name_freq (DT) Numerical Mean bigram frequency 

for screen name
name_freq (DT) Numerical Mean bigram frequency 

for name
name_similarity (DT) Numerical Similarity between 

screen_name and name
tweet_freq (DS) Numerical Statuses_count/account_age
followers_growth_rate (DS) Numerical followers_count/account_

age
favourites_growth_rate (DS) Numerical favourites_count/account_

age
listed_growth_rate (DS) Numerical listed_count/account_age
friends_growth_rate (DS) Numerical friends_count/account_

age
followers_friends_ratio (DS) Numerical followers_count/friends_

count
DB: Binary derived, DS: Statistically derived, DT: Text derived



ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X 

16 http://dx.doi.org/10.14500/aro.11032

bots. Regarding a human account, we randomly selected 58K 
accounts that scored <0.1. However, all the samples bigger 
than 0.1 and <0.6 are ignored to have a big gap between 
bot and human. In conclusion, we created a dataset with 
100K samples classified based on BotometerLite. Table III 
shows the start and end of the labeling process and the total 
accounts that were classified based on the specific range.

V. Performance Evaluation
A. Performance Evaluation of Machine Learning Models
We tested our dataset with 10 different models (Fig. 1 

shows the steps for the experiment); however, we used two 
versions of KNN, RF, and BC and 5-fold cross-validation 
to reduce the chance of overfitting in the dataset. However, 
different algorithms were tested to normalize our dataset, 
such as scaling, standardizing, transforming, and normalizing. 
Transforming (Gaussian normalization) usually achieves 
the best result. Furthermore, it is worth mentioning that the 
dataset without normalization was tested but achieved a 
very low result. Therefore, we use Gaussian normalization 
in all experiments in this paper. Five selection models are 
utilized; the feature selection extracts 10, 15, and 20 features 
separately. We trained different models (using 13 ML 
algorithms). Table IV shows the max, min, and mean result 
based on an accurate measurement. As shown in Table IV, 
RF with 20 features and ET with 15 features achieved the 
best accuracy result. However, surprisingly, increasing the 
number of features has a very slim effect on performance and 
an enormous impact on training time. For example, in the 
case of RF with 100 trees, the difference between the model 
with 20 features and 10 features is just 0.04.

Nevertheless, in the case of AB, KNN with five neighbors, 
and RF with 500 trees, the model performed better when 
trained with 10 features rather than 15 or 20. Moreover, the 
mean columns show that SVM and BC overall performance 
achieve the best result. Another interesting finding is that the 
increasing number of trees or neighbors has little impact on 
the performance. For instance, in the case of ET, the model 
achieved precisely the same result, RF performance declined 
slightly, and KNN performance increased somewhat. 
Table V shows the result of the same experience as 
Table IV, but besides average (mean) accuracy, it also reveals 
the average of recall, precision, F1 score, and AUC.

B. Feature Selection Evaluation
As mentioned earlier, we trained different models based 

on five feature selection algorithms – the performance of all 
algorithms was excellent in 15–20 features. REF-DT obtains 
the best performance, a little bit higher than other algorithms. 
However, for average best performance, information gain 
gets a higher result. However, in 10 features, the performance 
of the ANOVA F-value declined by more than 10%, but other 
algorithms performed relatively high. Nevertheless, when we 
consider time, XGBoost is achieving the best; for instance, in 
the case of 20 features, it is 3 times faster than RFE-DT with 
a 0.45 decline in performance; the same is true for 10–15 

features with a little difference. Surprisingly, the appropriate 
time for 15 features is higher than for 10–20 feature models. 
We thought that the time for the 15 models should be 
between 10 and 20. We achieved the time results using the 
sklearn Python package, which is a very respectful package 
among the Python community; yet, we are not sure about the 
exact reasons. Table VI shows the mean (average), maximum, 
and minimum accuracy for different feature selection models; 
each value is calculated based on 13 ML models (Table IV). 
It also shows FitTime (the time for fitting the model for each 
train set split) and ScoreTime (the time for fitting the model 
on the test set).

However, regarding the most influential features for the 
10 features approach, our algorithms selected favorites_
count, friends_growth_rate, friends_count, followers_count, 
num_digits_in_screen_name, tweet_freq, favorites_growth_
rate, followers_growth_rate, followers_friends_ratio, and 
description_length as the most 10 influential features. The 
same experiment was repeated for the 15-feature approach; 
besides, features in the 10-feature list, also listed_count, 
statuses_count, Name_similarity, account_age, and Name_
entropy have added to complete the 15-feature list. Finally, 

Table III
Labeling Process for BotometerLite

Score range BotometerLite
Start date January 27, 2022
End date April 13, 2022
0–0.09 310,026
0.1–0.19 321,790
0.2–0.29 236,290
0.3–0.39 175,183
0.4–0.49 112,001
0.5–0.59 50,313
0.6–0.69 19,837
0.7–0.79 12,367
0.8–0.89 6995
0.9–1 2134
Error 253,064
Total 1,500,000

Table IV
Mean (average), Maximum, and Minimum Accuracy Values for 

Different ML Algorithms

ML models 20 15 10

Max Min Mean Max Min Mean Max Min Mean
AB 98.00 73.55 94.32 97.98 73.43 94.05 98.01 73.45 92.06
BC-100 98.61 73.52 95.22 98.61 73.52 95.03 98.57 73.46 92.26
DT 97.67 73.60 94.19 97.69 73.43 93.94 97.65 73.52 91.16
ET-100 98.66 73.46 94.67 98.64 73.52 94.48 98.64 73.39 91.93
ET-500 98.66 73.51 94.72 98.67 73.50 94.59 98.64 73.52 92.00
GN 93.09 67.83 80.87 92.83 67.50 80.09 92.34 67.01 78.59
KNN-3 97.94 72.24 89.65 98.25 73.44 91.23 98.29 60.84 89.82
KNN-5 98.05 67.03 89.89 98.32 73.44 91.25 98.37 73.40 90.80
LR 93.88 69.86 85.70 93.52 62.49 84.64 93.38 66.84 83.07
RF-100 98.67 73.62 95.21 98.65 73.43 94.97 98.63 73.50 92.21
RF-500 98.00 73.55 94.32 97.98 73.43 94.05 98.01 73.45 92.06
SVM 98.61 73.52 95.22 98.61 73.52 95.03 98.57 73.46 92.26
XGboost 97.67 73.60 94.19 97.69 73.43 93.94 97.65 73.52 91.16
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for the 20-feature approach, geo_enabled, Screen_name_freq, 
Name_freq, screen_name_length, and name_length features 
have been chosen with features from the 15-feature set to 
complete the 20-feature list. In addition, we draw the SHAP 
plot (Lundberg, Erion, and Lee, 2018) for the dataset using 
a RF model. The X-axis represents a SHAP value for each 
feature and the Y-axis shows features name order by most 
to least influential. In the SHAP plot, a positive value means 
pushing to one (bot-like), and a negative value means driving 
to zero (human-like). Color is another indication in the SHAP 

Table V
Mean (average) for Different ML Algorithms with Various Performance Measurements

AB 94.32 96.98 92.56 90.75 95.37 94.05 96.61 91.99 89.90 95.56 92.06 94.70 89.03 85.88 94.64
BC-100 95.22 97.02 93.67 92.43 95.83 95.03 97.27 93.67 92.75 95.11 92.26 94.45 89.76 88.21 93.05
DT 94.19 94.76 92.55 91.79 94.08 93.94 94.36 92.04 91.17 94.18 91.16 91.15 88.27 86.81 91.75
ET-100 94.67 96.95 92.90 91.18 95.74 94.48 97.18 92.98 91.62 94.87 91.93 93.77 88.86 86.63 93.73
ET-500 94.72 97.07 93.06 91.53 95.56 94.59 96.92 92.91 91.48 95.37 92.00 94.03 89.36 87.62 92.96
GN 80.87 90.20 73.18 68.39 85.66 80.09 90.15 72.10 68.00 85.18 78.59 88.54 67.33 60.02 86.66
KNN-3 89.65 92.34 87.26 85.61 89.51 91.23 93.18 88.30 85.86 92.80 89.82 91.98 87.43 86.15 90.78
KNN-5 89.89 93.42 87.59 85.61 90.26 91.25 93.84 88.42 86.03 92.71 90.80 92.74 87.68 84.99 92.68
LR 85.70 91.58 81.41 78.40 86.09 84.64 91.23 78.57 75.54 86.82 83.07 88.96 76.69 71.94 85.53
RF-100 95.21 97.16 93.80 92.82 95.56 94.97 96.81 93.23 91.95 95.86 92.21 94.37 89.41 87.52 93.51
RF-500 94.74 96.76 93.02 91.65 95.36 95.06 96.99 93.53 92.50 95.47 92.13 94.46 89.55 88.07 92.91
SVM 90.54 94.42 87.93 85.77 91.18 90.02 93.90 87.07 84.66 91.08 87.99 91.78 83.86 80.40 90.28
XGboost 95.16 97.14 93.45 91.83 96.25 95.06 96.91 93.30 91.92 96.07 92.84 95.03 89.97 87.14 95.34
A: Accuracy, F1: F1 score, R: Recall, P: Precision

Table VI
Mean (Average), Maximum, and Minimum Accuracy Values for Different Feature Selection Models

Selection models 20 15 10

MAX MIN MEAN FT ST MEAN MAX MIN FT ST MIN MEAN MAX FT ST
ANOVA F-value 97.04 76.96 91.09 228.58 4.98 96.61 75.30 91.07 308.07 6.93 86.46 75.09 82.26 123.15 7.52
Information gain 98.62 73.52 93.05 340.72 4.13 98.52 73.52 92.98 461.53 5.72 98.48 60.84 91.75 315.85 5.10
RFE-DT 98.67 72.24 92.44 488.23 5.03 98.71 73.47 92.30 731.81 5.90 98.64 69.76 91.87 535.74 4.87
RF 98.46 67.83 91.95 296.79 5.08 98.47 67.50 91.42 415.34 5.46 98.47 67.39 91.87 276.53 5.02
XGboost 98.22 67.03 91.49 123.83 4.35 98.15 62.49 91.11 454.45 5.17 98.21 66.84 91.62 123.26 4.41
FT: Fit Time, ST: Score time

Table VII
Means for Different Performance Measurements with Over-/Under-sampling Models Tested with Various ML Models

ML model None SMOTETomek SMOTEENN

A F1 R P AUC A F1 R P AUC A F1 R P AUC
AB 97.89 99.61 97.45 96.85 98.05 98.27 99.77 98.26 97.89 98.63 99.70 99.99 99.70 99.65 99.75
BC-100 98.55 99.63 98.25 97.94 98.57 98.94 99.80 98.94 98.85 99.04 99.81 99.98 99.81 99.83 99.80
DT 97.60 97.53 97.11 97.15 97.08 98.29 98.29 98.29 98.33 98.25 99.71 99.71 99.71 99.72 99.71
ET-100 98.61 99.72 98.32 97.94 98.70 99.03 99.87 99.03 98.90 99.17 99.87 100 99.87 99.86 99.89
ET-500 98.63 99.75 98.34 97.98 98.71 99.03 99.89 99.03 98.91 99.16 99.88 100 99.88 99.89 99.88
GN 89.55 97.67 86.28 79.01 95.02 88.72 97.87 87.72 80.60 96.23 90.03 98.48 89.29 82.87 96.79
KNN-3 98.32 98.91 97.97 97.18 98.77 98.72 99.38 98.72 98.30 99.13 99.78 99.91 99.78 99.71 99.84
KNN-5 98.36 99.13 98.00 97.11 98.92 98.76 99.53 98.75 98.27 99.24 99.74 99.93 99.74 99.60 99.87
LR 91.27 94.43 89.10 85.79 92.68 90.94 94.77 90.72 88.57 92.98 92.94 95.81 92.83 91.18 94.55
RF-100 98.62 99.70 98.34 98.07 98.60 98.95 99.85 98.95 98.87 99.03 99.86 100 99.86 99.91 99.82
RF-500 98.63 99.73 98.34 98.10 98.59 98.98 99.87 98.98 98.90 99.06 99.84 100 99.84 99.89 99.79
SVM 98.45 99.65 98.13 97.64 98.62 98.76 99.77 98.76 98.42 99.10 99.68 99.97 99.68 99.56 99.79
XGboost 98.62 99.74 98.33 98.03 98.63 98.98 99.88 98.98 98.87 99.10 99.89 100 P. 89 99.89 99.89
A: Accuracy, F1: F1 score, R: Recall, P: Precision

Table VIII
Five Best AUC-ROC Achieved ML Models

Selection model ROC AUC mean
SVM 75.75
ET-500 75.03
KNN-5 74.73
ET-100 74.66
KNN-3 74.40
SVM 75.75
ET-500 75.03

ML models 20 15 10

A F1 R P AUC A F1 R P AUC A F1 R P AUC
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plot, as shown on the right side of the Y-axis; when the value 
of features is large, the color moves to red, but when the 
value of the features is small, the color moves to blue. The 
plot shows that the original statistic features and statistically 
derived features are highly effective and ranked at the top 
of the graph. Furthermore, some features drive the model in 
one direction; for example, in the case of the num_digits_in_
screen_name feature, when the number of digits is increased, 
the result moves toward one (bot-like), and in the case of the 
listed_count feature, when the number rises the model drive 
toward zero (human-like). Fig. 2 shows the result of the 
SHAP plot, the order of the features may be slightly different 
than what we mentioned in the text because the SHAP plot 
only depends on one algorithm, but our experience is based 
on five algorithms.

C. Oversampling and Undersampling Evaluation
We use the synthetic minority oversampling technique, 

Tomek Link (SMOTETomek), and Edited Nearest 
Neighbor (SMOTEENN) to reshape the dataset size. The 
original dataset includes 58K of humans and 42K of bots; 
SMOTEENN reshapes the dataset to 54K for each human 
and bot, and SMOTETomek reshapes the dataset to 57K for 
each human and bot. Our experiment (Fig. 3) used Gaussian 
normalization and 10 best features based on feature selection 
experiment. In addition, an original dataset was used without 
any changes. As shown in Table VII, reshaping the dataset 
increases performance measurements positively. When 
SMOTETomek and SMOTEENN were applied, all ML 

models’ measurement performance increased (GN accuracy 
decreased with SMOTETomek as an exception). However, 
when we compare SMOTEENN and SMOTETomek, 
SMOTEENN performed much better than SMOTETomek. 
Furthermore, we used some oversampling algorithms such 
as SMOTE, ADASYN, and Borderline-SMOTE to reshape a 
dataset. Those algorithms increase the samples of lower class 
(oversampling) without performing any undersampling. The 
results are inferior, and usually, the original dataset performs 
better (their results are not mentioned in Table VII).

D. Generalization
Creating new types of bot with a different specialty are 

easy; because of that, many Botmasters develop new types 
of a bot that can avoid detection by the previous models. 
Therefore, a model’s ability to distinguish between humans 
and bots outside their datasets (unseen data) is essential 
for any machine learning model, and this characteristic is 

Fig. 2. The SHAP graph for our dataset. The graph shows the 20 
features with the highest impact on the dataset. Using RF and Euclidean 

normalization.

Fig. 3. The proposed experiments to determine the impact of over-/under-
sampling algorithms on bot detection performance.
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called generalization. We use nine datasets out of 11 from 
Yang, et al., 2019, work to test our models capability for 
generalization. The dataset’s names are Cresci-Rtbust, 
Cresci-stock, Gilani-17, midterm-18, pron-celebrity, political-
feedback, Botwiki-verified, vendor-verified, and Cresci-17. 
(Fig. 4 shows the distribution of each dataset). However, 
Varol-Icwsm and Caverlee datasets are excluded because 
their public version only contains id (unique id for an 
account) and the remaining features are missing.

We trained the model with one of the datasets (including 
ours) and tested the model with the remaining datasets 
separately. The 10 best score features are used in feature 
selection experiment, SMOTEENN for balancing dataset, 
and Gaussian normalization. (Fig. 5 shows the steps for the 
experiment). Table VIII shows five ML models achieved the 
highest ROC AUC when the models were trained on one 
dataset and tested with the remaining datasets.

The SVM model achieves the best AUC average, but when 
compared to the result of SVM and ET-500, the generalization 
of ET-500 is higher than SVM. As a result, Fig. 6 is a 
complete comparison of all datasets based on the ET-500 

model. As shown in Fig. 6, our dataset achieved the best 
average accuracy among all datasets, 6% higher than others. 
Moreover, it achieved the best result for three datasets; the 
other two achieved good results, but the remaining datasets 
performed poorly. An average of 75% is not satisfying for a 
realistic bot detection model.

Nevertheless, two critical points explain why the results 
are inadequate. First, our models are trained with 10 features 
from metadata which is insufficient for a real-life situation 
to increase the performance. Other features such as tweet 
content need to be considered. Second, there are different 
types of bots with different parameters; for example, fake 
followers and spammer bots have quite unlike specialties. 
Because of that, we thought in those cases, when the model 
performs poorly, the test dataset contains bots that do not 
exist in a trained dataset or vice versa.

Fig. 4. The distribution of bots and humans for all the datasets using a 
TSNE plot, 1000 samples for each class.

Fig. 5. The generalization experiments using one dataset for training and 
other datasets for testing.
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As a result, we believe a dataset cannot achieve high 
performance for all other datasets unless to make the bot 
detection multi-class classification instead of a binary one. 
Instead of having one class for bots, we should create 
different bot classes such as spammer, fake follower, and 
others. Furthermore, it is worth mentioning that in our 
experiment, the result of the comparison between other 
datasets is much lower (besides our dataset) than the ones 
mentioned in Yang, et al., 2019, paper. We thought that it was 
because of a decrease in the number of features; the same 
experiment was repeated with the 20 features mentioned in 
Yang, et al., 2019, paper, which increased the average result 
by almost 2%, but still considerably less than the number in 
the original paper.

VI. Conclusion
This paper proposes novel benchmarks (datasets) with 
100K samples based on 1.5M metadata collected from 
Twitter API. We collected data for more than 100 days to 
capture various bot types related to controversial topics 
like the US presidential election. Moreover, we use state-
of-the-art online API to obtain the ground truth labels for 
the benchmark. The dataset includes 100K samples, and to 
the best of our knowledge, it is the largest only metadata 
dataset in this research area. Furthermore, this paper applied 
various autofeature selections and over-/under-sampling to 
the benchmark to increase the benchmark’s generalization 
and scalability, reduce training time, and prevent over-/
under-fitting while achieving very accurate results based 
on five-cross validation. As a result, our dataset achieved 
better AUC compared to other datasets by 6% in the case 
of generalization. Furthermore, applying the SMOTEENN 
technique achieved 2% higher results than the original 
dataset. In the future work, we intend to increase dataset 

Fig. 6. AUC scores of ET-500 classifiers trained on one dataset and tested 
on others; the final columns also show each dataset’s mean AUC.

http://dx.doi.org/10.14500/aro.11032

generalization by including additional features rather than 
metadata features. Since we thought that bot detection on 
Twitter is a multiclass nature problem, we planned to create 
a multiclass benchmark instead of a binary one. Dataset and 
experiment codes are available on this GitHub link to support 
overcoming the lack of datasets for the future research.
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