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Abstract—The upper limb amputation exerts a significant burden 
on the amputee, limiting their ability to perform everyday activities, 
and degrading their quality of life. Amputee patients’ quality of life 
can be improved if they have natural control over their prosthetic 
hands. Among the biological signals, most commonly used to predict 
upper limb motor intentions, surface electromyography (sEMG), 
and axial acceleration sensor signals are essential components of 
shoulder-level upper limb prosthetic hand control systems. In this 
work, a pattern recognition system is proposed to create a plan 
for categorizing high-level upper limb prostheses in seven various 
types of shoulder girdle motions. Thus, combining seven feature 
groups, which are root mean square, four-order autoregressive, 
wavelength, slope sign change, zero crossing (ZC), mean absolute 
value, and cardinality. In this article, the time-domain features 
were first extracted from the EMG and acceleration signals. Then, 
the spectral regression (SR) and principal component analysis 
dimensionality reduction methods are employed to identify the most 
salient features, which are then passed to the linear discriminant 
analysis (LDA) classifier. EMG and axial acceleration signal datasets 
from six intact-limbed and four amputee participants exhibited an 
average classification error of 15.68 % based on SR dimensionality 
reduction using the LDA classifier.

Index Terms—Biosignal analysis, Dimensionality 
reduction, LDA classifier, Time domain

I. Introduction
The amputation of an upper limb is a common problem 
that affects people worldwide. The root causes are many 
and include vascular disorders such as trauma from 

accidents, diabetes, and regional conflict-associated 
traumatic amputations (Choo, Kim and Chang, 2022). 
The amputee’s arm is incomplete if the shoulder has been 
disarticulated or the upper limb has been amputated below 
the elbow (Jang, et al., 2011). This means that the amputee 
cannot use the prosthetic arm because of a lack of muscle 
power. High-level amputations can be replaced with a body-
powered prosthetic hand powered by mechanical cables 
or a very modern (i.e., TMR) surgical procedure requiring 
advanced intervention (Craelius, 2021).

Only a few studies have determined that a shoulder girdle 
electric prosthesis is the newest biological alternative to 
a limb. For this process to be successful, signals must be 
transmitted based on the absence of remanent and the shape 
of the scapula. The focus should therefore be on finding a 
way to solve the motion detection problem so that adequate 
prostheses function well as part of the control framework, 
as the task of the electromagnetic prosthesis is to send the 
necessary operational signals to detect shoulder motions 
(Sharba, 2020, Nsugbe et al., 2022).

Rivela, et al., 2015, employed a pattern recognition (PR) 
system to identify eight healthy people’s shoulder motions 
into nine different groups. The data were segmented using 
a window length of L = 500 ms and an increment of I = 
62 ms as a starting point. Their analysis used waveform 
length (WL) and root mean square (RMS) as features. The 
linear discriminant analysis (LDA) was used as a classifier 
in this research, and the percentage of correctly classified 
patterns was 92.1 %. Jiang, et al., 2020, examined the ability 
to build EMG signals from 12 muscles for the upper arm 
motion pattern identification. In this study, different muscles 
near the shoulder were shown to produce varied grips. The 
cross-subjects convolution neural network (CNN) model was 
employed in this research, and the obtained accuracy was 
79.64% in recognizing motion patterns.

Analysis of the data collecting sequence used by Sharba, 
Wali and Timemy, 2020, has been conducted in another study 
carried out by Sharba, Wali and Timemy, 2020. This utilized 
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dataset can be employed for various purposes, including 
enhancing the operation of prosthetic hands. In recent years, 
there has been much interest in detecting the intention to 
move the upper limbs. Forearm muscle activity recordings 
were used in pattern recognition techniques to identify 
hand and wrist movements. However, it is impossible to 
infer the coordinated motion of the body from those signals 
alone. As a result, the actions of the prosthesis may appear 
unnatural when viewed as part of the total body, and a 
dynamic connection between the user and the prosthesis is 
inconceivable.

A higher-level amputee cannot use these systems 
because they rely only on contractions of the forearm 
muscle to generate energy (Li, et al., 2021). However, the 
reason behind using the time domain analysis for feature 
extraction is that the time series is a collection of data 
points that typically include a series of measurements taken 
at distinct time intervals. A time series analysis statistical 
technique is designed to examine such measures for feature 
extraction, model identification, parameter estimation, model 
validation, and forecasting. A time series model or some 
statistical aspects of time series data can be recovered as 
the key damage-sensitive features using the effective feature 
extraction technique known as time series analysis. In time 
series analysis, choosing the right model class is crucial. The 
kind and nature of the time series data and the availability 
or lack thereof of input or excitation data all affect how this 
process works (Pulliam et al., 2011). Time-invariant linear 
models are the best options for feature extraction when 
vibration measurements are linear and stationary. The most 
important and fundamental problem in time series modeling 
is choosing an appropriate and precise order that enables the 
target model to produce uncorrelated residuals (Entezami, 
2021).

The main contributions of the present research are 
summarized below:
1. For each subject, we combined the seven feature parameters, 

which are the RMS, four-order autoregressive (AR), WL, 
slope sign change (SSC), zero crossing (ZC), mean absolute 
value (MAV), and cardinality to extract 60-dimensional 
feature vectors. This was accomplished by combining the 
seven feature groups mentioned previously.

2. The effects of SR and PCA dimensionality reduction 
algorithms in error analysis testing are then investigated.

The remainder of the work is structured as follows. 
The following section describes the proposed work plan 
in detail, and the theoretical background of time-domain 
feature extraction principles and dimensionality reduction is 
examined. In Section III, the experimental data and analysis 
are presented. Finally, Section IV concludes the work and 
gives suggestions for future investigations.

II. The Proposed Work Scheme
The proposed work scheme for classifying different 

shoulder girdle motions based on time-domain feature 
extraction contains signals pre-processing (cross-validation 

and segmentation) stage, time-domain features extraction 
and dimensionality reduction, and then classification stages. 
First, as indicated in Fig. 1, the cross-validation of training 
and testing data is applied to pre-process the provided 
signals, followed by segmentation with overlap window size. 
After that, time-domain features are conducted. Finally, the 
LDA classifier is employed to detect seven more shoulder 
girdle motions for prosthesis control after the SR and PCA 
dimension reduction presentations. The classes of motion are 
shown in Fig. 2. The steps are described in more detail in the 
following subsections.

A. Signal pre-processing
This section outlines the fundamental ideas that underlie 

the specific data collection techniques employed by Sharba, 
Wali and Timemy, 2020. The information was received 
from six participants with intact limbs (Fig. 3a) and four 
participants with amputees (Fig. 3b). Seven movements were 
selected for the classification of shoulder girdle motions: 
Elevation, depression, protraction, retraction, upward rotation, 
downward rotation, and rest. The extracted data were 
recorded from five EMG channels. A 3-axis accelerometer 
sensor (ADXL335) was also mounted on top of the shoulder 
(Fig. 4) to provide three acceleration signals (Fig. 5).
Cross-validation

Cross-validation was utilized to exclude one trial from 
this study. To train the classifier in each fold throughout the 
optimization procedure, eight trials were used. The remaining 
trials were utilized to evaluate the classifier and calculate the 
classification error rate. This procedure was done 8 times (eight 
runs) to calculate the average error rates for the eight runs.

Fig. 1. The general design of the proposed work scheme.
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Fig. 2. Classes of shoulder girdle motions examples (Sharba, Wali and 
Timemy, 2020).

Segmentation
The raw signals are sampled at a rate of 1 kHz. The data 

were also segmented using an overlapped segmentation 
approach with a window size of 150 ms and a window 
increment of 50 ms; Fig. 3 displays the EMG signals from 
five channels. Fig. 4 depicts the three acceleration signals 
channels.

B. Time-domain-based feature extraction methods
The time-domain (TD) features are commonly utilized in 

classification studies and are the most advantageous. The 
main advantage of TD features extraction is that they are 
easily extracted and produce excellent results compared to 
other approaches such as frequency- domain (FD) and time-

FD (TFD) features. The previous research demonstrated 
the use of TD, particularly in terms of its speed, ease of 
implementation, and absence of any required transformation 
(Padfield, 2022). However, the nature of the available signals 
determines whether or not the time or frequency features 
should be used. Examining the temporal features of the signal 
is ineffective in some situations. Thus, researchers must look 
at it from a new perspective (Boashash, Khan and Ben-
Jabeur, 2015). The TDs fundamental problem is that features 
are formed from the signal’s stationary properties. There may 
be large differences in the components when dealing with 

e

Fig. 4. Examples of EMG data (5 channels) in the pre-processing 
condition.

Fig. 3. (a) An example of an intact-limbed subject’s specific electrode 
positions. (b) An example of an amputee subject’s specific electrode 

positions.

a

b
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is derived from the corrected EMG moving average. This 
characteristic has been known by numerous different names, 
including ARV (i.e., average rectified value) (Phinyomark, 
Khushaba and Scheme, 2018). The formula for calculating 
MAV is as follows:

  MAV
N

xi
i

N

�
�
�1

1

 (2)

Where, xi represents the signal of the EMG, whereas N 
represents the signal’s sample number.
ZC

In temporal domain analysis, the word “ZC” refers to 
something linked to frequency. It is a measure of the spectral 
components that occur when the number of EMG magnitudes 
is more than the level of zero amplitude (Phinyomark, 
Khushaba and Scheme, 2018). To avoid low-voltage 
fluctuations or background noise, the threshold condition 
must be achieved, and the mathematical definition of this 
condition is as follows:
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Meanwhile, one characteristic measure the upward ZC 
split by the peaks (NP) (Al-Timemy, et al., 2015). Only their 
spectral moments can be used to examine this feature. The 
following equation can be used to express the corresponding 
quality as follows:
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WL
WL can be defined as an EMG complexity measure that 

describes the total summation of fluctuations throughout 
every signal segment. This attribute is also referred to as the 
wavelength, and it is referred to as the total value of absolute 
derivative signals (WAVE) (Rampichini, et al., 2020). The 
equation for calculating WL is expressed as:
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SSC
The SSC is a ZC trait with a recognizable character, 

which is how one may characterize it. Calculations are made 
in which differences in the slope sign are used to indicate 
information regarding signal frequency. Within their threshold 
function, positive and negative slope changes have been 
counted three times in sequence. As a direct consequence 
of this, background noise in the EMG will not be present 
(Toledo-Pérez, et al., 2019). The corresponding mathematical 
expression for this property is as follows:
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non-stationary signals like EMG that is typically collected 
during dynamic movements (Samuel, et al., 2018).

Since the characteristics of the TD have evolved entirely 
based on the amplitude of the EMG, it is particularly 
susceptible to noise captured during data collection. 
Differentiating between stratigraphic movements requires 
temporal and spectral information. Furthermore, this will be 
the main criterion for distinguishing between the FD and the 
TFD in the classification. However, not all of these qualities 
were used at the same time by a large number of researchers. 
To achieve efficient classification, important features were 
selected (Rampichini, et al., 2020). The time-domain features 
used in this study are as follows:
RMS

The RMS has been described as a Gaussian process 
analogous to the usual technique of muscular contraction. 
Furthermore, it mimics the standard deviation SD method 
(Phinyomark, Khushaba and Scheme, 2018). The RMS 
mathematical model has been represented as:

  
2

1

1
=
∑

N

i

xi  
N  

RMS=
 

(1)

Where, xi represents the EMG signal, whereas N represents 
the sample number of a signal and RMS is a ubiquitous 
feature that utilizes tested seven TD features with the EMG 
analysis.
MAV

The MAV feature is ubiquitous and widely exploited by 
EMG signal researchers. The integrated EMG (IEMG) value 

Fig. 5. Examples of 3-axis accelerometer sensor data (three channels) in 
the pre-processing condition
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The threshold parameter of this feature should have a 
value between 50 and 100 mV, as recommended (Tkach, 
Huang and Kuiken, 2010). Nevertheless, it may be different 
if the instrument’s gain value and the background noise 
amount are not adjusted to the same level (Badr and Abdul-
Hassan, 2021).
Auto-regressive coefficient

When the peak location of the EMG signal is known, the 
AR feature can be developed on a statistical method using 
spectral information. It is a prediction model in which the 
EMG signal is described as a linear combination of the 
previous samples xi−p and white noise wi (Phinyomark, 
Khushaba and Scheme, 2018). Several classification 
techniques make use of the AR coefficient as a feature vector. 
The following is the basic AR model:

  xi a x w
p

p

p i p i� �
�

��
1

�  (7)

Where, P represents the AR order at a certain 
autoregressive coefficient ap between the fourth-order (AR4) 
and sixth-order (AR6) (Chen, Luo and Hua, 2021), research 
works have been proposed for ideal AR to utilize in the 
analysis of the EMG.
Cardinality feature

Cardinality is a recently proposed and potentially useful 
feature. It is denoted by counting the number of components 
in a group of items while excluding all comparable objects 
from the elements in that collection (Barton, 2020).

Compared to other commonly used individual features in 
the literature, cardinality was shown to be one feature that 
can achieve high levels of accuracy despite the variations 
in the sampling frequency, window segments, and number 
and type of movement classes (Barton, 2020). As a result, 
cardinality has become a fundamental focus of future 
research. Cardinality was shown to be one feature that can 
achieve high levels of accuracy despite the variations in the 
sampling frequency (Praciano, et al., 2021).

As was indicated earlier, researchers have made extensive 
use of all six of the TD features that were chosen for this 
study. The previous research, such as that conducted by 
Samuel, et al., 2018, and Phinyomark, Khushaba and 
Scheme, 2018, has proposed and used the coupling of TD 
features with AR. They showed that the feature could be 
utilized to improve EMG signal classification, which is a 
significant achievement.

Compared with any FD and TFD hand movement 
detection system, these features provide extremely high 
classification accuracy (Karheily, et al., 2022). This was the 
primary reason behind this research’s decision to use the TD 
features described previously in the EMG data acquired for 
this investigation.

C. Dimensionality reduction methods
In several numbers of data processing disciplines, such 

as data mining, machine learning, information retrieval, and 
pattern recognition, dimensionality reduction has been a 
significant challenge. The performance of supervised machine 

learning algorithms degrades when they are presented with 
multiple features that are not essential for making accurate 
predictions of the desired output (i.e., prediction accuracy) 
(Zeng, et al., 2009). One of the most critical aspects of 
information discovery, machine learning, pattern recognition, 
and computer vision is isolating a few distinctive and 
useful characteristics. It is common practice to approach the 
resolution of this problem by employing methods that involve 
dimensionality reduction (Sarker, 2021). In this paper, we 
propose the two most essential methods for dimensionality 
reduction: Spectral regression (SR) and principal component 
analysis (PCA). Both of these algorithms are known for their 
ability to reduce the number of dimensions.
SR

Training sample embedding results are provided by 
conventional manifold learning techniques such as the locally 
linear embedding, Laplacian Eigenmap, and isomap. The out-
of-sample extension is a challenge; therefore, SR develops a 
regression model that can avoid the Eigen decomposition of 
dense matrices, which resolves the challenge of learning and 
embedding functions (Dong, 2021).

In real-world applications, the resulting data representations 
are frequently highly dimensional. Practical algorithms 
generally behave poorly when faced with many unnecessary 
features. Finding a way to merge them in a lower-dimensional 
unified space may, therefore, be beneficial for some tasks, 
such as those involving pattern recognition and regression 
problems (Jia, et al., 2022). However, DR techniques, 
including unsupervised, supervised, and semi-supervised 
methods, were frequently used in many information 
processing sectors despite the varying assumptions regarding 
the distribution of the data or the availability of data 
labeling (Adadi, 2021). Regression- and spectral graph-
based SR avoids the Eigen decomposition of dense matrices 
and operates more effectively at a faster learning rate. The 
conditions can also be supervised, unsupervised, or semi-
supervised (Thudumu, et al., 2020).

Traditional spectral dimensionality reduction strategies 
need Eigen decomposition of the dense matrices, which has a 
high computational cost in terms of time and memory, to find 
an embedding function that minimizes the objective function. 
The SR algorithm uses the least squares method to determine 
the ideal projection direction rather than computing the 
features’ density matrix, enabling it to learn substantially 
more quickly. A G affinity graph with labeled and unlabeled 
points was developed to examine the complexity of the 
underlying geometry and learn responses from given data. 
The embedding function is realized utilizing these responses 
and standard regression (Nanga, et al., 2021).
PCA

PCA is a mathematical method that can be defined as a 
technique that simultaneously reduces the dimensionality 
of data while keeping the majority of its variance 1. It 
accomplishes this reduction by identifying the major 
components or directions contributing to maximum data 
fluctuation. Using a limited number of components, each 
sample can be characterized by a small number of integers 
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instead of the thousands of values associated with the tens 
of thousands of variables (Jolliffe and Cadima, 2016). On 
the other hand, PCA provides an orthogonal transformation 
that converts samples with linearly associated features into 
data with correlated variables. The main components are new 
features with fewer or equivalent variables to the starting 
ones. Since the PCA is an unsupervised approach, the data 
label information is not included. Ordinarily dispersed 
data have self-contained principal components (Groth, et 
al., 2013). The PCA is an easy nonparametric method for 
extracting the most important information from a collection 
of redundant or noisy data, and this is why it should be used. 
The benefits of using them extend far beyond image analysis 
and data compression to include pattern identification and 
visualization, as well as the prediction and regression of time 
series (Nanga, et al., 2021). According to Khalid, Khalil, 
and Nasreen, 2014, PCA has a few drawbacks, which are as 
follows:
1. It suggests that the relationships between the variables are 

linear.
2. It can only be interpreted if all variables are scaled 

numerically.
3. It lacks a probabilistic model framework that has been 

regarded as crucial in certain contexts, such as Bayesian 
decision-making and mixed modeling.

III. Experimental Results and Analysis

A. Experimental setup
Data were initially segmented using an overlapping 

segmentation approach with a 150 ms window and a 50 ms 

window increment. In each of the folds, classifiers were 
trained on eight trails. Classes and error rates for classifiers 
were calculated using individual trails. This method has been 
repeated eight times. After completing the eight runs, the 
average error rate for those eight trials was computed.

Table I
Results of Testing Error for Principal Component Analysis with NoFeatures=35 and Linear Discriminant Analysis Classifier for Six Intact Limbed

Fold No Intact-limb 1 (%) Intact-limb 2 (%) Intact-limb 3 (%) Intact-limb 4 (%) Intact-limb 5 (%) Intact-limb 6 (%)
Fold 1 13.92 21.24 22.34 14.02 17.83 9.51
Fold 2 18.13 13.92 19.73 19.93 14.12 10.52
Fold 3 12.02 11.42 15.73 12.32 28.95 12.72
Fold 4 12.42 16.63 15.83 15.03 15.23 11.02
Fold 5 12.82 11.82 20.24 12.32 18.43 11.22
Fold 6 15.23 7.71 19.93 14.02 22.74 9.81
Fold 7 22.34 10.32 14.32 14.12 22.44 16.83
Fold 8 18.83 15.83 14.72 14.82 27.95 12.92
Mean 15.71 13.61 17.86 14.57 20.96 11.82

Table II
Results of Average Testing Error for Spectral Regression and Linear Discriminant Analysis Classifier for Six Intact Limbed

Fold No Intact-limb 1 (%) Intact-limb 2 (%) Intact-limb 3 (%) Intact-limb 4 (%) Intact-limb 5 (%) Intact-limb 6 (%)
Fold 1 12.22 16.53 17.83 12.42 14.72 8.31
Fold 2 16.73 11.42 19.23 13.72 12.02 8.61
Fold 3 12.12 8.91 10.82 9.21 24.94 10.42
Fold 4 8.31 15.93 11.32 12.02 13.12 10.02
Fold 5 12.82 9.61 14.02 9.11 16.13 9.31
Fold 6 13.92 7.11 15.23 12.52 19.23 8.11
Fold 7 18.63 8.81 14.02 9.41 17.93 15.60
Fold 8 18.73 13.02 12.82 10.92 21.44 9.91
Mean 14.19 11.42 14.41 11.17 17.44 10.04

Table III
Results of Testing Error for Principal Component Analysis with 
NoFeatures=35 and Linear Discriminant Analysis Classifier for Four 

Amputees

Fold No Amputee 1 Amputee 2 Amputee 3 Amputee 4
Fold 1 29.65 22.64 24.45 9.91
Fold 2 20.54 16.23 24.44 15.3
Fold 3 22.24 21.14 26.75 18.23
Fold 4 22.34 17.43 21.04 13.12
Fold 5 18.93 22.34 25.25 18.73
Fold 6 15.83 16.43 28.25 13.72
Fold 7 20.74 20.64 19.13 11.02
Fold 8 28.15 17.13 22.84 12.52
Mean 22.30 19.24 24.01 14.06

Table IV
Results of Average Testing Error for Spectral Regression and Linear 

Discriminant Analysis Classifier for Four Amputees

Fold No Amputee 1 Amputee 2 Amputee 3 Amputee 4
Fold 1 27.35 17.43 20.44 9.11
Fold 2 18.33 14.92 25.15 17.7
Fold 3 20.74 19.63 28.45 15.03
Fold 4 20.84 14.62 23.04 11.02
Fold 5 17.63 18.53 23.54 15.83
Fold 6 15.73 14.22 25.55 12.32
Fold 7 18.63 19.93 17.43 10.42
Fold 8 25.65 19.13 21.94 12.52
Mean 20.61 17.30 23.19 12.99
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Table V
The Obtained Average Testing Error Using Spectral Regression and Principal Component Analysis with the Linear Discriminant Analysis 

Classifier for Six Intact Limbed

Dimensionality reduction Intact-limb 1 (%) Intact-limb 2 (%) Intact-limb 3 (%) Intact-limb 4 (%) Intact-limb 5 (%) Intact-limb 6 (%) Mean (%)
SR 14.19 11.42 14.41 11.17 17.44 10.04 13.11
PCA 15.71 13.61 17.86 14.57 20.96 11.82 15.75
SR: Spectral regression, PCA: Principal component analysis

Table VI
The Obtained Average Testing Error Using Spectral Regression and 
Principal Component Analysis with the Linear Discriminant Analysis 

Classifier for Four Amputees
Dimensionality reduction Amputee 1 Amputee 2 Amputee 3 Amputee 4Mean (%)
SR 20.61 17.30 23.19 12.99 18.52
PCA 22.30 19.24 24.01 14.06 19.90
SR: Spectral regression, PCA: Principal component analysis

B. Testing error based on PCA features reduction

The first experiment is conducted using the group of TD 
features, which are RMS, 4th Autoregressive, WL, SSC, ZC, 
MAV, and cardinality. In addition, eight different values for 
each fold (cross-validation) have been tested. The obtained 
average testing error is calculated for every intact-limb 

Fig. 6. Confusion matrices of accuracy for each fold of intact-limb 6.
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subject value-based PCA (dimensionality reduction) with the 
LDA classifier, as shown in Table I.

Again, the second experiment is conducted using the 
group of TD features such as RMS, 4th Autoregressive, WL, 
SSC, ZC, MAV, and cardinality. Every subject value is used 
to compute the attained average testing error. In addition, the 
cross-validation method has examined eight distinct values 
for each fold. As shown in Table II, the LDA classifier and 
the confusion matrices, as shown in (Fig. 6) for each fold of 
subject 6, as examples, the obtained average testing error is 
determined for each subject value based on SR.

The third experiment is done with a set of TD features, 
such as RMS, 4th Autoregressive, WL, SSC, ZC, MAV, and 
cardinality. Cross-validation has also been used to test eight 
different values for each fold. For every amputee’s subject 
value-based PCA (dimensionality reduction) with the LDA 
classifier, the average testing error is calculated, as shown in 
Table III.

On the other hand, in the fourth trial, we use a variety of 
TD features, including RMS, 4th Autoregressive, WL, SSC, 
ZC, MAV, and cardinality. There have been eight alternative 
values for each fold tested using cross-validation. Table IV 
displays the average testing error for each amputee when 
using SR with the LDA classifier based on the subject values 
of the amputees.

The final experiment has been carried out to compare the 
effect of the used dimensionality reduction methods (SR and 
PCA) on the accomplished testing error for the resulting 
models with the LDA classifier. Tables V and VI list obtained 
results for the same values utilized in the previous two 
experimentations.

As shown in Table V, the dimensionality reduction method 
(SR or PCA) can affect the accuracy of the classifier (LDA). 
The value of classification error decreases when using SR 
with the LDA classifier, which is 13.11% for six intact limbs. 
The average testing error for four amputees based on the 
same dimension reduction (SR with the LDA classifier) is 
18.52%, as given in Table VI. This exemplifies the nature 
of SR dimensionality reduction, in which identifying the 
optimal feature extraction may work effectively with a large 
feature dimension.

Comparatively, PCA dimensionality reduction performs 
less well, with an average test error of 15.75% for six 
intact limbs. However, the average testing error for four 
amputees with the same dimension increased to 19.90%. As 
shown in Tables V and VI, the classification error based on 
SR decreases as long as the size of feature vectors for all 
subjects. This is the outcome of the dimensionality reduction 
method, which searches for patterns among gathered features. 

The complexity of the work increases with the number of 
features.

Classification error results showed a slight difference 
of 4–5% between amputees and intact-limbed participants 
(Tables V and VI). This could be related to factors such as 
getting older, how long it has been since an amputation, or 
even doing shoulder girdle motions. It was also shown that 
some amputees did not use the shoulder girdle muscles and 
did not engage in any sort of exercise to train these muscles. 
However, it is important to note that SR dimensionality 
reduction outperformed PCA for both limb-intact and limb-
amputated participants.

C. Comparative analysis of results
Table VII contains a list of the most common methods for 

classifying different shoulder girdle motions for controlling 
prosthetics in a comparative examination of EMG and/
or acceleration signals collected from the upper limb. The 
results of the proposed paper were found to have low test 
errors than previous works.

IV. Conclusion
This study used EMG and accelerometer signals to categorize 
seven distinct types of shoulder girdle movements performed 
by high-level upper limb amputees. The results will narrow 
the focus of dimensionality reduction in the EMG and extract 
the accelerometer signal feature, which will help determine 
whether shoulder girdle movements are appropriate as non-
invasive and intuitive control signals for upper limb amputees 
using PR systems. The experimental results showed that SR 
dimensionality reduction with the LDA classifier was facilitated 
by extracting regular patterns from biosignals. Experimental 
results showed that the proposed PR system could identify 
seven shoulder girdle motions with a classification error of 
13.11% for intact-limbed subjects and 18.52% for amputees of 
SR dimensionality reduction with LDA, and 15.76%–19.90% 
for PCA dimensionality reduction with the same classifier. 
Methods from linear algebra that specializes in reducing 
dimensionality, such as matrix factorization, can be applied 
in the future studies to decompose a dataset matrix into its 
component parts. In addition, features can be extracted from 
biosignals using the TFD to highlight fundamental patterns.
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Table VII
Comparative Analysis of the Biosignals to Classify Shoulder Girdle Motions to Other State-of-the-Art

Authors Method Channels Classifier Classification accuracy (%)
X. Li et al., Li et al., 2017 Time-domain for feature extraction 10 channels EMG and 10 channels EEG LDA 84.2
Nsugbe and Al‐Timemy, 2022 Time-frequency domain 5 channels EMG and 3 channels Acc LDA 70
The proposed scheme Time-domain for feature extraction 5 channels EMG and 3 channels Acc LDA 84.9
EMG: Electromyography, LDA: Linear discriminant analysis, EEG: Electroencephalography 
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