
ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11327 137

Real-time Traffic Monitoring System based on Deep
Learning and YOLOv8

Saif B. Neamah and Abdulamir A. Karim
Department of Computer Sciences, University of Technology,

Baghdad, Iraq

Abstract—Computer vision applications are important
nowadays because they provide solutions to critical problems
that relate to traffic in a cost-effective manner to reduce
accidents and preserve lives. This paper proposes a system for
real-time traffic monitoring based on cutting-edge deep learning
techniques through the state-of-the-art you-only-look-once v8
algorithm, benefiting from its functionalities to provide vehicle
detection, classification, and segmentation. The proposed work
provides various important traffic information, including vehicle
counting, classification, speed estimation, and size estimation.
This information helps enforce traffic laws. The proposed
system consists of five stages: The preprocessing stage, which
includes camera calibration, ROI calculation, and preparing
the source video input; the vehicle detection stage, which uses
the convolutional neural network model to localize vehicles in
the video frames; the tracking stage, which uses the ByteTrack
algorithm to track the detected vehicles; the speed estimation
stage, which estimates the speed for the tracked vehicles; and
the size estimation stage, which estimates the vehicle size. The
results of the proposed system running on the Nvidia GTX
1070 GPU show that the detection and tracking stages have an
average accuracy of 96.58% with an average error of 3.42%,
the vehicle counting stage has an average accuracy of 97.54%
with a 2.46% average error, the speed estimation stage has an
average accuracy of 96.75% with a 3.25% average error, and the
size estimation stage has an average accuracy of 87.28% with a
12.72% average error.

Index Terms – Computer vision, Deep learning, Object
detection, Traffic monitoring, YOLOv8.

I. Introduction
The emergence of smart cities and intelligent traffic systems
nowadays aims at enhancing human lives by enabling
efficient use of infrastructure resources, reducing risks such
as traffic collisions, and improving drivers’ and pedestrians’

safety. The need for these types of systems is increasing
across various domains such as transportation, public safety,
and infrastructure management. In addition to the growth
of cities, the increase in human population, and the number
of vehicles, vehicular traffic data represents the most vital
data source in smart city management systems. An effective
analysis of this data can yield significant benefits for both
citizens and governments. Traffic problems have increased as
cities become larger. With the increasing number of vehicles,
several network protocols have been developed to address
this problem. These protocols require a data source that can
continuously feed the network with traffic data provided by
real-time traffic analysis systems (Dias, et al., 2023) (Farooq
and Kanwal, 2023).

Road traffic accidents are one of the leading causes of
mortality globally. In Iraq, traffic accidents have increased
considerably, especially after 2003, as a result of the
growth in the economy and population. The number of
vehicles as of 2015 was 5.775 million, according to the
2018 World Health Organization (WHO) road safety report
(WHO, 2018).

II. Related Works

There are a number of studies that are conducted on
vehicle detection and vehicle speed estimation, but very
few on vehicle size estimation. Some of these studies are
described below:

In 2020, Berna, Swathi, and Devi, presented in their work
entitled “Distance and Speed Estimation of Moving Object
Using Video Processing” a distance and speed estimation
in real-time with 90% precision using a fixed camera and
a centroid method. Object detection is done by performing
frame differencing and thresholding, and the speed is
estimated by dividing the manually measured distance by
the time difference, and the vehicle length is also estimated
(Berna, Swathi, and Devi, 2020).

In 2020, Costa, Rauen and Fronza, presented in their work
entitled “Car Speed Estimation Based on Image Scale
Factor” a vehicle speed estimation with a longitudinal
trajectory relative to the camera without reference markers.
They used the image scale factor (ISF) in pixels to calculate
the distance from the vehicle to the camera in different video

ARO-The Scientific Journal of Koya University
Vol. XI, No. 2 (2023), Article ID: ARO.11327. 14 pages
DOI: 10.14500/aro.11327
Received: 07 August 2023; Accepted: 25 October 2023
Regular research paper: Published: 16 November 2023
Corresponding author’s e-mail: saif.b.neamah@uotechnology.edu.iq
Copyright © 2023 Saif B. Neamah and Abdulamir A. Karim. This
is an open access article distributed under the Creative Commons
Attribution License.

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

138 http://dx.doi.org/10.14500/aro.11327

frames, and they proposed to combine the ratio of fw
W

 and
fh
H

 where f is the camera focal length, w, h are the sensor’s

width and height, and W, H are the image frame width and
height into a single ISF, then estimate the distance and time
difference to estimate the vehicle speed. The result of their
work shows a maximum deviation of 2.2% for vehicle speed
estimation (Costa, Rauen, and Fronza, 2020).

In 2021, Lin, Jeng, and Lioa, presented in their work
entitled “A Real-time Vehicle Counting, Speed Estimation, and
Classification System Based on Virtual Detection Zone and
YOLO” the implementation of a real-time traffic monitoring
system to count vehicles and estimate their speed with a
classification facility. They based their work on the Gaussian
mixture model (GMM) and you only look once v4 (YOLOv4).
The GMM and a virtual detection zone are used for vehicle
counting and detection. The GMM is used to perform background
subtraction and foreground segmentation. The YOLOv4 model
is used for vehicle classification, with a classification accuracy
of 98.91% and an average absolute percentage error of vehicle
speed estimation of 7.6% (Lin, Jeng and Lioa, 2021).

In 2022, Gupta et al. presented in their work entitled
“Vehicle Speed Detection System in Highway” the
implementation of a vehicle speed detection system using a
video-based approach. The Haar cascade approach is used
for vehicle detection and a correlation tracker, and speed
estimation, they estimated the pixel per meter (PPM) ratio
manually and calculated the speed by dividing the distance
by the recorded time when the vehicle enters and leaves a
region of interest. The detection accuracy was 95%, and for
speed measurement, it was 92% (Gupta, et al., 2022).

In 2022, Shihab, Ghani, and Mohammed, presented in
their work entitled “Machine Learning Techniques for
Vehicle Detection” the implementation of a vehicle detection
and classification system using two methods based on
Haar cascade and YOLOv3. The detection results they got

were 86.9% for the Haar cascade approach and 91.31%
for the YOLOv3 approach, concluding that YOLO-based
algorithms have better detection results than Haar cascade-
based methods. YOLO-based methods are robust to different
lighting conditions (Shihab, Ghani, and Mohammed, 2022).

This paper implements a real-time system based on
the most recent CNN-based deep learning models that
give more accurate detection results with more critical
information regarding traffic, including vehicle counting,
vehicle classification, vehicle speed estimation, and vehicle
size estimation. The vehicle size can be useful in enforcing
speed limit laws on roads, as we know truck speed limits,
for example, differ from salon car speed limits. The built-in
classification facility in our proposed system can estimate the
vehicle speed and vehicle count based on the vehicle class.
The vehicle size estimation was not thoroughly researched
in previous studies. In this paper, we present a new way to
estimate vehicle size in real time. Table I summarizes the
related works and their limitations compared with our work.

III. Traditional Traffic Monitoring Systems
A variety of hardware technologies are available for

collecting traffic data to facilitate traffic surveillance systems,
including sensors, induction loops, and microwave radars. All
hardware technologies have their limitations. Induction loops
only affect the point of measurements, limiting their spatial
coverage, and with significant traffic density, their accuracy
can degrade. The majority of surface sensors have high
installation and maintenance costs. Handheld radar guns that
rely on the principle of the Doppler effect, in addition to their
equipment’s high cost, require an on-site operator and a line of
sight to perform the speed estimation, can only be applied to
one vehicle at a time, and suffer from shadowing where more
than one wave is reflected from vehicles with different heights
(Koyuncu and Koyuncu, 2018).

TABLE I
Summary of Related Works Limitations

Work Year Related works (limitations and comparison)
Distance and speed estimation of
moving object using video processing

2020 Vehicle detection is based on the frame-differencing method. It is not clear if the system can track multiple
vehicles; no vehicle size information is provided, and there is no vehicle counting facility.
Our system tracks multiple vehicles and estimates the vehicle size with a counting facility.

Car speed estimation based on ISF 2020 It is not clear if the system works on multiple vehicles, and the system is not robust to motion blur; no vehicle
size information is provided, and there is no counting facility.
Our system works on multiple vehicles, is robust to motion blur, and the size information is estimated with a
counting facility.

A real-time vehicle counting, speed
estimation, and classification system
based on a virtual detection zone

2021 There is no estimation of the vehicle’s size. The system used an outdated YOLOv4 as a pre-trained object
detector and classifier.
Our system estimates the vehicle size, and the detection accuracy is higher based on the YOLOv8 model.

Vehicle speed detection system on
highway

2022 The system used Haar cascades for vehicle detection and a correlation tracker. The detection and tracking
are not powerful enough to deal with heavy traffic. There is no estimation of vehicle size information and no
vehicle counting facility.
Our system uses a deep-learning-based method that is more robust in vehicle detection and suitable for
real-time applications. It also provides a courting facility with size estimation.

Machine learning techniques for
vehicle detection

2022 The system is limited to multi-object detection and classification; there is no tracking applied and no counting
facility; neither vehicle speed nor size information is provided. Used an outdated YOLOv3 model.
Our system also provides multiple vehicle tracking and speed estimation in real time, based on the recent
YOLOv8 model.

ISF: Image scale factor

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11327 139

IV. Deep Learning-based Traffic Monitoring Systems
Deep learning and convolutional neural network (CNN)-

based object detection techniques can automatically extract
features from input images and are more resilient to changes
in illumination, shadows, and partial occlusions. The two
primary methodologies of detection are the one-stage
approach and the two-stage approach, which dominate the
field of object detection. One-stage detectors, such as you
only look once (YOLO) and single-shot detectors (SSD),
approach object identification as a regression problem in
which the bounding box coordinates and the object classes
are predicted directly. However, two-stage detectors, like
the region-based CNN (R-CNN), have two phases. Using
a search approach, such as a selective method or a region
proposal network, the first step is to produce a large
number of region suggestions. The second step is to submit
these region proposals for classification and bounding box
regression. Two-stage detectors often have greater detection
rates than one-stage detectors, but since there are more
processes, they also take longer processing time (Liu, et al.,
2021; Yasir and Ali, 2021).

V. CNNs
The CNN, also called ConvNet, is a very popular deep

learning architecture that can learn directly from the input
data without the need for manual human feature extraction. It
includes multiple convolution and pooling layers. CNNs are
specifically intended to deal with a variety of 2-dimensional
shapes and are widely employed in the applications of
computer vision, image segmentation, and object detection.
The rapid development of GPU technology made CNNs
so popular. In fact, one of the bottlenecks of deep neural
networks is that training takes a long time because of the

many hidden units in the network. But as GPUs became
faster, this bottleneck was overcome (Sarker, 2021; Raheem
and AbdulHussain, 2020).

In CNNs, the states of each layer are arranged according
to a spatial grid structure; these spatial relationships are
inherited from one layer to the next because each feature
value is based on a small local spatial region in the
previous layer. Each layer in the convolutional network is
a 3-dimensional grid structure that has a height, width, and
depth. The depth of a single layer refers to the number of
channels in each layer; in the case of colored RGB images,
the depth is three. Fig. 1 demonstrates the traditional CNN
model (Alzubaidi, et al., 2021; Awotunde, et al., 2023).

VI. Object Detection with CNN
The problem of object detection can be efficiently solved

with deep learning models. Object detection based on CNNs
consists of two tasks: recognizing and localizing objects in
the image. Recognition is a classification task that involves
providing category information and the probability of the
target. The other is a positioning task that involves finding
the specific location of the target by utilizing bounding boxes
with labels. There are various algorithms for object detection
using CNNs, which are mainly divided into two main
categories (Alzubaidi, et al., 2021) (AlNujaidi, AlHabib and
AlOdhieb, 2023).
1. Two-stage algorithms: Like the R-CNN series, which

generates at the first stage set ROIs that represent a set of
category-independent bounding boxes in the image; at the
second stage, it makes corrections based on the bounding box
region to improve the final detection results. The two-stage
algorithms give more accurate results, but they are more
computationally expensive as they require the classification

Fig. 1. Traditional CNN model. n is the number of image color channels.

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

140 http://dx.doi.org/10.14500/aro.11327

network to be applied to a large number of ROIs, so this
approach is slower than the one-stage algorithms (AlNujaidi,
AlHabib and AlOdhieb, 2023) (Alzubaidi, et al., 2021).

2. One-stage algorithms: They merge the classification and
regression into a single pass, like the YOLO series and SSD,
divide the image into a fixed grid, and apply a classification
network to each segment. The one-stage algorithms are fast
but give less accurate detection results than the R-CNN
algorithms (AlNujaidi, AlHabib and AlOdhieb, 2023)
(Hakim and Fadhil, 2021).

VII. YOLO One-stage DNN Model
YOLO is a real-time object detection algorithm that uses a

single CNN to predict the bounding boxes and class labels of
objects in an image. YOLOv1 was introduced in 2015, which
frames the object detection problem as a regression problem
instead of a classification problem that classifies each pixel in
the image. To eliminate duplicate detections, YOLO divides
the input image into a grid and predicts the bounding boxes
for the same class along with its confidence values; the output
is then followed by a non-maximum suppression (NMS).
There are 24 CNN layers in YOLOv1 architecture, then two
fully connected layers. All layers use leaky ReLU except
for the last one, which uses a linear activation function.
YOLO used (1*1) convolutional layers to reduce the number
of feature maps and the network parameters. The loss
function used is composed of multiple sum-squared errors.
YOLOv2 was introduced in 2016 with various improvements,
including detecting over 9000 object categories, adding batch
normalization, using anchor boxes, using the Darknet-19
architecture composed of 19 convolutional layers and
five max-pooling layers. YOLOv3 was introduced in 2018
and evolved from Darknet-19 to Darknet-53 with residual
connections. YOLOv4 was introduced in 2020 with weighted
residual connections, cross-stage partial connections (CSP),
cross-mini-batch normalization, self-adversarial training,
and mish-activation function as the backbone. YOLOv5 was
introduced in 2021 and implemented under the PyTorch
framework. It has a focus layer to reduce the number of
parameters and a CSP, which extends shallow information
in the focus layer to maximize functionality. YOLOv6
was introduced in 2022 with a plain single-path backbone
for small models and efficient multi-branch blocks for

large models; this was done by proposing two scaled, re-
parametrizable backbones and necks to accommodate models
of different sizes. YOLOv7, which was introduced in 2022,
proposed a planned re-parameterized model by merging
multiple computational modules into one at the inference
stage and made some architectural reforms. YOLOv8 was
introduced in 2023 and outperformed all previous models, as
illustrated in Fig. 2 (Hussain, 2023) (Jocher, Chaurasia and
Qiu, 2023).

VIII. YOLOv8 Architecture
YOLOv8 proposed a new backbone network with a new

anchor-free detection head, which means it predicts directly
the center of an object instead of the offset from a known
anchor box. It also proposes a new loss function. The
basic architecture of YOLOv8 consists of two major parts:
the backbone for extracting feature maps and the head for
detection, as illustrated in Fig. 3 (King, 2023).

The backbone contains a series of convolutional layers
for different image resolutions and sizes, and then the
features detected are passed through the advanced head
for detection based on a loss function. New convolutional
layers are used. The stem’s first (6*6) convolution is
replaced by a (3*3); the main building block was changed,
and C2f replaced the YOLOv5 C3. The bottleneck is the
same as in YOLOv5, but the first convolution’s kernel
was changed from (1*1) to (3*3) in the neck, and features
are concatenated directly without forcing the same
channel dimensions. This reduces the parameter count
and the overall size of the tensors (Jocher, Chaurasia and
Qiu, 2023).

IX. Bytetrack Multi-object Tracking Algorithm
A state-of-the-art algorithm based on a combination of

feature pyramids, anchor-free detection, and multiple-scale
training makes it compatible with YOLOv8. The algorithm
tracks by associating every bounding box instead of only
the high-scoring ones. Data association is the core of multi-
object tracking, which first computes the similarity between
trackelets and detection boxes. A tracklet is a sequence
of detections that are likely to belong to the same object.
The similarity metrics may include location, motion, and

Fig. 2. YOLOv8 evaluation against recent YOLO models.

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11327 141

Fig. 3. YOLOv8 architecture.

appearance features. The ByteTrack algorithm tracks
objects with high or low values of confidence by presenting
a BYTE method for each detection box. First, the high-
scoring boxes are tracked based on motion similarity or
appearance similarity, and a Kalman filter is adopted to
predict the location of the objects in the next frame. The
similarity can be computed by the IoU or Re-ID feature
distance between the predicted box and the detection box.
After similarity computation, the matching strategy assigns
identities to the objects using the Hungarian algorithm.
Algorithm 1 provides the pseudocode for the BYTE
algorithm (Zhang, et al., 2022).

X. The Proposed System Architecture
The general architecture of the proposed system consists of

several stages that start with the preprocessing stage, which
includes the camera calibration and calculation of the PPM
ratio, calculating the ROIs, determining the video source,
preparing to read the live video feed, dividing the live video
into a series of frames, and resizing the video frames into
the standard resolution (640*640). Then comes the detection
stage for specified classes of vehicles that implement the
YOLOv8 pretrained classification and segmentation model,
and then a tracking algorithm is applied to the detected
vehicles to track their movements. The tracking stage is

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

142 http://dx.doi.org/10.14500/aro.11327

Algorithm 1: BYTE Algorithm

Input: V: video file; D: object detector; θ: detection score threshold
Output: T: tracks

Begin:
Step 1: Initialize T=0
Step 2: for frame fk in V do

 Dk Det (fk)
Dhigh0

 Dlow0
Step 3: for d in Dk do

If d. score >θ then
DhighDhigh ∪ {d}

else
DlowDlow ∪ {d}

Step 4: for t in T
t.KalmanFilter(t)

Step 5: Associate T and Dhigh using similarity1
Step 6: Dremain  remaining boxes from Dhigh
Step 7: Tremain  remaining tracks from T
Step 8: Associate Tremain in Dlow using similarity2
Step 9: Tre-remain  remaining tracks from T
Step 10: T T\Tre-main // delete unmatched tracks
Step 11: for d in Dremain do

 TT ∪ {d}
 end for
 return
End

essential for the speed estimation stage; it assigns track IDs to
the detected vehicles. Finally, size estimation is performed to
calculate the size of segments provided by the segmentation
model according to the calibration parameters. The following
block diagram in Fig. 4 illustrates a general block diagram of
the proposed system.

The system also includes a vehicle counting process,
which counts the vehicles passing through the ROIs in real-
time based on the center of the detected vehicle passing
within the coordinates of the ROI lines. The counter is
displayed on the video output, and the total number of
vehicles passed during the observation period is recorded
in the log file in CSV format. The tracking trial drawing
process, which is an optional process that draws a tracking
trail behind the tracked vehicles to give the viewer a sense
of tracking, the output of the proposed system is presented
as a video stream that is displayed to the viewer as long
as the system is running. The stream can also be saved to
the hard disk as a video file in MP4 format. The proposed
system will also produce a log file that will contain all the
important information calculated by the system, including
the timestamp for the system’s first run, each car’s estimated
speed and estimated size associated with the car tracking ID
and class ID, the timestamp for each calculation, and the
total car count number.

XI. The Proposed System’s Stages
The proposed system consists of five stages; each stage

leads to the next one, and every stage contains specific
details that will be explained in the following sub-sections.

A. The Preprocessing Stage
The first stage contains three main steps, which are the

camera calibration step, the ROI calculation step, and the
input preparation step. The camera calibration step is essential
for the speed and size estimation stages. The calibration is
done using a reference object with known dimensions (one
known car dimension, e.g.,) at the speed and size estimation
ROIs. It is necessary to calculate the PPM ratio, which is
used to estimate the real distance in the ROI and the real
size of the detected vehicles. The second step is the ROI
calculation. In the proposed system, two ROIs are specified,
namely, ROI1 and ROI2, and three lines, namely, Line 1,
Line 2, and Line 3, as illustrated in Fig. 5. The picture was
taken by a phone camera at Mohammed Al Qassim Highway
Street in Baghdad, Iraq.

The reason behind dividing the ROI into two regions is
that we want to get the most accurate results possible, so the
speed is calculated in ROI1, then calculated again in ROI2,
and the average speed will be taken as the final result for
the vehicle’s estimated speed. The final step at this stage is

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11327 143

the input preparation step, where the source video input is
determined and resized to (640*640) resolution, and then the
video frames are extracted.

B. The Vehicle Detection Stage
The detection stage deploys the pretrained YOLOv8 DNN

models. The detection algorithm consists of multiple layers
of convolution (Conv), coarse-to-fine (C2f), concatenation
(Concat), upsampling (Upsample), spatial pixel per feature
(SPPF), and finally the segmentation process. The Conv
layer involves the standard convolution operation of a

sliding window with predefined kernels, a stride of 1,
no padding, and the SiLU activation function, followed
by batch normalization to improve the overall learning
process. The C2f process involves a convolution operation
with a kernel of size (1*1), no padding, and a stride of
1, then the output is entered into a split operation that is
fed to the bottleneck; the bottleneck itself consists of two
convolutional layers with residual connections. Then the
concatenation operation is performed, and finally another
convolution is performed.

The SPPF is spatial pyramid pooling (fast), similar to
the SPP used in YOLOv5, which involves two convolution
layers and three max-pooling layers, used to capture multi-
scale information and improve the detection performance
of the network, enabling the network to detect objects
at different sizes more accurately. The upsample process
involves increasing the size of the matrices by using a
transposed convolution process with a stride of 2 and a
padding of 1. It increases the spatial resolution of the feature
maps, which helps improve object localization. The Concat
process involves the concatenation of a list of tensors into
a tensor of one dimension. This will enable feature fusion,
model flexibility, and the handling of multiple inputs. Fig. 6
demonstrates the multiple layers of the DNN segmentation
model.

Fig. 4. The proposed system’s block diagram.

Fig. 5. The proposed system’s ROIs.

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

144 http://dx.doi.org/10.14500/aro.11327

C. The Vehicle Tracking Stage
The tracking stage depends on the results of the detection

stage as the tracker tracks the detected bounding boxes of
the vehicles. The ByteTrack algorithm is applied to track
the moving vehicles in the scene based on their detected
bounding boxes, and then the algorithm will assign a track
identification number (track ID) for each tracked vehicle. The
tracking stage is essential to the proposed system as it will be
used in the vehicle counting process and the speed estimation
stage for calculating the speed of the tracked vehicle in the
scene. The vehicle counting process starts after the detection
stage and during the tracking stage. The counting process is
performed in the predefined ROIs. Line 1 of ROI1 will be
used to define the vehicle’s entering point, and Line 2 will
define the vehicle’s leaving point. At the entry line, the center
of each detected vehicle is calculated using the following
equation:

     () ()
, ,

2 2
x x w y h y

cx cy
   

 (1)

Where: (x, y) is the detected object’s bounding box top left
corner coordinates. (w, h) is the detected object’s bounding
box width and height. (cx, cy) is the center coordinate of the
detected object.

Several important pieces of information are stored in a
queue, including the car ID, the time of entering in seconds
(TIME1), and the vehicle’s calculated center (CENTER1).
This information will be used later in the speed estimation
stage. When the vehicle approaches Line 1 by a predefined

offset, it will be considered that the vehicle has entered ROI1,
and a vehicle counter will increase. The offset is manually
fine-tuned and is essential to the system’s performance
because, in real-time systems that employ heavy processing
of DNN models, the system will encounter some cases of
missed detections during the vehicle’s movement that can be
solved with this offset to expand the detection zone. Fig. 7
demonstrates the three lines in the ROI with offset values.

D. The Speed Estimation Stage
The object counting process provides this stage with

three queues (CARS_Q1, CARS_Q2, and CARS_Q3), each
corresponding to a line in the ROI. The queues contain the car
ID, the timestamp, and the car center coordinates. The speed
will be calculated two times in the proposed system: The first
speed calculation will be between Line 1 and Line 2, and
the second is between Line 2 and Line 3. Finally, the two
calculations are averaged to produce the final estimated speed
that will be displayed on the screen and stored in the log file
along with the car ID number and the timestamp. Equations
2 and 4 use the Euclidean distance to calculate the distance
between two centers, and Equations 3 and 5 divide the results
by a calibration parameter (PPM) ratio.

2

2

(2. 1.)
1

(2. 1.)

CENTER x CENTER x
distance

CENTER y CENTER y




 
 (2)

11 distancereal distance
PPM

 (3)

Fig. 6. YOLOv8 segmentation model layers.

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11327 145

2

2

(3. 2.)
2

(3. 2.)

CENTER x CENTER x
distance

CENTER y CENTER y




 
 (4)

22 distancereal distance
PPM



 (5)

The time difference is also calculated for the two regions
as the difference between the time recorded at Line 2 and
the time recorded at Line 1, as in Equations 6, and the
difference between the time recorded at Line 3 and Line 2,
as in Equation 7.

1 2 1Time Time Time    (6)

  Time Time Time2 3 2 (7)

Finally, the speed is calculated for the two regions as in
Equations 8 and 9, and then the average speed is calculated
between the two speeds as in Equation 10.

11
1

real distance Speed
Time


 (8)

22
2

real distance Speed
Time


 (9)

1 2
2

Speed SpeedAverage Speed 


 (10)

The average speed is calculated in meters per second units;
to display the speed in kilometers per hour (kmh) or miles per
hour (mph), unit conversion equations 11 and 12 are applied.

3.6kmhSpeed Average speed * (11)

1.6093470879mph kmhSpeed Speed *
 (12)

The details of the speed estimation at ROI1 and ROI2 are
demonstrated in Algorithm 2.

E. The Size Estimation Stage
The size estimation stage depends on the output of the

pretrained segmentation model of YOLOv8 in the detection
stage, which generates segments (masks) for each vehicle.
The following steps are performed to estimate the area and
size: Step 1: The generated mask, which is a series of points
that surround the detected vehicle, is used to draw a polygon
filling the detected vehicle using the fillPolly OpenCV
method. Step 2: The area of the polygon is calculated using
the contourArea OpenCV method, as in Equation 13.

 areapixel contourArea mask (13)

Step 3: The calculated area is divided by PPM to get
an estimation of the real area of the detected vehicle, as
Equation 14 shows.

area
area

pixel
real

PPM
 (14)

As the vehicle gets closer to the camera, its image will
increase in area, so we need to have a fixed region for
measuring the area of the vehicle in that region. In the
proposed system, the area of the vehicle is measured if the
center of the vehicle’s bounding box reaches line 2. The
estimated area is stored in the log file alongside the car
ID. Step 4: The size of the vehicle is a three-dimensional
measurement, and since the proposed system utilizes a single
camera, one dimension of the detected vehicle will be lost
since images are stored in computers as two-dimensional
data structures. The least variable vehicle dimension is the
vehicle width, and since our proposed system performs
vehicle classification into four vehicle classes (car, bus, truck,
and motorcycle), we assumed that the width of these vehicle
types is approximately equal for each class; vehicles usually
vary greatly in length and height. Through an Internet search,
we found that the average salon car width is approximately
1.5 m. The average bus width is approximately 2 m. The
average truck width is approximately 2.5 m, and the average
motorcycle width is approximately 0.5 m. Estimating the
size of the vehicle requires calculating the vehicle’s length
and height. Using the top-side view camera position and
acquiring the vehicle mask through the segmentation stage,
we can find the two dimensions by taking the point with
the lowest y value and the point with the highest y value
to represent the two points of the vehicle length. Applying
the Euclidian distance, we will obtain the vehicle’s length.
Similarly, from these points, we can find the height, then
apply the size equation 15 to get the approximated size in
pixels, and then apply equation 16 to estimate the real size
in meters by dividing the size in pixels over the PPM ratio.

 size length width heightpixel vehicle * vehicle * vehicle (15)

size

size
pixel

real
PPM


 (16)

Fig. 8 demonstrates the approximated vehicle’s length and
height from the segmentation polygon points. Algorithm 3
demonstrates the steps to estimate the size of detected vehicles.

XII. Results and Discussion
The results of the proposed system are presented on the

system’s output screen with all the annotations applied to it
by the multiple stages of the proposed system. Fig. 9 shows
the proposed system’s screen of results.

The detection stage will draw a bounding box around the
detected vehicles; the bounding box of each vehicle will
be annotated with the vehicle’s tracking ID assigned by the
ByteTrack tracking algorithm, the class name extracted from

Fig. 7. The detection lines offsets.

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

146 http://dx.doi.org/10.14500/aro.11327

Algorithm 2: The Speed Estimation Algorithm
--
Input: CAR_ID, CAR_Q1, CAR_Q2, CAR_Q3: list of queues, PPM
Output: SPEED_Q1, SPEED_Q2: queues with estimated speed values
--
Start:
Step 1: SPEED_Q1 = [], SPEED_Q2 = []

offset = 20
 speed = speed1 = speed2 = 0

Step 2: check5 = cy <= (L2.start.y1 + offset) // object at Line 2
 check6 = cy >= (L2.start.y1 - offset)
 check7 = cx <= L2.end.x2

Step 3: if check5 and check6 and check7
For each object in CARS_Q1:

Step 4: dx = CENTER2.x – CENTER1.x
 dy = CENTER2.y – CENTER1.y

Step 5: distance1 = math.sqrt(math.pow(dx, 2) + math.pow(dy, 2))
Step 6: real_distance1 = distance1 / PPM
Step 7: delta_time1 = TIME2 – TIME1
Step 8 speed1 = (real_distance1 / delta_time1) * 3.6 // km/h
Step 9: SPEED_Q1.append([CAR_ID, speed1])

 End For
Step 10: check8 = cy <= (L3.start.y1 + offset) // object at Line 3

 check9 = cy >= (L3.start.y1 - offset)
 check10 = cx <= L3.end.x2

Step 11: if check8 and check9 and check10
Step 12: For each object in CARS_Q2:
Step 13: dx = CENTER3.x – CENTER2.x

 dy = CENTER3.y – CENTER2.y
Step 14: distance2 = math.sqrt(math.pow(dx, 2) + math.pow(dy, 2))
Step 15: real_distance2 = distance2 / PPM
Step 16: delta_time2 = TIME3 – TIME2
Step 17: speed2 = (real_distance2 / delta_time2) * 3.6 // km/h
Step 18: SPEED_Q2.append([CAR_ID, speed2])

 End For
Step 19: if CAR_ID in SPEED_Q1 and CAR_ID in SPEED_Q2

 speed = int(SPEED_Q1[CAR_ID] + SPEED_Q2[CAR_ID] / 2)
 speed_mph = int(speed * 1.6093470879)

 now = datetime.now()
Step 20: display (CAR_ID, speed, now) // show car id, speed, time on screen

 log (CAR_ID, speed, now). // store car id, speed, time on log file
 log (CAR_ID, speed_mph, now). // store car id, speed, time on log file

End

the COCO dataset after performing classification by the CNN
model, and the confidence score. Instance segmentation is

also provided in the proposed system, and it will produce a
segment mask for each detected vehicle; the segment masks
are filled with red to reflect the vehicle’s blob. The speed
estimation will also be shown at the top center of the screen.
The text consists of the estimated speed, the vehicle ID, and
a timestamp. This text will dynamically change as every
vehicle passes through the ROI.

The classification process will assign different colors to
each vehicle class as demonstrated in Fig. 10.

The proposed system was evaluated on test videos taken
at different locations and lengths with different camera
positions to evaluate the detection, tracking, classification,
and counting processes, while the system was running on an

Fig. 8. Vehicle’s height and length.

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11327 147

Algorithm 3: The Area and Size Estimation Algorithm
--
Input: CAR_ID, CLASS_IDS, MASKS, PPM
Output: SIZE_Q: queue with estimated size values
--
Start:
 SIZE_Q = []; offset = 20
Step 1: For each mask in MASKS:

 x1 = mask [0][0] // get the first point
 y1 = mask [0][1]
Step 2: check_mask1 = y1 <= (L2.start.y1 + offset) // object at Line 2

 check_mask2 = y1 >= (L2.start.y1 - offset)
 check_mask3 = x1 <= L2.end.x2

Step 3: if check_mask1 and check_mask2 and check_mask3:
Step 4: pixels_area = contourArea(mask) // calculate mask area
Step 5: real_area = pixels_area / PPM
Step 6: if CAR_ID not in SIZE_Q:

 SIZE_Q.append([CAR_ID, real_area])
 now = datetime.now()
 log (CAR_ID, real_area, now) // store car id, area, time on log file

Step 7: p1 = min(mask[1]) // vehicle length points
 p2 = max(mask[1])

 v_length = math.sqrt((p2[0] – p1[0])**2+(p2[1] – p1[1])**2)
Step 8: p1 = min(mask[0]) // vehicle height points

 p2 = max(mask[6])
 v_height = math.sqrt((p2[0] – p1[0])**2+(p2[1] – p1[1])**2)

Step 9: v_width = 1.5 // default for salon cars
 If CLASS_ID == 3:
 v_width = 0.5 // motorcycle class
 else if CLASS_ID == 5:
 v_width = 2 // bus class

 else if CLASS_ID == 7:
 v_width = 2.5 // truck class

End if
Step 10: real_size = (v_length * v_height * v_width) / PPM

 now = datetime.now()
 log (CAR_ID, real_size, now) // store car id, size, time on log file
End For

End

Fig. 9. System’s output screen.

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

148 http://dx.doi.org/10.14500/aro.11327

Table IV
Vehicle classification evaluation

Class Precision
(%)

Recall
(%)

Accuracy
(%)

F1-score
(%)

Car 95 97.9 94.7 96.3
Bus 100 36.3 94.7 53.2
Truck 81.4 100 96.2 89.7
Motorcycle 100 66.6 99.7 79.9

Nvidia GTX 1017 GPU with different YOLOv8 model sizes
as listed in the following Tables II-IV.

For speed estimation evaluation, the VS13 dataset
(Djukanović, et al., 2022) with known ground truth vehicle
speed values is used to evaluate the system, and the results
are demonstrated in Table V.

The size estimation stage is also evaluated by known
ground truth values of known vehicle sizes; the result
obtained is shown in Table VI.

The results of the proposed system showed excellent
estimations for the multiple system stages. For the detection
and tracking stage, the results we tested on multiple video
samples and different CNN model sizes showed an average
accuracy of 96.58% and an average error of 3.42%. For
the vehicle counting process, the results show an average
accuracy of 97.54% with a 2.46% average error. For the
vehicle classification stage, the results from a single test
video show an accuracy of 94.7% for the salon car class,
94.7% for the bus class, 96.2% for the truck class, and

99.7% for the motorcycle class. The precision values for
the car, bus, truck, and motorcycle were 95%, 100%,
81.4%, and 100%, respectively. The recall values obtained
were 97.9%, 36.3%, 100%, and 66.6%. The f1-score values
were 96.3%, 53.2%, 89.7%, and 79.9% for the four vehicle
classes. For the speed estimation stage, the results obtained
had an average accuracy of 96.75% and a 3.25% average
error. Finally, for the size estimation stage, the results
obtained compared with ground-truth values of vehicle size
gave 87.28% average accuracy with a 12.72% average error.
The low accuracy in the bus class is because there are no
buses in the test videos, only minibuses, and the model is
trained on large regular buses; minibuses are classified as
salon cars.

Fig. 10. System’s vehicle classification.

Table II
Vehicle detection with tracking evaluation

Test
video

Model size Ground-
truth

vehicles

System’s
detections

FPS Accuracy
(%)

Error
(%)

Video1 Nano 70 67 48.8 95.7 4.3
Video1 Small 70 68 42 97.1 2.9
Video1 Medium 70 69 28.7 98.5 1.5
Video1 Large 70 69 21.5 98.5 1.5
Video1 Extra-Large 70 69 15.9 98.5 1.5
Video2 Nano 45 41 50.2 91.1 8.9
Video2 Small 45 43 43.8 95.5 4.5
Video2 Medium 45 43 29.6 95.5 4.5
Video2 Large 45 43 21.7 95.5 4.5
Video2 Extra-Large 45 44 16 97.7 2.3
Video3 Nano 28 25 50 89.2 10.8
Video3 Small 28 26 43.3 92.8 7.2
Video3 Medium 28 27 29.3 96.4 3.6
Video3 Large 28 28 21.7 100 0
Video3 Extra-Large 28 28 16 100 0
Video4 Nano 50 48 48 96 4
Video4 Small 50 49 41.5 98 2
Video4 Medium 50 49 28.5 98 2
Video4 Large 50 50 21 100 0
Video4 Extra-Large 50 50 15.6 100 0
Video5 Nano 37 34 46 91.8 8.2
Video5 Small 37 35 40 94.5 5.5
Video5 Medium 37 36 28 97.2 2.8
Video5 Large 37 36 21 97.2 2.8
Video5 Extra-Large 37 37 15.7 100 0
Averages 96.58 3.42

Table III
Vehicle counting evaluation

Test
video

Model size Ground-
truth count

System’s
count

FPS Accuracy
(%)

Error
(%)

Video1 Nano 60 61 49.4 98.3 1.7
Video1 Small 60 60 42.6 100 0
Video1 Medium 60 60 28.9 100 0
Video1 Large 60 61 21.5 98.3 1.7
Video1 Extra-Large 60 62 16 96.6 3.4
Video2 Nano 45 45 50.8 100 0
Video2 Small 45 44 43.6 97.7 2.3
Video2 Medium 45 43 29.3 95.5 4.5
Video2 Large 45 45 21.6 100 0
Video2 Extra-Large 45 45 16 100 0
Video4 Nano 40 40 47.6 100 0
Video4 Small 40 43 41 93 7
Video4 Medium 40 44 28.1 90 10
Video4 Large 40 43 21.1 93 7
Video4 Extra-Large 40 43 15.7 93 7
Video5 Nano 21 22 44.6 95.4 4.6
Video5 Small 21 21 39.8 100 0
Video5 Medium 21 21 27.5 100 0
Video5 Large 21 21 20.7 100 0
Video5 Extra-Large 21 21 15.5 100 0
Averages 97.54 2.46

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11327 149

Table V
Vehicle speed estimation evaluation

Test
video

Ground-truth
speed value (km/h)

System’s speed
estimation (km/h)

FPS Accuracy
(%)

Error
(%)

Eval30 30 28 29 93.3 6.7
Eval42 42 41.4 29 98.5 1.5
Eval56 56 53.8 29 96 4
Eval64 64 62.4 29 97.5 2.5
Eval71 71 68.4 29 96.3 3.7
Eval88 88 90 29 97.7 2.3
Eval94 94 90.6 29 96.3 3.7
Eval101 101 99.4 29 98.4 1.6
Averages 96.75 3.25

XIII. Conclusions and Future Works
The proposed system provided traffic monitoring information
in real-time using a combination of cutting-edge deep
learning technology and state-of-the-art algorithms. The
system gave excellent results in all of its stages compared
with previous works, with high accuracy and low error rates.

The system was implemented with various adjustable
parameters such as frame skipping, enabling and disabling
segmentation, and device-agnostic code that made the system
run on different hardware configurations and GPUs, which
made the system flexible and configurable for any video
input type, resolution, or weather condition. The classification
stage in the proposed system is useful in enforcing different
speed limits based on the vehicle class. The counting process
can also count vehicles in general or count them based on
their classes for more specific information.

The proposed system estimates the vehicle’s size with a
novel approach based on segmentation masks generated from
the YOLOv8 segmentation model, fixing one dimension
(the vehicle’s width) and calculating the other two (the
vehicle’s length and height) from the polygon points of the
segmentation mask. The vehicle size information is useful
for traffic control, as speed limits differ for different vehicle
sizes. For example, trucks have speed limits that are different
from those of salon cars. Size information can also help
detect large vehicles that are not allowed to drive on certain
roads at certain times of the day. The vehicle height is also
important for driving in tunnels and under bridges.

As suggestions for future work to further develop the system,
an automatic ROI detection algorithm can be implemented,
and for size estimation, a stereo camera can be deployed to
get more accurate estimations. In addition, the system can be
integrated with an OCR algorithm for reading the vehicle’s
license plate for vehicles with speed limit violations.

References
AlNujaidi, K., AlHabib, G., and AlOdhieb, A., 2023. Spot-the-camel: Computer
vision for safer roads. International Journal of Artificial Intelligence and
Applications (IJAIA), 14(2), pp.1-10.

Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., Al-Shamma, O.,
Santamaría, J., Fadhel, M.A., Al-Amidie, M., and Farhan, L., 2021. Review of
deep learning: Concepts, CNN architectures, challenges, applications, future
directions. Journal of Big Data, 8(1), p.53.

Awotunde, J.B., Jimoh, R.G., Imoize, A.L., Abdulrazaq, A.T., Li, C.T., and
Lee, C.C., 2023. An enhanced deep learning-based deepfake video detection
and classification system. Electronics, 12(1), p.87.

Berna, S.J., Swathi S., Devi, C.Y., and Varalakshmi, D., 2020. Distance and
speed estimation of moving object using video processing. International Journal
for Research in Applied Science and Engineering Technology (IJRASET), 8(5),
pp.2605-2612.

Costa, L.R., Rauen, M.S., and Fronza, A.B., 2020. Car speed estimation based
on image scale factor. Forensic Science International, 310, p.110229.

Dias, T., Fonseca, T., Vitorino, J., Martins, A., Malpique, S., and Praça, I., 2023.
From Data to Action: Exploring AI and IoT-Driven Solutions for Smarter Cities.
Springer, Cham.

Djukanović, S., Bulatović, N., and Čavor, I., 2022. A Dataset for Audio-video
Based Vehicle Speed Estimation. Cornell University, New York, pp.1-4.

Farooq, M.S., and Kanwal, S., 2023. Traffic Road Congestion System using by
the Internet of Vehicles (IoV), Networking and Internet Architecture, Cornell
University, New York, arXiv:2306.00395, pp.1-9.

Gupta, U., Kumar, U., Kumar, S., Shariq, M., and Kumar, R., 2022. Vehicle speed
detection system in highway. International Research Journal of Modernization
in Engineering Technology and Science, 4(5), pp.406-411.

Hakim, H., and Fadhil, A., 2021. Survey: Convolution neural networks in object
detection. Journal of Physics: Conference Series, 1804, pp.1-18.

Hussain, M., 2023. YOLO-v1 to YOLO-v8, the rise of YOLO and its
complementary nature toward digital manufacturing and industrial defect
detection. Machines, 11, p.677.

Jocher, G., Chaurasia, A., and Qiu, J., 2023. YOLO by Ultralytics (Version
8.0.0). Available from: https://github.com/ultralytics/ultralytics [Last accessed
on 2023 Aug 07].

Jocher, G., Chaurasia, A., and Qiu, J., 2023. YOLOv8 Docs by Ultralytics (Version
8.0.0). Available from: https://docs.ultralytics.com [Last accessed on 2023 Aug 07].

King, R., 2023. Github Repo MMYOLO. Available from: https://github.com/
open-mmlab/mmyolo/tree/main/configs/yolov8 [Last accessed on 2023 Aug 07].

Koyuncu, H., and Koyuncu, B., 2018. Vehicle speed detection by using camera
and image processing software. The International Journal of Engineering and
Science (IJES), 7(9), pp.64-72.

Lin, C.J., Jeng, S.Y., and Lioa, H.W., 2021. A real-time vehicle counting, speed
estimation, and classification system based on virtual detection zone and YOLO.
Mathematical Problems of Applied System Innovations for IoT Applications,
2021, p.1577614.

Liu, C., Huynh, D., Sun, C., Reynolds, M., and Atkinson, S., 2021. A vision-
based pipeline for vehicle counting, speed estimation, and classification. IEEE
Transactions on Intelligent Transportation Systems, 22(12), pp.7547-7560.

Table VI
Vehicle size estimation evaluation

Vehicle
ID

Ground-truth
size

value (m3)

System’s
size estimation

(m3)

FPS Accuracy
(%)

Error
(%)

1 11.53 15 30 76.8 33.2
5 13.7 14 30 97.8 2.2
11 16.52 16 30 96.8 3.2
15 14.37 13 30 90.4 9.6
24 9.18 9 30 98 2
37 14.18 13 30 91.6 8.4
39 14.18 14 30 98.7 1.3
65 16.68 7 30 41.9 58.1
97 10.14 11 30 92.2 7.8
118 19.03 24 30 79.2 20.8
Averages 87.28 12.72

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

150 http://dx.doi.org/10.14500/aro.11327

Raheem, F.A., and AbdulHussain, A.A., 2020. Deep learning convolution neural
networks analysis and comparative study for static alphabet ASL hand gesture
recognition. Journal of Xidian University, 14(4), pp.1871-1881.

Sarker, I.H., 2021. Deep learning: A comprehensive overview on techniques,
taxonomy, applications and research Directions. SN Computer Science, 2, p.420.

Shihab, M.R., Ghani, R.F., and Mohammed, A.J., 2022. Machine learning
techniques for vehicle detection. Iraqi Journal of Computers, Communications,
Control and Systems Engineering (IJCCCE), 22(4), pp.1-12.

WHO, 2018. Global Status Report on Road Safety 2018. World Health

Organization, Geneva.

Yasir, M.A., and Ali, Y.H., 2021. Review on real time background extraction:
Models, applications, environments, challenges and evaluation approaches.
International Journal of Online and Biomedical Engineering, 17(2),
pp.37-68.

Zhang, Y., Sun, P., Jiang, Y., Yu, D., Weng, F., Yuan, Z., Luo, P., Liu, W., and
Wang, X., 2022. ByteTrack: Multi-Object Tracking by Associating Every
Detection Box, Computer Vision and Pattern Recognition, Cornell University,
New York, arXiv:2110.06864, pp.1-14.

