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Abstract—Computer vision applications are important 
nowadays because they provide solutions to critical problems 
that relate to traffic in a cost-effective manner to reduce 
accidents and preserve lives. This paper proposes a system for 
real-time traffic monitoring based on cutting-edge deep learning 
techniques through the state-of-the-art you-only-look-once v8 
algorithm, benefiting from its functionalities to provide vehicle 
detection, classification, and segmentation. The proposed work 
provides various important traffic information, including vehicle 
counting, classification, speed estimation, and size estimation. 
This information helps enforce traffic laws. The proposed 
system consists of five stages: The preprocessing stage, which 
includes camera calibration, ROI calculation, and preparing 
the source video input; the vehicle detection stage, which uses 
the convolutional neural network model to localize vehicles in 
the video frames; the tracking stage, which uses the ByteTrack 
algorithm to track the detected vehicles; the speed estimation 
stage, which estimates the speed for the tracked vehicles; and 
the size estimation stage, which estimates the vehicle size. The 
results of the proposed system running on the Nvidia GTX 
1070 GPU show that the detection and tracking stages have an 
average accuracy of 96.58% with an average error of 3.42%, 
the vehicle counting stage has an average accuracy of 97.54% 
with a 2.46% average error, the speed estimation stage has an 
average accuracy of 96.75% with a 3.25% average error, and the 
size estimation stage has an average accuracy of 87.28% with a 
12.72% average error.

Index Terms – Computer vision, Deep learning, Object 
detection, Traffic monitoring, YOLOv8.

I. Introduction
The emergence of smart cities and intelligent traffic systems 
nowadays aims at enhancing human lives by enabling 
efficient use of infrastructure resources, reducing risks such 
as traffic collisions, and improving drivers’ and pedestrians’ 

safety. The need for these types of systems is increasing 
across various domains such as transportation, public safety, 
and infrastructure management. In addition to the growth 
of cities, the increase in human population, and the number 
of vehicles, vehicular traffic data represents the most vital 
data source in smart city management systems. An effective 
analysis of this data can yield significant benefits for both 
citizens and governments. Traffic problems have increased as 
cities become larger. With the increasing number of vehicles, 
several network protocols have been developed to address 
this problem. These protocols require a data source that can 
continuously feed the network with traffic data provided by 
real-time traffic analysis systems (Dias, et al., 2023) (Farooq 
and Kanwal, 2023).

Road traffic accidents are one of the leading causes of 
mortality globally. In Iraq, traffic accidents have increased 
considerably, especially after 2003, as a result of the 
growth in the economy and population. The number of 
vehicles as of 2015 was 5.775 million, according to the 
2018 World Health Organization (WHO) road safety report 
(WHO, 2018).

II. Related Works

There are a number of studies that are conducted on 
vehicle detection and vehicle speed estimation, but very 
few on vehicle size estimation. Some of these studies are 
described below:

In 2020, Berna, Swathi, and Devi, presented in their work 
entitled “Distance and Speed Estimation of Moving Object 
Using Video Processing” a distance and speed estimation 
in real-time with 90% precision using a fixed camera and 
a centroid method. Object detection is done by performing 
frame differencing and thresholding, and the speed is 
estimated by dividing the manually measured distance by 
the time difference, and the vehicle length is also estimated 
(Berna, Swathi, and Devi, 2020).

In 2020, Costa, Rauen and Fronza, presented in their work 
entitled “Car Speed Estimation Based on Image Scale 
Factor” a vehicle speed estimation with a longitudinal 
trajectory relative to the camera without reference markers. 
They used the image scale factor (ISF) in pixels to calculate 
the distance from the vehicle to the camera in different video 

ARO-The Scientific Journal of Koya University 
Vol. XI, No. 2 (2023), Article ID: ARO.11327. 14 pages 
DOI: 10.14500/aro.11327 
Received: 07 August 2023; Accepted: 25 October 2023 
Regular research paper: Published: 16 November 2023 
Corresponding author’s e-mail: saif.b.neamah@uotechnology.edu.iq 
Copyright © 2023 Saif B. Neamah and Abdulamir A. Karim. This 
is an open access article distributed under the Creative Commons 
Attribution License.



ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X 

138 http://dx.doi.org/10.14500/aro.11327

frames, and they proposed to combine the ratio of fw
W

 and 
fh
H

 where f is the camera focal length, w, h are the sensor’s 

width and height, and W, H are the image frame width and 
height into a single ISF, then estimate the distance and time 
difference to estimate the vehicle speed. The result of their 
work shows a maximum deviation of 2.2% for vehicle speed 
estimation (Costa, Rauen, and Fronza, 2020).

In 2021, Lin, Jeng, and Lioa, presented in their work 
entitled “A Real-time Vehicle Counting, Speed Estimation, and 
Classification System Based on Virtual Detection Zone and 
YOLO” the implementation of a real-time traffic monitoring 
system to count vehicles and estimate their speed with a 
classification facility. They based their work on the Gaussian 
mixture model (GMM) and you only look once v4 (YOLOv4). 
The GMM and a virtual detection zone are used for vehicle 
counting and detection. The GMM is used to perform background 
subtraction and foreground segmentation. The YOLOv4 model 
is used for vehicle classification, with a classification accuracy 
of 98.91% and an average absolute percentage error of vehicle 
speed estimation of 7.6% (Lin, Jeng and Lioa, 2021).

In 2022, Gupta et al. presented in their work entitled 
“Vehicle Speed Detection System in Highway” the 
implementation of a vehicle speed detection system using a 
video-based approach. The Haar cascade approach is used 
for vehicle detection and a correlation tracker, and speed 
estimation, they estimated the pixel per meter (PPM) ratio 
manually and calculated the speed by dividing the distance 
by the recorded time when the vehicle enters and leaves a 
region of interest. The detection accuracy was 95%, and for 
speed measurement, it was 92% (Gupta, et al., 2022).

In 2022, Shihab, Ghani, and Mohammed, presented in 
their work entitled “Machine Learning Techniques for 
Vehicle Detection” the implementation of a vehicle detection 
and classification system using two methods based on 
Haar cascade and YOLOv3. The detection results they got 

were 86.9% for the Haar cascade approach and 91.31% 
for the YOLOv3 approach, concluding that YOLO-based 
algorithms have better detection results than Haar cascade-
based methods. YOLO-based methods are robust to different 
lighting conditions (Shihab, Ghani, and Mohammed, 2022).

This paper implements a real-time system based on 
the most recent CNN-based deep learning models that 
give more accurate detection results with more critical 
information regarding traffic, including vehicle counting, 
vehicle classification, vehicle speed estimation, and vehicle 
size estimation. The vehicle size can be useful in enforcing 
speed limit laws on roads, as we know truck speed limits, 
for example, differ from salon car speed limits. The built-in 
classification facility in our proposed system can estimate the 
vehicle speed and vehicle count based on the vehicle class. 
The vehicle size estimation was not thoroughly researched 
in previous studies. In this paper, we present a new way to 
estimate vehicle size in real time. Table I summarizes the 
related works and their limitations compared with our work.

III. Traditional Traffic Monitoring Systems
A variety of hardware technologies are available for 

collecting traffic data to facilitate traffic surveillance systems, 
including sensors, induction loops, and microwave radars. All 
hardware technologies have their limitations. Induction loops 
only affect the point of measurements, limiting their spatial 
coverage, and with significant traffic density, their accuracy 
can degrade. The majority of surface sensors have high 
installation and maintenance costs. Handheld radar guns that 
rely on the principle of the Doppler effect, in addition to their 
equipment’s high cost, require an on-site operator and a line of 
sight to perform the speed estimation, can only be applied to 
one vehicle at a time, and suffer from shadowing where more 
than one wave is reflected from vehicles with different heights 
(Koyuncu and Koyuncu, 2018).

TABLE I
Summary of Related Works Limitations

Work Year Related works (limitations and comparison)
Distance and speed estimation of 
moving object using video processing

2020 Vehicle detection is based on the frame-differencing method. It is not clear if the system can track multiple 
vehicles; no vehicle size information is provided, and there is no vehicle counting facility.
Our system tracks multiple vehicles and estimates the vehicle size with a counting facility.

Car speed estimation based on ISF 2020 It is not clear if the system works on multiple vehicles, and the system is not robust to motion blur; no vehicle 
size information is provided, and there is no counting facility.
Our system works on multiple vehicles, is robust to motion blur, and the size information is estimated with a 
counting facility.

A real-time vehicle counting, speed 
estimation, and classification system 
based on a virtual detection zone

2021 There is no estimation of the vehicle’s size. The system used an outdated YOLOv4 as a pre-trained object 
detector and classifier.
Our system estimates the vehicle size, and the detection accuracy is higher based on the YOLOv8 model.

Vehicle speed detection system on 
highway

2022 The system used Haar cascades for vehicle detection and a correlation tracker. The detection and tracking 
are not powerful enough to deal with heavy traffic. There is no estimation of vehicle size information and no 
vehicle counting facility.
Our system uses a deep-learning-based method that is more robust in vehicle detection and suitable for 
real-time applications. It also provides a courting facility with size estimation.

Machine learning techniques for 
vehicle detection

2022 The system is limited to multi-object detection and classification; there is no tracking applied and no counting 
facility; neither vehicle speed nor size information is provided. Used an outdated YOLOv3 model.
Our system also provides multiple vehicle tracking and speed estimation in real time, based on the recent 
YOLOv8 model.

ISF: Image scale factor



ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11327 139

IV. Deep Learning-based Traffic Monitoring Systems
Deep learning and convolutional neural network (CNN)-

based object detection techniques can automatically extract 
features from input images and are more resilient to changes 
in illumination, shadows, and partial occlusions. The two 
primary methodologies of detection are the one-stage 
approach and the two-stage approach, which dominate the 
field of object detection. One-stage detectors, such as you 
only look once (YOLO) and single-shot detectors (SSD), 
approach object identification as a regression problem in 
which the bounding box coordinates and the object classes 
are predicted directly. However, two-stage detectors, like 
the region-based CNN (R-CNN), have two phases. Using 
a search approach, such as a selective method or a region 
proposal network, the first step is to produce a large 
number of region suggestions. The second step is to submit 
these region proposals for classification and bounding box 
regression. Two-stage detectors often have greater detection 
rates than one-stage detectors, but since there are more 
processes, they also take longer processing time (Liu, et al., 
2021; Yasir and Ali, 2021).

V. CNNs
The CNN, also called ConvNet, is a very popular deep 

learning architecture that can learn directly from the input 
data without the need for manual human feature extraction. It 
includes multiple convolution and pooling layers. CNNs are 
specifically intended to deal with a variety of 2-dimensional 
shapes and are widely employed in the applications of 
computer vision, image segmentation, and object detection. 
The rapid development of GPU technology made CNNs 
so popular. In fact, one of the bottlenecks of deep neural 
networks is that training takes a long time because of the 

many hidden units in the network. But as GPUs became 
faster, this bottleneck was overcome (Sarker, 2021; Raheem 
and AbdulHussain, 2020).

In CNNs, the states of each layer are arranged according 
to a spatial grid structure; these spatial relationships are 
inherited from one layer to the next because each feature 
value is based on a small local spatial region in the 
previous layer. Each layer in the convolutional network is 
a 3-dimensional grid structure that has a height, width, and 
depth. The depth of a single layer refers to the number of 
channels in each layer; in the case of colored RGB images, 
the depth is three. Fig. 1 demonstrates the traditional CNN 
model (Alzubaidi, et al., 2021; Awotunde, et al., 2023).

VI. Object Detection with CNN
The problem of object detection can be efficiently solved 

with deep learning models. Object detection based on CNNs 
consists of two tasks: recognizing and localizing objects in 
the image. Recognition is a classification task that involves 
providing category information and the probability of the 
target. The other is a positioning task that involves finding 
the specific location of the target by utilizing bounding boxes 
with labels. There are various algorithms for object detection 
using CNNs, which are mainly divided into two main 
categories (Alzubaidi, et al., 2021) (AlNujaidi, AlHabib and 
AlOdhieb, 2023).
1. Two-stage algorithms: Like the R-CNN series, which 

generates at the first stage set ROIs that represent a set of 
category-independent bounding boxes in the image; at the 
second stage, it makes corrections based on the bounding box 
region to improve the final detection results. The two-stage 
algorithms give more accurate results, but they are more 
computationally expensive as they require the classification 

Fig. 1. Traditional CNN model. n is the number of image color channels.
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network to be applied to a large number of ROIs, so this 
approach is slower than the one-stage algorithms (AlNujaidi, 
AlHabib and AlOdhieb, 2023) (Alzubaidi, et al., 2021).

2. One-stage algorithms: They merge the classification and 
regression into a single pass, like the YOLO series and SSD, 
divide the image into a fixed grid, and apply a classification 
network to each segment. The one-stage algorithms are fast 
but give less accurate detection results than the R-CNN 
algorithms (AlNujaidi, AlHabib and AlOdhieb, 2023) 
(Hakim and Fadhil, 2021).

VII. YOLO One-stage DNN Model
YOLO is a real-time object detection algorithm that uses a 

single CNN to predict the bounding boxes and class labels of 
objects in an image. YOLOv1 was introduced in 2015, which 
frames the object detection problem as a regression problem 
instead of a classification problem that classifies each pixel in 
the image. To eliminate duplicate detections, YOLO divides 
the input image into a grid and predicts the bounding boxes 
for the same class along with its confidence values; the output 
is then followed by a non-maximum suppression (NMS). 
There are 24 CNN layers in YOLOv1 architecture, then two 
fully connected layers. All layers use leaky ReLU except 
for the last one, which uses a linear activation function. 
YOLO used (1*1) convolutional layers to reduce the number 
of feature maps and the network parameters. The loss 
function used is composed of multiple sum-squared errors. 
YOLOv2 was introduced in 2016 with various improvements, 
including detecting over 9000 object categories, adding batch 
normalization, using anchor boxes, using the Darknet-19 
architecture composed of 19 convolutional layers and 
five max-pooling layers. YOLOv3 was introduced in 2018 
and evolved from Darknet-19 to Darknet-53 with residual 
connections. YOLOv4 was introduced in 2020 with weighted 
residual connections, cross-stage partial connections (CSP), 
cross-mini-batch normalization, self-adversarial training, 
and mish-activation function as the backbone. YOLOv5 was 
introduced in 2021 and implemented under the PyTorch 
framework. It has a focus layer to reduce the number of 
parameters and a CSP, which extends shallow information 
in the focus layer to maximize functionality. YOLOv6 
was introduced in 2022 with a plain single-path backbone 
for small models and efficient multi-branch blocks for 

large models; this was done by proposing two scaled, re-
parametrizable backbones and necks to accommodate models 
of different sizes. YOLOv7, which was introduced in 2022, 
proposed a planned re-parameterized model by merging 
multiple computational modules into one at the inference 
stage and made some architectural reforms. YOLOv8 was 
introduced in 2023 and outperformed all previous models, as 
illustrated in Fig. 2 (Hussain, 2023) (Jocher, Chaurasia and 
Qiu, 2023).

VIII. YOLOv8 Architecture
YOLOv8 proposed a new backbone network with a new 

anchor-free detection head, which means it predicts directly 
the center of an object instead of the offset from a known 
anchor box. It also proposes a new loss function. The 
basic architecture of YOLOv8 consists of two major parts: 
the backbone for extracting feature maps and the head for 
detection, as illustrated in Fig. 3 (King, 2023).

The backbone contains a series of convolutional layers 
for different image resolutions and sizes, and then the 
features detected are passed through the advanced head 
for detection based on a loss function. New convolutional 
layers are used. The stem’s first (6*6) convolution is 
replaced by a (3*3); the main building block was changed, 
and C2f replaced the YOLOv5 C3. The bottleneck is the 
same as in YOLOv5, but the first convolution’s kernel 
was changed from (1*1) to (3*3) in the neck, and features 
are concatenated directly without forcing the same 
channel dimensions. This reduces the parameter count 
and the overall size of the tensors (Jocher, Chaurasia and 
Qiu, 2023).

IX. Bytetrack Multi-object Tracking Algorithm
A state-of-the-art algorithm based on a combination of 

feature pyramids, anchor-free detection, and multiple-scale 
training makes it compatible with YOLOv8. The algorithm 
tracks by associating every bounding box instead of only 
the high-scoring ones. Data association is the core of multi-
object tracking, which first computes the similarity between 
trackelets and detection boxes. A tracklet is a sequence 
of detections that are likely to belong to the same object. 
The similarity metrics may include location, motion, and 

Fig. 2. YOLOv8 evaluation against recent YOLO models.
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Fig. 3. YOLOv8 architecture.

appearance features. The ByteTrack algorithm tracks 
objects with high or low values of confidence by presenting 
a BYTE method for each detection box. First, the high-
scoring boxes are tracked based on motion similarity or 
appearance similarity, and a Kalman filter is adopted to 
predict the location of the objects in the next frame. The 
similarity can be computed by the IoU or Re-ID feature 
distance between the predicted box and the detection box. 
After similarity computation, the matching strategy assigns 
identities to the objects using the Hungarian algorithm. 
Algorithm 1 provides the pseudocode for the BYTE 
algorithm (Zhang, et al., 2022).

X. The Proposed System Architecture
The general architecture of the proposed system consists of 

several stages that start with the preprocessing stage, which 
includes the camera calibration and calculation of the PPM 
ratio, calculating the ROIs, determining the video source, 
preparing to read the live video feed, dividing the live video 
into a series of frames, and resizing the video frames into 
the standard resolution (640*640). Then comes the detection 
stage for specified classes of vehicles that implement the 
YOLOv8 pretrained classification and segmentation model, 
and then a tracking algorithm is applied to the detected 
vehicles to track their movements. The tracking stage is 
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Algorithm 1: BYTE Algorithm
-------------------------------------------------------------------------------------------------------
Input: V: video file; D: object detector; θ: detection score threshold
Output: T: tracks
-------------------------------------------------------------------------------------------------------
Begin:
Step 1: Initialize T=0
Step 2: for frame fk in V do

 Dk Det (fk)
Dhigh0

  Dlow0
Step 3: for d in Dk do

If d. score >θ then
DhighDhigh ∪ {d}

else
DlowDlow ∪ {d}

Step 4: for t in T
t.KalmanFilter(t)

Step 5: Associate T and Dhigh using similarity1
Step 6: Dremain  remaining boxes from Dhigh
Step 7: Tremain  remaining tracks from T
Step 8: Associate Tremain in Dlow using similarity2
Step 9: Tre-remain  remaining tracks from T 
Step 10: T T\Tre-main // delete unmatched tracks
Step 11: for d in Dremain do

 TT ∪ {d}
 end for
 return 
End

essential for the speed estimation stage; it assigns track IDs to 
the detected vehicles. Finally, size estimation is performed to 
calculate the size of segments provided by the segmentation 
model according to the calibration parameters. The following 
block diagram in Fig. 4 illustrates a general block diagram of 
the proposed system.

The system also includes a vehicle counting process, 
which counts the vehicles passing through the ROIs in real-
time based on the center of the detected vehicle passing 
within the coordinates of the ROI lines. The counter is 
displayed on the video output, and the total number of 
vehicles passed during the observation period is recorded 
in the log file in CSV format. The tracking trial drawing 
process, which is an optional process that draws a tracking 
trail behind the tracked vehicles to give the viewer a sense 
of tracking, the output of the proposed system is presented 
as a video stream that is displayed to the viewer as long 
as the system is running. The stream can also be saved to 
the hard disk as a video file in MP4 format. The proposed 
system will also produce a log file that will contain all the 
important information calculated by the system, including 
the timestamp for the system’s first run, each car’s estimated 
speed and estimated size associated with the car tracking ID 
and class ID, the timestamp for each calculation, and the 
total car count number.

XI. The Proposed System’s Stages
The proposed system consists of five stages; each stage 

leads to the next one, and every stage contains specific 
details that will be explained in the following sub-sections.

A. The Preprocessing Stage
The first stage contains three main steps, which are the

camera calibration step, the ROI calculation step, and the 
input preparation step. The camera calibration step is essential 
for the speed and size estimation stages. The calibration is 
done using a reference object with known dimensions (one 
known car dimension, e.g.,) at the speed and size estimation 
ROIs. It is necessary to calculate the PPM ratio, which is 
used to estimate the real distance in the ROI and the real 
size of the detected vehicles. The second step is the ROI 
calculation. In the proposed system, two ROIs are specified, 
namely, ROI1 and ROI2, and three lines, namely, Line 1, 
Line 2, and Line 3, as illustrated in Fig. 5. The picture was 
taken by a phone camera at Mohammed Al Qassim Highway 
Street in Baghdad, Iraq.

The reason behind dividing the ROI into two regions is 
that we want to get the most accurate results possible, so the 
speed is calculated in ROI1, then calculated again in ROI2, 
and the average speed will be taken as the final result for 
the vehicle’s estimated speed. The final step at this stage is 
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the input preparation step, where the source video input is 
determined and resized to (640*640) resolution, and then the 
video frames are extracted.

B. The Vehicle Detection Stage
The detection stage deploys the pretrained YOLOv8 DNN 

models. The detection algorithm consists of multiple layers 
of convolution (Conv), coarse-to-fine (C2f), concatenation 
(Concat), upsampling (Upsample), spatial pixel per feature 
(SPPF), and finally the segmentation process. The Conv 
layer involves the standard convolution operation of a 

sliding window with predefined kernels, a stride of 1, 
no padding, and the SiLU activation function, followed 
by batch normalization to improve the overall learning 
process. The C2f process involves a convolution operation 
with a kernel of size (1*1), no padding, and a stride of 
1, then the output is entered into a split operation that is 
fed to the bottleneck; the bottleneck itself consists of two 
convolutional layers with residual connections. Then the 
concatenation operation is performed, and finally another 
convolution is performed.

The SPPF is spatial pyramid pooling (fast), similar to 
the SPP used in YOLOv5, which involves two convolution 
layers and three max-pooling layers, used to capture multi-
scale information and improve the detection performance 
of the network, enabling the network to detect objects 
at different sizes more accurately. The upsample process 
involves increasing the size of the matrices by using a 
transposed convolution process with a stride of 2 and a 
padding of 1. It increases the spatial resolution of the feature 
maps, which helps improve object localization. The Concat 
process involves the concatenation of a list of tensors into 
a tensor of one dimension. This will enable feature fusion, 
model flexibility, and the handling of multiple inputs. Fig. 6 
demonstrates the multiple layers of the DNN segmentation 
model.

Fig. 4. The proposed system’s block diagram.

Fig. 5. The proposed system’s ROIs.
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C. The Vehicle Tracking Stage
The tracking stage depends on the results of the detection 

stage as the tracker tracks the detected bounding boxes of 
the vehicles. The ByteTrack algorithm is applied to track 
the moving vehicles in the scene based on their detected 
bounding boxes, and then the algorithm will assign a track 
identification number (track ID) for each tracked vehicle. The 
tracking stage is essential to the proposed system as it will be 
used in the vehicle counting process and the speed estimation 
stage for calculating the speed of the tracked vehicle in the 
scene. The vehicle counting process starts after the detection 
stage and during the tracking stage. The counting process is 
performed in the predefined ROIs. Line 1 of ROI1 will be 
used to define the vehicle’s entering point, and Line 2 will 
define the vehicle’s leaving point. At the entry line, the center 
of each detected vehicle is calculated using the following 
equation:

     ( ) ( )
, ,

2 2
x x w y h y

cx  cy   
   

  (1)

Where: (x, y) is the detected object’s bounding box top left 
corner coordinates. (w, h) is the detected object’s bounding 
box width and height. (cx, cy) is the center coordinate of the 
detected object.

Several important pieces of information are stored in a 
queue, including the car ID, the time of entering in seconds 
(TIME1), and the vehicle’s calculated center (CENTER1). 
This information will be used later in the speed estimation 
stage. When the vehicle approaches Line 1 by a predefined 

offset, it will be considered that the vehicle has entered ROI1, 
and a vehicle counter will increase. The offset is manually 
fine-tuned and is essential to the system’s performance 
because, in real-time systems that employ heavy processing 
of DNN models, the system will encounter some cases of 
missed detections during the vehicle’s movement that can be 
solved with this offset to expand the detection zone. Fig. 7 
demonstrates the three lines in the ROI with offset values.

D. The Speed Estimation Stage
The object counting process provides this stage with 

three queues (CARS_Q1, CARS_Q2, and CARS_Q3), each 
corresponding to a line in the ROI. The queues contain the car 
ID, the timestamp, and the car center coordinates. The speed 
will be calculated two times in the proposed system: The first 
speed calculation will be between Line 1 and Line 2, and 
the second is between Line 2 and Line 3. Finally, the two 
calculations are averaged to produce the final estimated speed 
that will be displayed on the screen and stored in the log file 
along with the car ID number and the timestamp. Equations 
2 and 4 use the Euclidean distance to calculate the distance 
between two centers, and Equations 3 and 5 divide the results 
by a calibration parameter (PPM) ratio.

2

2

( 2. 1. )
1

( 2. 1. )

CENTER x  CENTER x
distance

CENTER y  CENTER y




 
 (2)

11 distancereal distance        
PPM

  (3)

Fig. 6. YOLOv8 segmentation model layers.
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CENTER y  CENTER y




   
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
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The time difference is also calculated for the two regions 
as the difference between the time recorded at Line 2 and 
the time recorded at Line 1, as in Equations 6, and the 
difference between the time recorded at Line 3 and Line 2, 
as in Equation 7.

1 2 1Time Time Time       (6)

  Time Time Time2 3 2   (7)

Finally, the speed is calculated for the two regions as in 
Equations 8 and 9, and then the average speed is calculated 
between the two speeds as in Equation 10.

11
1

real distance Speed
Time


  (8)

22
2

real distance Speed
Time


  (9)

1 2
2

Speed SpeedAverage Speed 


 
 (10)

The average speed is calculated in meters per second units; 
to display the speed in kilometers per hour (kmh) or miles per 
hour (mph), unit conversion equations 11 and 12 are applied.

3.6kmhSpeed Average speed *   (11)

1.6093470879mph kmhSpeed  Speed *
  (12)

The details of the speed estimation at ROI1 and ROI2 are 
demonstrated in Algorithm 2.

E. The Size Estimation Stage
The size estimation stage depends on the output of the 

pretrained segmentation model of YOLOv8 in the detection 
stage, which generates segments (masks) for each vehicle. 
The following steps are performed to estimate the area and 
size: Step 1: The generated mask, which is a series of points 
that surround the detected vehicle, is used to draw a polygon 
filling the detected vehicle using the fillPolly OpenCV 
method. Step 2: The area of the polygon is calculated using 
the contourArea OpenCV method, as in Equation 13.

 areapixel  contourArea mask   (13)

Step 3: The calculated area is divided by PPM to get 
an estimation of the real area of the detected vehicle, as 
Equation 14 shows.

area
area

pixel
real

PPM
   (14)

As the vehicle gets closer to the camera, its image will 
increase in area, so we need to have a fixed region for 
measuring the area of the vehicle in that region. In the 
proposed system, the area of the vehicle is measured if the 
center of the vehicle’s bounding box reaches line 2. The 
estimated area is stored in the log file alongside the car 
ID. Step 4: The size of the vehicle is a three-dimensional 
measurement, and since the proposed system utilizes a single 
camera, one dimension of the detected vehicle will be lost 
since images are stored in computers as two-dimensional 
data structures. The least variable vehicle dimension is the 
vehicle width, and since our proposed system performs 
vehicle classification into four vehicle classes (car, bus, truck, 
and motorcycle), we assumed that the width of these vehicle 
types is approximately equal for each class; vehicles usually 
vary greatly in length and height. Through an Internet search, 
we found that the average salon car width is approximately 
1.5 m. The average bus width is approximately 2 m. The 
average truck width is approximately 2.5 m, and the average 
motorcycle width is approximately 0.5 m. Estimating the 
size of the vehicle requires calculating the vehicle’s length 
and height. Using the top-side view camera position and 
acquiring the vehicle mask through the segmentation stage, 
we can find the two dimensions by taking the point with 
the lowest y value and the point with the highest y value 
to represent the two points of the vehicle length. Applying 
the Euclidian distance, we will obtain the vehicle’s length. 
Similarly, from these points, we can find the height, then 
apply the size equation 15 to get the approximated size in 
pixels, and then apply equation 16 to estimate the real size 
in meters by dividing the size in pixels over the PPM ratio.

 size length width heightpixel vehicle * vehicle * vehicle   (15)

 
size

size
pixel

real
PPM


  (16)

Fig. 8 demonstrates the approximated vehicle’s length and 
height from the segmentation polygon points. Algorithm 3 
demonstrates the steps to estimate the size of detected vehicles.

XII. Results and Discussion
The results of the proposed system are presented on the 

system’s output screen with all the annotations applied to it 
by the multiple stages of the proposed system. Fig. 9 shows 
the proposed system’s screen of results.

The detection stage will draw a bounding box around the 
detected vehicles; the bounding box of each vehicle will 
be annotated with the vehicle’s tracking ID assigned by the 
ByteTrack tracking algorithm, the class name extracted from 

Fig. 7. The detection lines offsets.
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Algorithm 2: The Speed Estimation Algorithm
------------------------------------------------------------------------------------------------------------
Input: CAR_ID, CAR_Q1, CAR_Q2, CAR_Q3: list of queues, PPM
Output: SPEED_Q1, SPEED_Q2: queues with estimated speed values
------------------------------------------------------------------------------------------------------------
Start:
Step 1: SPEED_Q1 = [ ], SPEED_Q2 = [ ]

offset = 20
    speed = speed1 = speed2 = 0

Step 2: check5 = cy <= (L2.start.y1 + offset)   // object at Line 2
 check6 = cy >= (L2.start.y1 - offset)
 check7 = cx <= L2.end.x2

Step 3: if check5 and check6 and check7
For each object in CARS_Q1:

Step 4: dx = CENTER2.x – CENTER1.x
   dy = CENTER2.y – CENTER1.y

Step 5: distance1 = math.sqrt(math.pow(dx, 2) + math.pow(dy, 2))
Step 6: real_distance1 = distance1 / PPM
Step 7: delta_time1 = TIME2 – TIME1
Step 8 speed1 = (real_distance1 / delta_time1) * 3.6 // km/h
Step 9: SPEED_Q1.append([CAR_ID, speed1])

   End For
Step 10: check8 = cy <= (L3.start.y1 + offset)   // object at Line 3

 check9 = cy >= (L3.start.y1 - offset)
      check10 = cx <= L3.end.x2

Step 11: if check8 and check9 and check10
Step 12: For each object in CARS_Q2:
Step 13: dx = CENTER3.x – CENTER2.x

 dy = CENTER3.y – CENTER2.y
Step 14: distance2 = math.sqrt(math.pow(dx, 2) + math.pow(dy, 2))
Step 15: real_distance2 = distance2 / PPM
Step 16: delta_time2 = TIME3 – TIME2
Step 17: speed2 = (real_distance2 / delta_time2) * 3.6 // km/h
Step 18: SPEED_Q2.append([CAR_ID, speed2])

     End For
Step 19: if CAR_ID in SPEED_Q1 and CAR_ID in SPEED_Q2

 speed = int( SPEED_Q1[CAR_ID] + SPEED_Q2[CAR_ID] / 2)
 speed_mph = int(speed * 1.6093470879)

    now = datetime.now( )
Step 20: display (CAR_ID, speed, now) // show car id, speed, time on screen

 log (CAR_ID, speed, now). // store car id, speed, time on log file 
 log (CAR_ID, speed_mph, now). // store car id, speed, time on log file 

End

the COCO dataset after performing classification by the CNN 
model, and the confidence score. Instance segmentation is 

also provided in the proposed system, and it will produce a 
segment mask for each detected vehicle; the segment masks 
are filled with red to reflect the vehicle’s blob. The speed 
estimation will also be shown at the top center of the screen. 
The text consists of the estimated speed, the vehicle ID, and 
a timestamp. This text will dynamically change as every 
vehicle passes through the ROI.

The classification process will assign different colors to 
each vehicle class as demonstrated in Fig. 10.

The proposed system was evaluated on test videos taken 
at different locations and lengths with different camera 
positions to evaluate the detection, tracking, classification, 
and counting processes, while the system was running on an 

Fig. 8. Vehicle’s height and length.
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Algorithm 3: The Area and Size Estimation Algorithm
--------------------------------------------------------------------------------------------------------------
Input: CAR_ID, CLASS_IDS, MASKS, PPM
Output: SIZE_Q: queue with estimated size values
--------------------------------------------------------------------------------------------------------------
Start:
 SIZE_Q = [ ]; offset = 20
Step 1: For each mask in MASKS:

 x1 = mask [0][0]   // get the first point
             y1 = mask [0][1]
Step 2:  check_mask1 = y1 <= (L2.start.y1 + offset)  // object at Line 2

 check_mask2 = y1 >= (L2.start.y1 - offset)
      check_mask3 = x1 <= L2.end.x2

Step 3: if check_mask1 and check_mask2 and check_mask3:
Step 4: pixels_area = contourArea(mask) // calculate mask area
Step 5: real_area = pixels_area / PPM
Step 6:  if CAR_ID not in SIZE_Q:

 SIZE_Q.append([CAR_ID, real_area])
 now = datetime.now( )
 log (CAR_ID, real_area, now) // store car id, area, time on log file 

Step 7: p1 = min(mask[1])   // vehicle length points
 p2 = max(mask[1])

  v_length = math.sqrt((p2[0] – p1[0])**2+(p2[1] – p1[1])**2)
Step 8: p1 = min(mask[0])   // vehicle height points

 p2 = max(mask[6])
 v_height = math.sqrt((p2[0] – p1[0])**2+(p2[1] – p1[1])**2)

Step 9:   v_width = 1.5   // default for salon cars
 If CLASS_ID == 3:
 v_width = 0.5   // motorcycle class
 else if CLASS_ID == 5:
 v_width = 2  // bus class

 else if CLASS_ID == 7:
 v_width = 2.5  // truck class

End if
Step 10: real_size = (v_length * v_height * v_width) / PPM

  now = datetime.now( )
 log (CAR_ID, real_size, now) // store car id, size, time on log file 
End For

End

Fig. 9. System’s output screen.
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Table IV
Vehicle classification evaluation

Class Precision 
(%)

Recall 
(%)

Accuracy 
(%)

F1-score 
(%)

Car 95 97.9 94.7 96.3 
Bus 100 36.3 94.7 53.2 
Truck 81.4 100 96.2 89.7
Motorcycle 100 66.6 99.7 79.9

Nvidia GTX 1017 GPU with different YOLOv8 model sizes 
as listed in the following Tables II-IV.

For speed estimation evaluation, the VS13 dataset 
(Djukanović, et al., 2022) with known ground truth vehicle 
speed values is used to evaluate the system, and the results 
are demonstrated in Table V.

The size estimation stage is also evaluated by known 
ground truth values of known vehicle sizes; the result 
obtained is shown in Table VI.

The results of the proposed system showed excellent 
estimations for the multiple system stages. For the detection 
and tracking stage, the results we tested on multiple video 
samples and different CNN model sizes showed an average 
accuracy of 96.58% and an average error of 3.42%. For 
the vehicle counting process, the results show an average 
accuracy of 97.54% with a 2.46% average error. For the 
vehicle classification stage, the results from a single test 
video show an accuracy of 94.7% for the salon car class, 
94.7% for the bus class, 96.2% for the truck class, and 

99.7% for the motorcycle class. The precision values for 
the car, bus, truck, and motorcycle were 95%, 100%, 
81.4%, and 100%, respectively. The recall values obtained 
were 97.9%, 36.3%, 100%, and 66.6%. The f1-score values 
were 96.3%, 53.2%, 89.7%, and 79.9% for the four vehicle 
classes. For the speed estimation stage, the results obtained 
had an average accuracy of 96.75% and a 3.25% average 
error. Finally, for the size estimation stage, the results 
obtained compared with ground-truth values of vehicle size 
gave 87.28% average accuracy with a 12.72% average error. 
The low accuracy in the bus class is because there are no 
buses in the test videos, only minibuses, and the model is 
trained on large regular buses; minibuses are classified as 
salon cars.

Fig. 10. System’s vehicle classification.

Table II
Vehicle detection with tracking evaluation

Test 
video

Model size Ground- 
truth 

vehicles

System’s 
detections

FPS Accuracy 
(%)

Error 
(%)

Video1 Nano 70 67 48.8 95.7 4.3
Video1 Small 70 68 42 97.1 2.9
Video1 Medium 70 69 28.7 98.5 1.5
Video1 Large 70 69 21.5 98.5 1.5
Video1 Extra-Large 70 69 15.9 98.5 1.5
Video2 Nano 45 41 50.2 91.1 8.9
Video2 Small 45 43 43.8 95.5 4.5
Video2 Medium 45 43 29.6 95.5 4.5
Video2 Large 45 43 21.7 95.5 4.5
Video2 Extra-Large 45 44 16 97.7 2.3
Video3 Nano 28 25 50 89.2 10.8
Video3 Small 28 26 43.3 92.8 7.2
Video3 Medium 28 27 29.3 96.4 3.6
Video3 Large 28 28 21.7 100 0
Video3 Extra-Large 28 28 16 100 0
Video4 Nano 50 48 48 96 4
Video4 Small 50 49 41.5 98 2
Video4 Medium 50 49 28.5 98 2
Video4 Large 50 50 21 100 0
Video4 Extra-Large 50 50 15.6 100 0
Video5 Nano 37 34 46 91.8 8.2
Video5 Small 37 35 40 94.5 5.5
Video5 Medium 37 36 28 97.2 2.8
Video5 Large 37 36 21 97.2 2.8
Video5 Extra-Large 37 37 15.7 100 0
Averages 96.58 3.42

Table III
Vehicle counting evaluation

Test 
video

Model size Ground- 
truth count

System’s 
count

FPS Accuracy 
(%)

Error 
(%)

Video1 Nano 60 61 49.4 98.3 1.7
Video1 Small 60 60 42.6 100 0
Video1 Medium 60 60 28.9 100 0
Video1 Large 60 61 21.5 98.3 1.7
Video1 Extra-Large 60 62 16 96.6 3.4
Video2 Nano 45 45 50.8 100 0
Video2 Small 45 44 43.6 97.7 2.3
Video2 Medium 45 43 29.3 95.5 4.5
Video2 Large 45 45 21.6 100 0
Video2 Extra-Large 45 45 16 100 0
Video4 Nano 40 40 47.6 100 0
Video4 Small 40 43 41 93 7
Video4 Medium 40 44 28.1 90 10
Video4 Large 40 43 21.1 93 7
Video4 Extra-Large 40 43 15.7 93 7
Video5 Nano 21 22 44.6 95.4 4.6
Video5 Small 21 21 39.8 100 0
Video5 Medium 21 21 27.5 100 0
Video5 Large 21 21 20.7 100 0
Video5 Extra-Large 21 21 15.5 100 0
Averages 97.54 2.46
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Table V
Vehicle speed estimation evaluation

Test 
video

Ground-truth 
speed value (km/h)

System’s speed 
estimation (km/h)

FPS Accuracy 
(%)

Error 
(%)

Eval30 30 28 29 93.3 6.7
Eval42 42 41.4 29 98.5 1.5
Eval56 56 53.8 29 96 4
Eval64 64 62.4 29 97.5 2.5
Eval71 71 68.4 29 96.3 3.7
Eval88 88 90 29 97.7 2.3
Eval94 94 90.6 29 96.3 3.7
Eval101 101 99.4 29 98.4 1.6
Averages 96.75 3.25

XIII. Conclusions and Future Works
The proposed system provided traffic monitoring information 
in real-time using a combination of cutting-edge deep 
learning technology and state-of-the-art algorithms. The 
system gave excellent results in all of its stages compared 
with previous works, with high accuracy and low error rates.

The system was implemented with various adjustable 
parameters such as frame skipping, enabling and disabling 
segmentation, and device-agnostic code that made the system 
run on different hardware configurations and GPUs, which 
made the system flexible and configurable for any video 
input type, resolution, or weather condition. The classification 
stage in the proposed system is useful in enforcing different 
speed limits based on the vehicle class. The counting process 
can also count vehicles in general or count them based on 
their classes for more specific information.

The proposed system estimates the vehicle’s size with a 
novel approach based on segmentation masks generated from 
the YOLOv8 segmentation model, fixing one dimension 
(the vehicle’s width) and calculating the other two (the 
vehicle’s length and height) from the polygon points of the 
segmentation mask. The vehicle size information is useful 
for traffic control, as speed limits differ for different vehicle 
sizes. For example, trucks have speed limits that are different 
from those of salon cars. Size information can also help 
detect large vehicles that are not allowed to drive on certain 
roads at certain times of the day. The vehicle height is also 
important for driving in tunnels and under bridges.

As suggestions for future work to further develop the system, 
an automatic ROI detection algorithm can be implemented, 
and for size estimation, a stereo camera can be deployed to 
get more accurate estimations. In addition, the system can be 
integrated with an OCR algorithm for reading the vehicle’s 
license plate for vehicles with speed limit violations.
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