
 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11468 157

Distributed Software-Defined Networking
Management: An Overview and Open Challenges

Rawan S. Alsheikh1†, Etimad A. Fadel1 and Nadine T. Akkari2

1Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University,
Abdullah Sulayman, Jeddah 21589, Saudi Arabia.

2Department of Computer Science and Information Technology, Jeddah International College,
Ibn Rasheed Elfehri, Jeddah 23831, Saudi Arabia.

operates across three layers: Application Layer (Management
Plane), Control Layer (Control Plane), and Infrastructure Layer
(Data Plane). Fig. 1 shows these interactions (Akyildiz, 2014),
(Keshari, Kansal and Kumar, 2021).

SDN control plane architecture can be centralized (Fig. 1)
or distributed (Fig. 2). This paper focuses on large-scale
wide-area networks (WANs) with key scalability, reliability,
and performance requirements.

The single SDN controller, as in Fig. 1, has a single point
of failure (SPOF) problem. Moreover, it is challenging for
one controller to handle the whole network due to the
diversity of network application needs and the growth
of network size. Getting the network view was difficult
after that. These encourage network designers to consider
including multi-controller architectures (Yu, Qi and Li, 2020),
(Almadani, Beg and Mahmoud, 2021), (Aslan and Matrawy,
2016), (Blial, Ben Mamoun and Benaini, 2016), (Ahmad
and Mir, 2021), (Oktian, et al., 2017), (Tadros, Mokhtar and
Rizk, 2019).

In distributed SDN architectures, the data layer is divided
into multiple domains, each managed by a controller.
These controllers communicate through East/West-bound
interfaces to exchange inter-domain information, allowing the
deployment and configuration of SDN applications on large-
scale networks (Ahmad and Mir, 2021), (Chen, et al., 2017),
(Hoang, et al., 2022).

Distributed controllers are connected in various topologies,
including hierarchical and flat, which include logically
centralized physically distributed, and fully distributed
controllers (Blial, Ben Mamoun and Benaini, 2016) (Espinel
Sarmiento, et al., 2021). Each architecture has strengths and
weaknesses. This paper qualitatively compares distributed
SDN architectures and seeks to identify the most efficient
SDN architecture for managing large-scale networks,
balancing consistency, scalability, and performance.

Hierarchical architectures (e.g., Kandoo [Hassas Yeganeh
and Ganjali, 2012] and B4 [Jain, et al., 2013]) feature a
root controller with a global network view, whereas local
controllers manage only their domains. Although easier
to manage, this approach introduces latency due to cross-
domain communication through the root controller, leading
to performance degradation (Blial, Ben Mamoun and

Abstract—Distributed software-defined networking (SDN)
architecture satisfies the minimum requirements for wide-area
networks. The distributed controllers are connected in various
topologies, including hierarchical and flat, which include logically
centralized physically distributed, and fully distributed controllers.
The distributed SDN architectures are qualitatively explored as a
more suitable solution for managing fluctuating networks in large-
scale deployments, with the goal of optimizing overall network
performance, particularly for applications that can tolerate
some level of inconsistency, such as load balancing or routing.
The logically centralized physically distributed SDN controller
architecture allows SDN controllers, in conjunction with the
deployed SDN applications, to centrally coordinate the network
due to the conciliated global network view. That is created through
the synchronization process between controllers. However, inter-
controller synchronization creates an overhead that affects the
system’s performance. In addition, the amount of inter-controller
synchronization is vulnerable to the chosen consistency approach
the application can tolerate. Although static eventual consistency
is frequently employed in modern SDN systems to provide effective
scalability, it is argued that it does not place limits on the state
inconsistencies that SDN applications will tolerate. Hence, the
adaptive consistency models need to be investigated. The study
showed that a flat, logically centralized physically distributed
architecture with an adaptive consistency approach would be more
suitable for solving large-scale fluctuating network management
considering scalability, reliability, and maximizing performance.

Index Terms –Adaptive consistency, Distributed SDN
architecture, Large-scale networks, Logically centralized
physically distributed controllers, Network performance
optimization

I. Introduction
Software-defined networking (SDN) is an evolving strategy that
separates the network control plane from the data plane. SDN

ARO-The Scientific Journal of Koya University
Vol. XII, No. 2 (2024), Article ID: ARO.11468. 166 pages
Doi: 10.14500/aro.11468
Received: 09 November 2023; Accepted: 19 September 2024
Regular review paper; Published: 30 September 2024
†Corresponding author’s e-mail: rsalshaikh@kau.edu.sa
Copyright © 2024 Rawan S. Alsheikh, Etimad A. Fadel and
Nadine T. Akkari. This is an open-access article distributed under the
Creative Commons Attribution License (CC BY-NC-SA 4.0).

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

158 http://dx.doi.org/10.14500/aro.11468

Benaini, 2016), (Ahmad and Mir, 2021), (Oktian, et al.,
2017), (Espinel Sarmiento, et al., 2021).

Flat architectures with logically centralized but physically
distributed controllers (e.g., HyperFlow [Tootoonchian and
Ganjali, 2010], Onix [Koponen, et al., 2010], ONOS [Open
Network Operating System (ONOS) SDN Controller for
SDN/NFV Solutions, no date], ElstiCon [Dixi, et al., 2014],
and Orion [Ferguson, et al., 2021]). Allow each controller
to manage intra- and inter-site operations, forming a global
network view through synchronization (Blial, Ben Mamoun
and Benaini, 2016), (Espinel Sarmiento, et al., 2021).
However, synchronization can create overhead, affecting
performance (Ahmad and Mir, 2021). Balancing consistency
and performance remains a challenge.

Flat architectures with fully distributed controllers (such
as DISCO [Phemius, Bouet and Leguay, 2014] or ODL
[Home - OpenDaylight, no date]) operate with reduced inter-

controller communication, prioritizing local optimization
over global interests (Blial, Ben Mamoun and Benaini,
2016), (Espinel Sarmiento, et al., 2021), (Bannour, Souihi
and Mellouk, 2018b), (Informatique and Informatique, 2021).

A logically centralized, physically distributed approach
is preferable for administering large-scale solutions.
This enables any application within the cluster to access
and manage the global network view (Tadros, Mokhtar
and Rizk, 2019), (Espinel Sarmiento, et al., 2021.
However, inter-controller communication costs remain
a significant challenge, which does not receive as much
concern in the research community (Blial, Ben Mamoun
and Benaini, 2016), (Alowa and Fevens, 2020), (Espinel
Sarmiento, et al., 2021).

Tradeoffs between strong and eventual consistency models
impact network performance: strong consistency ensures
accurate data but introduces synchronization overhead,
whereas eventual consistency offers reduced overhead with
temporary data inconsistencies. This paper explores adaptive
consistency, which dynamically balances these tradeoffs to
optimize performance in large-scale SDN networks (Aslan
and Matrawy, 2016), (Ahmad and Mir, 2021), (Levin, et al.,
2012), (Foerster, Schmid and Vissicchio, 2019), (Bannour,
Souihi and Mellouk, 2018a).
This work’s contributions are as follows:
• We analyze the key challenges distributed SDN architectures

face, particularly focusing on scalability, reliability,
consistency, and synchronization overhead in large-scale
networks to determine the most effective architecture for
network administration

• We provide a qualitative comparison of hierarchical,
flat, and logically centralized physically distributed SDN
architectures, highlighting their strengths and weaknesses
in managing large-scale fluctuating networks. Based on this
analysis, we suggest that a logically centralized, physically
distributed architecture is most suitable for network
administrationFig. 1. Overview of software-defined networking architecture.

Fig. 2. Distributed software-defined networking architecture with network state distribution.

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11468 159

• We evaluate strong, eventual, and adaptive consistency
models in the context of SDN, emphasizing their impact
on network performance, scalability, and application
requirements

• We propose using an adaptive consistency model for logically
centralized, physically distributed SDN architectures. This
approach aims to solve the synchronization overhead
problem, which introduces latency and degrades performance.
By employing dynamic consistency, the synchronization
process can adapt to network conditions, reducing overhead
whereas maintaining system performance, particularly for
applications that can tolerate some inconsistency.

The rest of this paper is structured as follows: Section 2
discusses the Architecture and Components of Distributed
SDN. Distributed SDN architecture challenges are discussed
in section 3. Section 4 presents Distributed SDN Topologies
and Qualitative Evaluation. Section 5 focuses on Network
State Consistency. Section 6 discusses Distributed SDN:
Future Directions. The study is concluded in section 7.

II. The Architecture and Components of Distributed SDN
Understanding how distributed SDN architecture is

designed and operates is crucial. Fig. 2 presents a distributed
SDN system consisting of three main layers: the Application
Layer (Layer A), the Control Layer (Layer S), and the Data
Layer (Layer P). This layered structure resembles the Onix
SDN control systems (Koponen, et al., 2010) and the work
on (Levin, et al., 2012). The architecture consists of five
essential components: Data layer, connectivity infrastructure,
instances of the distributed control plane, control logic, and
database. The green dashed and dotted arrows in Fig. 2
illustrate the points where network states are exchanged
across the system.

A. Data Layer
Network switches and routers are illustrated as blue boxes

at the lowest layer in Fig. 2. These forwarding devices retain
the network data plane state in the Forwarding Information
Base and associated metadata such as flow ports and packet
counters. These devices run the software necessary to
support interfaces, such as OpenFlow, enabling controllers
to read and modify the network state by updating forwarding
table entries. A controller’s domain includes all switches
and hosts directly connected to it (Oktian, et al., 2017),
(Koponen, et al., 2010), (Levin, et al., 2012).

B. Connectivity
The connectivity framework supports bidirectional

communication, depicted by the green dotted arrows in
Fig. 2 for interactions between control plane instances,
and by the green dashed arrows for communication
between switches and control plane instances. It facilitates
convergence during link failures and employs standard
protocols, such as OSPF or IS-IS, to preserve the forwarding
state (Koponen, et al., 2010).

The East-bound interface (red box in Fig. 2) allows SDN
controllers to exchange information, whereas a West-bound
interface can connect SDN controllers with legacy systems
(Ahmad and Mir, 2021), (Hoang, et al., 2022).

Controllers can interconnect vertically (hierarchical) or
horizontally (flat). However, intercontroller communication
costs remain a significant challenge in distributed SDN
environments (Blial, Ben Mamoun and Benaini, 2016),
(Espinel Sarmiento, et al., 2021), (Alowa and Fevens, 2020).

C. Distributed Control Plane Instances
The control plane operates as a distributed system,

with each instance functioning as a network operating
system (NOS) (Koponen, et al., 2010), (Levin, et al.,
2012). Controllers oversee the management of the network
state (Layer S) and provide programmatic interfaces for
accessing and modifying control logic. Control plane
instances collaborate within the cluster through distribution
I/E, enabling SDN applications (Layer A) to interact with a
simplified, abstract representation of the physical network
(Koponen, et al., 2010), (Levin, et al., 2012). Each controller
maintains a Network Information Base (NIB) housed in a
database (yellow box in Fig. 2) (Levin, et al., 2012).

D. Control Logic
The control logic, represented by the green box in Fig. 2,

operates on the controller’s API. It uses network state
information to determine the intended network behavior
(Koponen, et al., 2010), (Levin, et al., 2012).

E. Database
The database management system (yellow box in

Fig. 2) is crucial for the distributed control plane, storing
intra- and inter-domain information for each controller.
It could be utilized as a method of information sharing
between controllers, obviating the necessity for a specific
communication protocol. SDN solutions use either SQL or
NoSQL databases (Espinel Sarmiento, et al., 2021).

A distributed database architecture facilitates the scalability
of the control plane and enhances its ability to manage
system failures efficiently (Koponen, et al., 2010).

III. Distributed SDN Architecture challenges
While the SDN project has the potential to revolutionize

and improve networks, it is still in its early phases of tackling
a wide range of difficulties (Fig. 3), including scalability,
reliability, consistency and synchronization overhead,
interoperability, East–West interface implementations, and
security (Informatique and Informatique, 2021), (Hussein,
et al., 2018).

Although reliability and scalability are thought to be the
two key drawbacks of centralized SDN control architectures,
they are equally significant considerations when creating a
physically distributed SDN architecture (Informatique and
Informatique, 2021), (Hussein, et al., 2018), and (TS, 2019).
This paper will address key issues such as interoperability

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

160 http://dx.doi.org/10.14500/aro.11468

and security; however, the primary focus will be on the
challenges related to the consistency and synchronization
overhead.

A. Consistency and Synchronization Overhead
In a physically distributed architecture, consistency

necessitates preserving an up-to-date network-wide
perspective (Ahmad and Mir, 2021). Consistency management
is achieved through an inter-controller synchronization
process, which ensures that the network view is aligned
across all controllers (Oktian, et al., 2017).

Addressing consistency challenges whereas considering
trade-offs in SDN controller platforms is vital. Achieving
consistency necessitates a synchronization process, which
can impose significant overhead on the system. While lower
consistency levels reduce synchronization overhead, they
increase the risk of state conflicts. On the other hand, strict
consistency enforces more frequent synchronization, leading
to higher overhead in the control plane (Sakic, et al., 2017).
This overhead increases latency and impacts the system’s
scalability. Latency, often referred to as responsiveness, is the
time the system requires to respond to flow requests (Tadros,
Mokhtar and Rizk, 2019), (Hoang, et al., 2022), (Espinel
Sarmiento, et al., 2021), (Informatique and Informatique,
2021), (Levin, et al., 2012), (Akyildiz, 2014).

B. Interoperability
Interoperability among SDN controllers is essential for the

effective operation of distributed controller systems. Another
significant operational problem related to SDN’s maturity,
growth, and commercial usage is the compatibility across
various SDN controller systems from various suppliers (Yu,
Qi and Li, 2020), (Informatique and Informatique, 2021).

The fact that each SDN controller has its own
communication method makes it extremely challenging for
SDN networks to communicate information between various
domains (Yu, Qi and Li, 2020).

However, contrary to the wide acceptance of the
standardization of OpenFlow’s southbound interface, the

research community has not given the East–Westbound
interface the required attention to provide interoperability and
synchronization among SDN controllers. This is driven by
the fact that there is no need for SDN network compatibility
because the transition from the traditional network to SDN
is still just a minor one. However, as SDN continues to
demonstrate its benefits, The need for standard East-West
protocol is essential to the internet’s existence in the near
future (Hoang, et al., 2022).

C. Security
Another significant issue that needs to be researched

is SDN security. The integrity of data flows between SDN
controllers and switches is still not guaranteed (Informatique
and Informatique, 2021). In addition, authentication
procedures are urgently needed in distributed control
architecture to validate and verify controller instances
(Ahmad and Mir, 2021). This paper does not consider
security issues, as the focus is primarily on applications that
can tolerate a certain level of inconsistency, such as load-
balancing or routing applications.

IV. Distributed SDN Topologies and Qualitative
Evaluation

Several research studies, such as Yu, Qi and Li, 2020,
Hoang, et al., 2022, Espinel Sarmiento, et al., 2021), and
Informatique and Informatique, 2021, have introduced
a thorough evaluation of cutting-edge distributed SDN
controller platforms.

Several topologies, such as hierarchical or flat, are used
for distributed controller interconnection. The flat architecture
can be logically centralized physically distributed, or fully
distributed (Ahmad and Mir, 2021), (Espinel Sarmiento,
et al., 2021). Logical classification in our research was
adopted by (Espinel Sarmiento, et al., 2021), (Bannour, Souihi
and Mellouk, 2018b), (Informatique and Informatique, 2021).

Fig. 4 illustrates some differences between these SDN
distributed architectures and how each architecture preserves
the network state. It distinguishes between local (domain-
specific) and global (network-wide) states. The local state
reflects the current network status within a controller’s
domain, tracking events such as host connections and link
changes. In contrast, the global state represents the overall
network status across all domains (Oktian, et al., 2017).

Each topology affects key issues in distributed SDN
controllers, such as scalability, reliability, latency, consistency,
and synchronization overhead (Keshari, Kansal and Kumar,
2021), (Ahmad and Mir, 2021), (Oktian, et al., 2017),
(Bannour, Souihi and Mellouk, 2018b), (Hu, Li and Huang,
2014). Table I summarizes the characteristics of hierarchical,
flat logically centralized, and flat fully distributed topologies
based on these factors.

A. Hierarchical
The hierarchical architecture, such as Kandoo (Hassas

Yeganeh and Ganjali, 2012) and B4 (Jain, et al., 2013),

Fig. 3. The main challenges of physically distributed software-defined
networking control.

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11468 161

Table I
Distributed SDN Topology Characteristics

Distributed
Controller Topology

Controller-to-
Controller
connectivity
model

ScalabilityRobustness
(reliability)

Latency Managing consistency Synchronization
Overhead

Real case scenarios

Hierarchical Vertical High Low (root
controller
SPOF)

High Centralized in the root
controller

Medium Kandoo (Hassas Yeganeh and
Ganjali, 2012) and B4
(Jain, et al., 2013)

Logically
Centralized
Physically
Distributed

Horizontal (Flat) Medium High Medium
(depends on
the technical
execution of the
solution)

By synchronization and
creating a global view

High/Medium
(depending on the
chosen consistency
model)

Elasticon (Dixi, et al., 2014),
HyperFlow (Tootoonchian
and Ganjali, 2010), Orion
(Ferguson, et al., 2021),
DragonFlow (OpenStack
Docs: Distributed Dragonflow,
no date), Onix (Koponen,
et al., 2010), and ONOS (Open
Network Operating System
(ONOS) SDN Controller for
SDN/NFV Solutions, no date)

Fully Distributed Horizontal (Flat) Very
High

Very
High

Low Manage consistency at
the application level

Low (shares with
other instances when
necessary).

DISCO (Phemius, Bouet
and Leguay, 2014) and ODL
(Home - OpenDaylight, no
date)

Fig. 4. Distributed software-defined networking topologies.

organizes controllers in a vertical arrangement, with the
root controller positioned at the top. This root controller
manages the global network state, whereas local controllers
are responsible for handling their specific domains. The root
controller ensures network-wide connectivity by overseeing

subordinate controllers (Blial, Ben Mamoun and Benaini,
2016), (Ahmad and Mir, 2021), (Oktian, et al., 2017),
(Espinel Sarmiento, et al., 2021).

While this method improves scalability over centralized
systems, robustness remains limited due to the root controller

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

162 http://dx.doi.org/10.14500/aro.11468

being a SPOF (Blial, Ben Mamoun and Benaini, 2016),
(Ahmad and Mir, 2021), (Espinel Sarmiento, et al., 2021),
(Informatique and Informatique, 2021).

Replicating the root controller across multiple controllers
can reduce SPOF risk, but having too many root controllers
can complicate coordination and reduce network efficiency
(Oktian, et al., 2017), (Espinel Sarmiento, et al., 2021).

There are no East/West-bound API connections between
the local SDN controllers in the cluster. Instead, they
communicate solely with the root controller. This dependency
for cross-domain communication introduces latency and
performance degradation (Ahmad and Mir, 2021), (Oktian,
et al., 2017), (Espinel Sarmiento, et al., 2021).

B. Flat
In flat architectures, controllers are arranged horizontally,

each managing part of the network, whereas simultaneously
carrying out the same responsibilities (Blial, Ben Mamoun
and Benaini, 2016), (Ahmad and Mir, 2021).

To tackle consistency, flat systems can use either leader-
based or leaderless coordination. In leader-based systems
(e.g., Onix [Koponen, et al., 2010], ONOS [Open Network
Operating System (ONOS) SDN Controller for SDN/
NFV Solutions, no date], and ElstiCon [Dixi, et al.,
2014]), a cluster elects a leader to manage communication
(Oktian, et al., 2017). Leaderless systems (e.g., HyperFlow
[Tootoonchian and Ganjali, 2010] or DISCO [Phemius,
Bouet and Leguay, 2014]), allow controllers to communicate
directly, sharing equal roles (Oktian, et al., 2017).

Flat architectures enhance failure resilience and
performance but complicate consistency management
(Blial, Ben Mamoun and Benaini, 2016), (Informatique and
Informatique, 2021).

When a horizontal interface is used, it means that in
addition to the time needed for the system to reply to a user
request locally (such as CPU, memory, and thread utilization),
the time required to synchronize with remote sites and
provide a final response must also be taken into account. The
synchronization process will create a synchronization overhead
affecting the system’s performance. The technical execution
of the solution may cause this latency and will affect the total
time required to provide an inter-site service, which affects
the system responsiveness (Ahmad and Mir, 2021), (Oktianm,
et al., 2017), (Espinel Sarmiento, et al., 2021).

The Flat architecture can be logically centralized physically
distributed, or fully distributed (Blial, Ben Mamoun and
Benaini, 2016), (Espinel Sarmiento, et al., 2021), (as per
Fig. 3). Both topologies will be explained in the following
subtitles.
Logically centralized physically distributed

In this architecture, each site has one controller responsible
for intra- and inter-site operations, as seen in systems such
as, HyperFlow (Tootoonchian and Ganjali, 2010), Onix
(Koponen, et al., 2010), ONOS (Open Network Operating
System (ONOS) SDN Controller for SDN/NFV Solutions,
no date), ElstiCon (Dixi, et al., 2014), and Orion (Ferguson,
et al., 2021). Whenever a controller creates or modifies a

network resource, it broadcasts any changes (e.g., device or
link failure) to other controllers through synchronizations. In
synchronization, each controller in many domains must share
a portion of their local network state with other controllers to
build a global network state. However, no standards dictate
what information must be shared (Blial, Ben Mamoun and
Benaini, 2016), (Oktian, et al., 2017), (Tadros, Mokhtar
and Rizk, 2019), (Hoang, et al., 2022), (Alowa and Fevens,
2020), (Levin, et al., 2012).

Distributed hash tables, transactional databases, and
partial quorum techniques (Saito and Shapiro, 2010) are a
few examples of distributed, replicated storage formats that
can be utilized to implement the NOS state distribution and
management (Levin, et al., 2012), (Saito and Shapiro, 2010).

As shown in Fig. 3, a logically centralized physically
distributed structure allows multiple controllers to share
network information, functioning as a single controller.
This design mirrors the original SDN proposal, enabling
centralized network control logic whereas distributing
responsibility across controllers. It allows management from
a global network perspective, improving control in SDN
environments (Blial, Ben Mamoun and Benaini, 2016),
(Tadros, Mokhtar and Rizk, 2019), (Espinel Sarmiento, et al.,
2021), (Bannour, Souihi and Mellouk, 2018b).

There are several ways to obtain network information
from SDN controllers. First, is polling, where controllers
periodically request updates, even if no changes have
occurred. Second, the more efficient publish/subscribe
method, where controllers only receive updates when
changes happen(Oktian, et al., 2017). In addition, a shared
distributed data store allows controllers to exchange states
(Espinel Sarmiento, et al., 2021).

The shift toward logical centralization of control within
the distributed SDN paradigm helps mitigate the complexity
of distributed systems. In this context, incorporating a
Knowledge Plane into the architecture can leverage various
machine learning (ML) techniques, such as Deep Learning.
Collecting network knowledge and then utilizing that
knowledge to control and manage the network, exploiting
the capabilities of SDN logically centralized control
(Mestres, et al., 2017).

However, these systems’ effectiveness depends on the
capabilities provided by the database system. Even that some
of them have specific database systems built for them such
as ONOS (Open Network Operating System (ONOS) SDN
Controller for SDN/NFV Solutions, no date) distributed
controllers linked through Atomix system (Atomix, no
date), they fall short of issues such as network partitioning
(depending on the database system) or data locality awareness
(Espinel Sarmiento, et al., 2021).
Fully distributed

In fully distributed architectures such as DISCO (Phemius,
Bouet and Leguay, 2014), controllers are both physically
and logically distributed. Each controller maintains a local
network view and communicates with other controllers
only when necessary to exchange service-specific data. This
approach reduces communication overhead and alleviates

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11468 163

scalability limitations encountered in centralized designs
(Blial, Ben Mamoun and Benaini, 2016), (Espinel Sarmiento,
et al., 2021), (Informatique and Informatique, 2021),
(Bannour, Souihi and Mellouk, 2018b).

Fully distributed architecture avoids the initial tendency of
SDN by giving many controllers different roles throughout
the network (Blial, Ben Mamoun and Benaini, 2016). This
architecture suits multi-domain heterogeneous environments,
especially WANs and overlay networks. It has the ability
to function under multiple Autonomous Systems (ASes)
operating under various administrative domains in large-scale
networks such as the Internet (Bannour, Souihi and Mellouk,
2018b), (Informatique and Informatique, 2021).

In this architecture, intra-domain modules handle core
functions such as network monitoring, whereas inter-domain
modules manage communication between domain controllers
using protocols such as Advanced Message Queuing Protocol
or Representational State Transfer APIs for the East-West
interface (Almadani, Beg and Mahmoud, 2021), (Ahmad
and Mir, 2021), (Espinel Sarmiento, et al., 2021), (Bannour,
Souihi and Mellouk, 2018b).

Fully distributed systems provide robustness against
network disconnections, as failures affect only part of
the infrastructure (Espinel Sarmiento, et al., 2021). Fully
distributed solutions face drawbacks such as static division
into independent entities, contrasting with David D. Clark’s
Knowledge Plane theory (Clark, et al., 2003), which
advocates centralized management. In addition, network
optimization is local, with entities following their own
policies rather than serving the overall network’s interests
(Bannour, Souihi and Mellouk, 2018b), (Informatique and
Informatique, 2021).

Fully distributed systems face challenges in dynamic
environments, where conflict resolution and tasks such as
dynamic IP assignment are more complex. Moreover, in
fully distributed architectures, consistency is managed at
the application level due to independent local databases.
The East-West interface lacks built-in conflict resolution,
requiring additional calls to handle conflicts. These solutions
focus on read/write operations and database concurrency,
which is beyond our scope (Espinel Sarmiento, et al., 2021).

The researchers (Hu, Li and Huang, 2014) evaluate the
SDN controller’s scalability in handling flow initiation
requests. According to their findings, the best scalability
points are found in the flat fully distributed SDN controller
with a slight gap. The hierarchical model competes for
second place. Interestingly, in their experiment, the logically
centralized physically distributed SDN controller suffers
significantly (Oktian, et al., 2017).

From Table I and the discussion, logically centralized
physically distributed architectures are better for management
solutions due to the global network view. Applications can
access and control the environment from any part of the
cluster (Espinel Sarmiento, et al., 2021). However, the
synchronization required for consistency introduces overhead,
reducing scalability and increasing latency. The degree of
synchronization depends on the consistency model used. In
the next section, we explore different consistency approaches.

V. Network State Consistency
In distributed SDN architectures, controllers must maintain

consistent network information across their data structures
(Ahmad and Mir, 2021), (Informatique and Informatique,
2021), (Zhang, Wang and Huang, 2018).

According to the (CAP) theorem, (C) Consistency, (A)
Availability, and (P) Partition Tolerance, only two of the
three qualities can be met in case of failure (Brewer, 2000),
(Seth Gilbert and Nancy Lynch, 2002), (Panda, et al., 2013).
A network with several highly available partitions (A and
P) specifically results in a lower level of consistency. As a
result, this outdated state impacts how applications work
correctly. A system with significant consistency (C and P), on
the other hand, leads to reduced network availability (Hoang,
et al., 2022).

In addition, on a regular working system without
considering failure, the choice between consistency and
latency has also impacted distributed SDN architecture. This
tradeoff with CAP is combined in the novel formulation
PACELC (Abadi, 2012)—the PACELC theorem, which
stands for Partitioned, Availability, Consistency Else Latency,
Consistency. In light of this new formulation, in the case
of network partitioning (P), one must choose between
availability (A) and consistency (C) in a distributed computer
system. Else (E), if the system is functioning normally in the
absence of partitions, one must choose between latency (L)
and consistency (C) (Abadi, 2012).

These theorems are essential as the distributed SDN
controller, specifically, the logically centralized physically
distributed architecture, uses the datastore to store the state
of the entire network, which needs to be consistent.

The distributed SDN controller will probably inherit the
characteristic of the implemented datastore (i.e., whether it is
CP or AP) (Oktian, et al., 2017).

The consistency issue arises from the hardness of
resolving the update problems in the network. In other
words, maintaining consistency depends on the order of
operations computed sequence in the execution network
devices (Foerster, Schmid and Vissicchio, 2019).

Besides the degradation of application performance,
inconsistency can cause other severe problems in the
networks, such as isolation and reachability violation, black
holes, and forwarding loops (Aslan and Matrawy, 2016),
(Poularakis, et al., 2019).

Three consistency approaches can be applied: strong,
eventual, and adaptive. Table II compares the consistency
models according to Consistency level, Scalability,
Availability, State synchronization Overhead, and Latency.

A. Strong Consistency Model
Strong consistency ensures that controllers operate

with a consistent global view (Levin, et al., 2012). Strong
consistency is based on a blocking synchronization procedure
that prevents switches from reading data till the controllers
are fully updated. It reduces the scalability and availability
of the network and limits the system’s responsiveness
(Levin, et al., 2012), (Informatique and Informatique, 2021).

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

164 http://dx.doi.org/10.14500/aro.11468

Applications requiring high reliability, such as security-
sensitive systems (e.g., firewalls), rely on strong consistency
to prevent unauthorized traffic and ensure data accuracy
(Aslan and Matrawy, 2016), (Espinel Sarmiento, et al., 2021),
(Foerster, Schmid and Vissicchio, 2019).

However, most studies on distributed SDN networks
focus on strong consistency (Hoang, et al., 2022). Network
application developers may decide not to design their
programs to be strongly consistent for various reasons.
Strong consistency increases latency and reduces availability,
which is problematic in dynamic networks with frequent
node failures. Applications that require low latency or high
availability often favor more flexible consistency models
to maintain performance and responsiveness (Aslan and
Matrawy, 2016).

B. Eventual Consistency Model
Eventually, consistent designs incorporate information as

it becomes available and eventually reconcile modifications
as each domain has knowledge of them. In other words, all
controller copies will “eventually” converge over time and
achieve global network view consistency. This resolves the
problem of blocking during the synchronization period, which
is encountered in strong consistency (Levin, et al., 2012),
(Informatique and Informatique, 2021), (Sakic, et al., 2017).

Accordingly, controllers can handle higher update rates
and react quicker, but they can temporarily have inconsistent
network views, which could lead to inappropriate
application behavior (Levin, et al., 2012), (Informatique
and Informatique, 2021), (Saito and Shapiro, 2010). Many
emerging applications for SDN controller platforms with high
availability and scalability on a large scale choose eventual
consistency (Informatique and Informatique, 2021).

C. Adaptive Consistency Models
Adaptively consistent architecture for distributed SDN

controllers transforms the inconsistency issue into an
automatic control in which the adaptivity module will
automatically adjust the value of the synchronization period
according to the performance of the target application. The
adaptivity module utilizes a feedback loop from measurement
or/and prediction extracted data from the fluctuating network
environment (Aslan and Matrawy, 2016). In other words,
the state synchronization takes place in accordance with
performance and consistency restrictions established by
the application at runtime by employing triggers according
to specified thresholds to enable dynamic change of a
consistency level (Bannour, Souihi and Mellouk, 2018a),
(Sakic, et al., 2017). A system can use adaptive consistency
to deploy applications that tolerate some inconsistency.

From Table II, whereas a strongly consistent network state
leads to increased overhead, a weakly consistent network
state will produce good performance but less accurate
network functioning. Adaptive consistency is an effort to
create a solution between the two consistency extremes.

VI. Distributed SDN: Future Direction
Standard static eventual consistency is commonly

used for logically centralized physically distributed SDN
Control. It suggests a method of synchronization process at
fixed intervals, such as the one used by Orion (Ferguson,
et al., 2021), in modern SDN systems to achieve effective
scalability. It is argued that it provides no bounds on the
tolerated state inconsistencies by SDN applications (Bannour,
Souihi and Mellouk, 2018a). The fixed synchronization
periods may result in utilizing outdated data, disrupt the
network, and cause the application to perform less well by
sending unnecessary synchronization messages.

Adopting the idea of adaptive consistency in SDN
controllers is necessary to leverage administering solutions
with a logically centralized physically distributed approach.
Adaptive consistency addresses the limitations of static
eventual consistency and strong consistency approaches
(Aslan and Matrawy, 2016), (Bannour, Souihi and Mellouk,
2018a). This model combines the idea of eventual consistency
with a cost-based approach to adjust the consistency level
based on observed state convergence and the inefficiencies
caused using stale state as inputs (Sakic, et al., 2017).

An adaptive controller can be defined as a controller that
has the ability to dynamically and autonomously adjust its
configuration to reach a predetermined level of performance
based on its requirements and measured in developed metrics
(Aslan and Matrawy, 2016), (Bannour, Souihi and Mellouk,
2018a). Several works in the literature recently introduced
adaptive consistency, such as Aslan and Matrawy, 2016,
Bannour, Souihi and Mellouk, 2018a, and Sakic, et al., 2017.

From Table II and the discussion, the key advantages and
motivations behind adopting an adaptive consistency model
for the logically centralized physically distributed SDN
architecture are as follows:

Reduced Complexity: By dynamically adjusting
the consistency level, the adaptive model reduces the
complexity of application development. Developers do not
need to explicitly handle synchronization or worry about
inconsistencies in real time. The model abstracts away the
complexity of consistency management, making it easier to
build and maintain applications.

Minimized Controller State Distribution Overhead: In
traditional synchronization approaches, controllers often

Table II
Consistency Models for Logically Centralized Physically Distributed SDN Architecture Comparisons

Consistency model Consistency Level Scalability Availability State Synchronization overhead Latency
Strong consistency Very high Low Low Very High High
Eventual consistency Low High High Medium Medium
Adaptive consistency Medium High High Low Low

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11468 165

exchange unnecessary synchronization messages, leading
to increased overhead. The adaptive consistency model
removes the distribution of unused messages, reducing
the synchronization overhead while still maintaining the
required level of consistency. This optimization improves the
scalability and performance of the system.

Responding to Changing Network Conditions: SDN
environments are dynamic, and network conditions can
change rapidly. The adaptive consistency model allows
controllers to respond quickly to these changes. It ensures
that the system adapts its consistency level based on observed
convergence rates, enabling controllers to make decisions
based on the up-to-date information available.

Reduced Controller-to-Controller Contacts: By adjusting
the consistency level based on observed state convergence,
the adaptive model can minimize the frequency of controller-
to-controller contacts. This reduction in inter-controller
communication leads to improved system response time and
efficiency.

VII. Conclusion
Distributed SDN architectures offer significant advantages
over centralized designs, particularly in managing large-scale
networks and addressing challenges such as SPOF, scalability,
reliability, and performance bottlenecks. This study has
shown that distributed architectures—whether hierarchical,
flat, or logically centralized but physically distributed—
each have their strengths and tradeoffs based on network
needs. Hierarchical architectures improve scalability but
introduce higher latency due to reliance on a root controller.
Flat architectures enhance reliability and performance but
complicate consistency management.

The logically centralized physically distributed architecture
offers a balanced approach by combining centralized control
logic with a global network perspective. This architecture is
more efficient in resolving conflicts at the East-West interface
and is better suited for global optimization than fully
distributed architectures, which focus on local optimizations
in multi-domain environments. However, synchronization
overhead between controllers remains a key challenge,
impacting scalability and latency.

Our analysis of consistency models—strong, eventual,
and adaptive—reveals that strong consistency ensures data
accuracy but adds overhead, whereas eventual consistency
improves scalability at the cost of temporary inconsistencies.
The adaptive consistency model, which dynamically adjusts
synchronization levels based on real-time conditions, strikes
a balance by reducing overhead and maintaining adequate
performance, particularly for applications such as load
balancing and routing.

In conclusion, our findings suggest that the logically
centralized physically distributed architecture, combined
with adaptive consistency, offers the best solution for
managing large-scale fluctuating networks by minimizing
synchronization overhead and improving scalability and
reliability. Future work should further explore dynamic

consistency models to better optimize the balance between
consistency, scalability, and performance in SDN systems.

Declarations
All authors certify that they have no affiliations with or

involvement in any organization or entity with any financial
interest or non-financial interest in the subject matter or
materials discussed in this manuscript. This study was not
funded by any external sources or financially supporting
bodies.

Data availability
No datasets were generated or analyzed during the current

study.

References
Abadi, D., 2012. Consistency tradeoffs in modern distributed database system
design: CAP is Only part of the story. Computer, 45(2), pp.37-42.

Ahmad, S., and Mir, A.H., 2021. Scalability, consistency, reliability, and security
in SDN controllers: A survey of diverse SDN controllers. Journal of Network
and Systems Management, 29(1), pp.1-59.

Akyildiz, I.F., 2014. A roadmap for traffic engineering SDN-OpenFlow networks.
Computer Networks, 71, pp.1-30.

Almadani, B., Beg, A., and Mahmoud, A., 2021. DSF: A distributed SDN control
plane framework for the East/West interface. IEEE Access, 9, pp.26735-26754.

Alowa, A., and Fevens, T., 2020. Towards minimum inter-controller delay time
in software defined networking. Procedia Computer Science, 175, pp.395-402.

Aslan, M., and Matrawy, A., 2016. Adaptive Consistency for Distributed SDN
Controllers. In: 2016 17th International Telecommunications Network Strategy
and Planning Symposium, Networks 2016-Conference Proceedings. Vo. 1,
pp.150-157.

Atomix. Available from: https://atomix.io [Last accessed on 2023 Jun 07].

Bannour, F., Souihi, S., and Mellouk, A., 2018a. Adaptive State Consistency
for Distributed ONOS Controllers. In: 2018 IEEE Global Communications
Conference, GLOBECOM 2018-Proceedings.

Bannour, F., Souihi, S., and Mellouk, A., 2018b. Distributed SDN control:
Survey, taxonomy and challenges. IEEE Communications Surveys and Tutorials,
20(1), pp.333-354.

Blial, O., Ben Mamoun, M., and Benaini, R., 2016. An overview on SDN
architectures with multiple controllers. Journal of Computer Networks and
Communications, 2016, p.9396525.

Brewer, E.A., 2000. Towards Robust Distributed Systems. In: Proceedings of the
Nineteenth Annual ACM Symposium on Principles of Distributed Computing, p.7.

Chen, M., Ding, K., Hao, J., Hu, C., Xie, G., Xing, C., and Chen, B., 2017.
LCMSC: A lightweight collaborative mechanism for SDN controllers. Computer
Networks, 121, pp.65-75.

Clark, D.D., Partridge, C., Ramming, J.C., and Wroclawski, J.T., 2003.
A knowledge plane for the internet. Computer Communication Review, 33(4),
pp.3-10.

Dixi, A., Hao, F., Mukherjee, S., Lakshman, T.V., and Kompella, R.R., 2014.
ElastiCon: An elastic distributed SDN controller. In: ANCS 2014-10th 2014
ACM/IEEE Symposium on Architectures for Networking and Communications
Systems, pp.17-27.

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

166 http://dx.doi.org/10.14500/aro.11468

Espinel Sarmiento, D., Lèbre, A., Nussbaum, L., and Chari, A., 2021.
Decentralized SDN control plane for a distributed cloud-edge infrastructure:
A survey. IEEE Communications Surveys and Tutorials, 23(1), pp.256-281.

Ferguson, A.D., Gribble, S., Hong, C.Y., Killian, C., Mohsin, W., Muehe, H.,
Ong, J., Poutievski, L., Singh, A., Vicisano, L., Alimi, R., Chen, S.S., Conley,
M., Mandal, S., Nagaraj, K., Bollineni, KN., Sabaa, A., Zhang, S., Zhu, M., and
Vahdat, A., 2021. Orion : Google’s Software-Defined Networking Control Plane
Proceedings of the 18th USENIX Symposium on Orion : Google’s Software-
Defined Networking Control Plane. Proceedings of NSDI 2021: 18th USENIX
Symposium on Networked Systems Design and Implementation, pp.83-98.

Foerster, K.T., Schmid, S., and Vissicchio, S., 2019. Survey of consistent
software-defined network updates. IEEE Communications Surveys and Tutorials,
21(2), pp.1435-1461.

Hassas Yeganeh, S., and Ganjali, Y., 2012. Kandoo: A Framework for Efficient
and Scalable Offloading of Control Applications. In: Proceedings of the First
Workshop on Hot Topics in Software Defined Networks, HotSDN ’12. p.19.

Hoang, N.T., Nguyen, H.N., Tran, H.N., and Souihi, S., 2022. A novel adaptive
East-West interface for a heterogeneous and distributed SDN network.
Electronics (Switzerland), 11(7), pp.1-20.

Home-OpenDaylight. Available from: https://www.opendaylight.org [Last
accessed on 2023 Mar 14].

Hu, J., Li, X., and Huang, J., 2014. Scalability of Control Planes for Software
Defined Networks: Modeling and Evaluation. In: IEEE International Workshop
on Quality of Service, IWQoS, pp.147-152.

Hussein, A., Chehab, A., Kayssi, A.I., and Elhajj, I.H., 2018. Machine Learning
for Network Resilience: The Start of a Journey. 2018 5th International Conference
on Software Defined Systems, SDS 2018, pp. 59-66.

Informatique, S., and Informatique, G., 2021. Extending SDN Control to Large-
scale Networks : Taxonomy, Challenges and Solutions To Cite this Version : HAL
Id : Tel-03456621 Université Paris-Est Créteil THÈSE Docteur de l’ Université
Paris-Est Contributions Pour le Contrôle Distribué Dans les Résea.

Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S.,
Wanderer, J., Zhou, J., Zhu, M., Zolla, J., Hölzle, U., Stuart, S., and Vahdat, A.,
2013. B4: Experience with a Globally-deployed Software-defined WAN. In:
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, pp.3-14.

Keshari, S.K., Kansal, V., and Kumar, S., 2021. A systematic review of quality
of services (QoS) in software defined networking (SDN). Wireless Personal
Communications, 116(3), pp.2593-2614.

Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski, L,Zhu, M.,
Ramanathan, R., Iwata, Y., Inoue, H., Hama, T., and Shenker, S., 2010. Onix:
A Distributed Control Platform for Large-scale Production Networks. USENIX
Conference on Operating Systems Design and Implement, 10, pp.1-14.

Levin, D., Wundsam, A., Heller, B., Handigol, N., and Feldmann, A., 2012.
Logically Centralized? State Distribution Trade-offs in Software Defined
networks. HotSDN’12-Proceedings of the 1st ACM International Workshop on

Hot Topics in Software Defined Networks, pp.1-6.

Mestres, S.A., Rodríguez Natal, A., Carner Marsal, J., Barlet R., Alarcón C.,
Sole, M., Muntés, M., Meyer, D., Barkai, S., Hibbett, M.J., Estrada, G., Coras,
F.T., Ermagan, V., Latapie, H., Cassar, C., Evans, J., Walrand, J., and Cabellos
Aparicio, A., 2017. Knowledge-defined networking. Computer Communication
Review, 47(3), pp.1-10.

Oktian, Y.E., Lee S.G., Lee H.J., and Lam, J.H., 2017. Distributed SDN controller
system: A survey on design choice. Computer Networks, 121, pp.100-111.

Open Network Operating System (ONOS) SDN Controller for SDN/NFV
Solutions. Available from: https://opennetworking.org/onos [Last accessed on
2022 Jun 26].

OpenStack Docs: Distributed Dragonflow. Available from: https://docs.
openstack.org/developer/dragonflow/distributed_dragonflow.html [Last accessed
on 2021 Nov 21].

Panda, A., Scott, C., Ghodsi, A., Koponen, T., and Shenker, S., 2013. CAP for
Networks. HotSDN 2013-Proceedings of the 2013 ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking, pp.91-96.

Phemius, K., Bouet, M., and Leguay, J., 2014. DISCO: Distributed Multi-domain
SDN Controllers. IEEE/IFIP NOMS 2014 - IEEE/IFIP Network Operations and
Management Symposium: Management in a Software Defined World.

Poularakis, K., Qin, Q., Ma, L., Kompella, S., Leung, K.K., and Tassiulas, L.,
2019. Learning the Optimal Synchronization Rates in Distributed SDN Control
Architectures. In: Proceedings-IEEE INFOCOM, 2019-April, pp.1099-1107.

Saito, Y., and Shapiro, M., 2010. Optimistic replication. ACM Computing
Surveys, 37(1), pp.42-81.

Sakic, E., Sardis, F., Guck, J.W., and Kellerer, W., 2017. Towards Adaptive
State Consistency in Distributed SDN Control Plane. In: IEEE International
Conference on Communications.

Seth Gilbert and Nancy Lynch, 2002. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. ACM SIGACT News,
33(2), pp.51-59.

Tadros, C.N., Mokhtar, B., and Rizk, M.R.M., 2019. Logically Centralized-
Physically Distributed Software Defined Network Controller Architecture. In:
2018 IEEE Global Conference on Internet of Things, GCIoT 2018.

Tootoonchian, A., and Ganjali, Y., 2010. HyperFlow: A Distributed Control Plane
for OpenFlow. In: 2010 Internet Network Management Workshop/Workshop on
Research on Enterprise Networking, INM/WREN 2010.

The Open Networking Foundation (ONF), 2019. Reference Design SDN Enabled
Broadband Access. The Open Networking Foundation, United States.

Yu, H., Qi, H., and Li, K., 2020. WECAN: An efficient West-East control
associated network for large-scale SDN systems. Mobile Networks and
Applications, 25(1), pp.114-124.

Zhang, B., Wang, X., and Huang, M., 2018. Adaptive consistency strategy of
multiple controllers in SDN. IEEE Access, 6, pp.78640-78649.

