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operates across three layers: Application Layer (Management 
Plane), Control Layer (Control Plane), and Infrastructure Layer 
(Data Plane). Fig. 1 shows these interactions (Akyildiz, 2014), 
(Keshari, Kansal and Kumar, 2021).

SDN control plane architecture can be centralized (Fig. 1) 
or distributed (Fig. 2). This paper focuses on large-scale 
wide-area networks (WANs) with key scalability, reliability, 
and performance requirements.

The single SDN controller, as in Fig. 1, has a single point 
of failure (SPOF) problem. Moreover, it is challenging for 
one controller to handle the whole network due to the 
diversity of network application needs and the growth 
of network size. Getting the network view was difficult 
after that. These encourage network designers to consider 
including multi-controller architectures (Yu, Qi and Li, 2020), 
(Almadani, Beg and Mahmoud, 2021), (Aslan and Matrawy, 
2016), (Blial, Ben Mamoun and Benaini, 2016), (Ahmad 
and Mir, 2021), (Oktian, et al., 2017), (Tadros, Mokhtar and 
Rizk, 2019).

In distributed SDN architectures, the data layer is divided 
into multiple domains, each managed by a controller. 
These controllers communicate through East/West-bound 
interfaces to exchange inter-domain information, allowing the 
deployment and configuration of SDN applications on large-
scale networks (Ahmad and Mir, 2021), (Chen, et al., 2017), 
(Hoang, et al., 2022).

Distributed controllers are connected in various topologies, 
including hierarchical and flat, which include logically 
centralized physically distributed, and fully distributed 
controllers (Blial, Ben Mamoun and Benaini, 2016) (Espinel 
Sarmiento, et al., 2021). Each architecture has strengths and 
weaknesses. This paper qualitatively compares distributed 
SDN architectures and seeks to identify the most efficient 
SDN architecture for managing large-scale networks, 
balancing consistency, scalability, and performance.

Hierarchical architectures (e.g., Kandoo [Hassas Yeganeh 
and Ganjali, 2012] and B4 [Jain, et al., 2013]) feature a 
root controller with a global network view, whereas local 
controllers manage only their domains. Although easier 
to manage, this approach introduces latency due to cross-
domain communication through the root controller, leading 
to performance degradation (Blial, Ben Mamoun and 
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I. Introduction
Software-defined networking (SDN) is an evolving strategy that 
separates the network control plane from the data plane. SDN 
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Benaini, 2016), (Ahmad and Mir, 2021), (Oktian, et al., 
2017), (Espinel Sarmiento, et al., 2021).

Flat architectures with logically centralized but physically 
distributed controllers (e.g., HyperFlow [Tootoonchian and 
Ganjali, 2010], Onix [Koponen, et al., 2010], ONOS [Open 
Network Operating System (ONOS) SDN Controller for 
SDN/NFV Solutions, no date], ElstiCon [Dixi, et al., 2014], 
and Orion [Ferguson, et al., 2021]). Allow each controller 
to manage intra- and inter-site operations, forming a global 
network view through synchronization (Blial, Ben Mamoun 
and Benaini, 2016), (Espinel Sarmiento, et al., 2021). 
However, synchronization can create overhead, affecting 
performance (Ahmad and Mir, 2021). Balancing consistency 
and performance remains a challenge.

Flat architectures with fully distributed controllers (such 
as DISCO [Phemius, Bouet and Leguay, 2014] or ODL 
[Home - OpenDaylight, no date]) operate with reduced inter-

controller communication, prioritizing local optimization 
over global interests (Blial, Ben Mamoun and Benaini, 
2016), (Espinel Sarmiento, et al., 2021), (Bannour, Souihi 
and Mellouk, 2018b), (Informatique and Informatique, 2021).

A logically centralized, physically distributed approach 
is preferable for administering large-scale solutions. 
This enables any application within the cluster to access 
and manage the global network view (Tadros, Mokhtar 
and Rizk, 2019), (Espinel Sarmiento, et al., 2021. 
However, inter-controller communication costs remain 
a significant challenge, which does not receive as much 
concern in the research community (Blial, Ben Mamoun 
and Benaini, 2016), (Alowa and Fevens, 2020), (Espinel 
Sarmiento, et al., 2021).

Tradeoffs between strong and eventual consistency models 
impact network performance: strong consistency ensures 
accurate data but introduces synchronization overhead, 
whereas eventual consistency offers reduced overhead with 
temporary data inconsistencies. This paper explores adaptive 
consistency, which dynamically balances these tradeoffs to 
optimize performance in large-scale SDN networks (Aslan 
and Matrawy, 2016), (Ahmad and Mir, 2021), (Levin, et al., 
2012), (Foerster, Schmid and Vissicchio, 2019), (Bannour, 
Souihi and Mellouk, 2018a).
This work’s contributions are as follows:
• We analyze the key challenges distributed SDN architectures 

face, particularly focusing on scalability, reliability, 
consistency, and synchronization overhead in large-scale 
networks to determine the most effective architecture for 
network administration

• We provide a qualitative comparison of hierarchical, 
flat, and logically centralized physically distributed SDN 
architectures, highlighting their strengths and weaknesses 
in managing large-scale fluctuating networks. Based on this 
analysis, we suggest that a logically centralized, physically 
distributed architecture is most suitable for network 
administrationFig. 1. Overview of software-defined networking architecture.

Fig. 2. Distributed software-defined networking architecture with network state distribution.
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• We evaluate strong, eventual, and adaptive consistency 
models in the context of SDN, emphasizing their impact 
on network performance, scalability, and application 
requirements

• We propose using an adaptive consistency model for logically 
centralized, physically distributed SDN architectures. This 
approach aims to solve the synchronization overhead 
problem, which introduces latency and degrades performance. 
By employing dynamic consistency, the synchronization 
process can adapt to network conditions, reducing overhead 
whereas maintaining system performance, particularly for 
applications that can tolerate some inconsistency.

The rest of this paper is structured as follows: Section 2 
discusses the Architecture and Components of Distributed 
SDN. Distributed SDN architecture challenges are discussed 
in section 3. Section 4 presents Distributed SDN Topologies 
and Qualitative Evaluation. Section 5 focuses on Network 
State Consistency. Section 6 discusses Distributed SDN: 
Future Directions. The study is concluded in section 7.

II. The Architecture and Components of Distributed SDN
Understanding how distributed SDN architecture is 

designed and operates is crucial. Fig. 2 presents a distributed 
SDN system consisting of three main layers: the Application 
Layer (Layer A), the Control Layer (Layer S), and the Data 
Layer (Layer P). This layered structure resembles the Onix 
SDN control systems (Koponen, et al., 2010) and the work 
on (Levin, et al., 2012). The architecture consists of five 
essential components: Data layer, connectivity infrastructure, 
instances of the distributed control plane, control logic, and 
database. The green dashed and dotted arrows in Fig. 2 
illustrate the points where network states are exchanged 
across the system.

A. Data Layer
Network switches and routers are illustrated as blue boxes 

at the lowest layer in Fig. 2. These forwarding devices retain 
the network data plane state in the Forwarding Information 
Base and associated metadata such as flow ports and packet 
counters. These devices run the software necessary to 
support interfaces, such as OpenFlow, enabling controllers 
to read and modify the network state by updating forwarding 
table entries. A controller’s domain includes all switches 
and hosts directly connected to it (Oktian, et al., 2017), 
(Koponen, et al., 2010), (Levin, et al., 2012).

B. Connectivity
The connectivity framework supports bidirectional 

communication, depicted by the green dotted arrows in 
Fig. 2 for interactions between control plane instances, 
and by the green dashed arrows for communication 
between switches and control plane instances. It facilitates 
convergence during link failures and employs standard 
protocols, such as OSPF or IS-IS, to preserve the forwarding 
state (Koponen, et al., 2010).

The East-bound interface (red box in Fig. 2) allows SDN 
controllers to exchange information, whereas a West-bound 
interface can connect SDN controllers with legacy systems 
(Ahmad and Mir, 2021), (Hoang, et al., 2022).

Controllers can interconnect vertically (hierarchical) or 
horizontally (flat). However, intercontroller communication 
costs remain a significant challenge in distributed SDN 
environments (Blial, Ben Mamoun and Benaini, 2016), 
(Espinel Sarmiento, et al., 2021), (Alowa and Fevens, 2020).

C. Distributed Control Plane Instances
The control plane operates as a distributed system, 

with each instance functioning as a network operating 
system (NOS) (Koponen, et al., 2010), (Levin, et al., 
2012). Controllers oversee the management of the network 
state (Layer S) and provide programmatic interfaces for 
accessing and modifying control logic. Control plane 
instances collaborate within the cluster through distribution 
I/E, enabling SDN applications (Layer A) to interact with a 
simplified, abstract representation of the physical network 
(Koponen, et al., 2010), (Levin, et al., 2012). Each controller 
maintains a Network Information Base (NIB) housed in a 
database (yellow box in Fig. 2) (Levin, et al., 2012).

D. Control Logic
The control logic, represented by the green box in Fig. 2, 

operates on the controller’s API. It uses network state 
information to determine the intended network behavior 
(Koponen, et al., 2010), (Levin, et al., 2012).

E. Database
The database management system (yellow box in 

Fig. 2) is crucial for the distributed control plane, storing 
intra- and inter-domain information for each controller. 
It could be utilized as a method of information sharing 
between controllers, obviating the necessity for a specific 
communication protocol. SDN solutions use either SQL or 
NoSQL databases (Espinel Sarmiento, et al., 2021).

A distributed database architecture facilitates the scalability 
of the control plane and enhances its ability to manage 
system failures efficiently (Koponen, et al., 2010).

III. Distributed SDN Architecture challenges
While the SDN project has the potential to revolutionize 

and improve networks, it is still in its early phases of tackling 
a wide range of difficulties (Fig. 3), including scalability, 
reliability, consistency and synchronization overhead, 
interoperability, East–West interface implementations, and 
security (Informatique and Informatique, 2021), (Hussein, 
et al., 2018).

Although reliability and scalability are thought to be the 
two key drawbacks of centralized SDN control architectures, 
they are equally significant considerations when creating a 
physically distributed SDN architecture (Informatique and 
Informatique, 2021), (Hussein, et al., 2018), and (TS, 2019). 
This paper will address key issues such as interoperability 
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and security; however, the primary focus will be on the 
challenges related to the consistency and synchronization 
overhead.

A. Consistency and Synchronization Overhead
In a physically distributed architecture, consistency 

necessitates preserving an up-to-date network-wide 
perspective (Ahmad and Mir, 2021). Consistency management 
is achieved through an inter-controller synchronization 
process, which ensures that the network view is aligned 
across all controllers (Oktian, et al., 2017).

Addressing consistency challenges whereas considering 
trade-offs in SDN controller platforms is vital. Achieving 
consistency necessitates a synchronization process, which 
can impose significant overhead on the system. While lower 
consistency levels reduce synchronization overhead, they 
increase the risk of state conflicts. On the other hand, strict 
consistency enforces more frequent synchronization, leading 
to higher overhead in the control plane (Sakic, et al., 2017). 
This overhead increases latency and impacts the system’s 
scalability. Latency, often referred to as responsiveness, is the 
time the system requires to respond to flow requests (Tadros, 
Mokhtar and Rizk, 2019), (Hoang, et al., 2022), (Espinel 
Sarmiento, et al., 2021), (Informatique and Informatique, 
2021), (Levin, et al., 2012), (Akyildiz, 2014).

B. Interoperability
Interoperability among SDN controllers is essential for the 

effective operation of distributed controller systems. Another 
significant operational problem related to SDN’s maturity, 
growth, and commercial usage is the compatibility across 
various SDN controller systems from various suppliers (Yu, 
Qi and Li, 2020), (Informatique and Informatique, 2021).

The fact that each SDN controller has its own 
communication method makes it extremely challenging for 
SDN networks to communicate information between various 
domains (Yu, Qi and Li, 2020).

However, contrary to the wide acceptance of the 
standardization of OpenFlow’s southbound interface, the 

research community has not given the East–Westbound 
interface the required attention to provide interoperability and 
synchronization among SDN controllers. This is driven by 
the fact that there is no need for SDN network compatibility 
because the transition from the traditional network to SDN 
is still just a minor one. However, as SDN continues to 
demonstrate its benefits, The need for standard East-West 
protocol is essential to the internet’s existence in the near 
future (Hoang, et al., 2022).

C. Security
Another significant issue that needs to be researched 

is SDN security. The integrity of data flows between SDN 
controllers and switches is still not guaranteed (Informatique 
and Informatique, 2021). In addition, authentication 
procedures are urgently needed in distributed control 
architecture to validate and verify controller instances 
(Ahmad and Mir, 2021). This paper does not consider 
security issues, as the focus is primarily on applications that 
can tolerate a certain level of inconsistency, such as load-
balancing or routing applications.

IV. Distributed SDN Topologies and Qualitative 
Evaluation

Several research studies, such as Yu, Qi and Li, 2020, 
Hoang, et al., 2022, Espinel Sarmiento, et al., 2021), and 
Informatique and Informatique, 2021, have introduced 
a thorough evaluation of cutting-edge distributed SDN 
controller platforms.

Several topologies, such as hierarchical or flat, are used 
for distributed controller interconnection. The flat architecture 
can be logically centralized physically distributed, or fully 
distributed (Ahmad and Mir, 2021), (Espinel Sarmiento, 
et al., 2021). Logical classification in our research was 
adopted by (Espinel Sarmiento, et al., 2021), (Bannour, Souihi 
and Mellouk, 2018b), (Informatique and Informatique, 2021).

Fig. 4 illustrates some differences between these SDN 
distributed architectures and how each architecture preserves 
the network state. It distinguishes between local (domain-
specific) and global (network-wide) states. The local state 
reflects the current network status within a controller’s 
domain, tracking events such as host connections and link 
changes. In contrast, the global state represents the overall 
network status across all domains (Oktian, et al., 2017).

Each topology affects key issues in distributed SDN 
controllers, such as scalability, reliability, latency, consistency, 
and synchronization overhead (Keshari, Kansal and Kumar, 
2021), (Ahmad and Mir, 2021), (Oktian, et al., 2017), 
(Bannour, Souihi and Mellouk, 2018b), (Hu, Li and Huang, 
2014). Table I summarizes the characteristics of hierarchical, 
flat logically centralized, and flat fully distributed topologies 
based on these factors.

A. Hierarchical
The hierarchical architecture, such as Kandoo (Hassas 

Yeganeh and Ganjali, 2012) and B4 (Jain, et al., 2013), 

Fig. 3. The main challenges of physically distributed software-defined 
networking control.
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Table I
Distributed SDN Topology Characteristics

Distributed 
Controller Topology

Controller-to- 
Controller 
connectivity 
model 

ScalabilityRobustness 
(reliability)

Latency Managing consistency Synchronization 
Overhead

Real case scenarios

Hierarchical Vertical High Low (root 
controller 
SPOF)

High Centralized in the root 
controller 

Medium Kandoo (Hassas Yeganeh and 
Ganjali, 2012) and B4 
(Jain, et al., 2013) 

Logically  
Centralized 
Physically 
Distributed

Horizontal (Flat) Medium High Medium 
(depends on 
the technical 
execution of the 
solution) 

By synchronization and 
creating a global view

High/Medium 
(depending on the 
chosen consistency 
model)

Elasticon (Dixi, et al., 2014), 
HyperFlow (Tootoonchian 
and Ganjali, 2010), Orion 
(Ferguson, et al., 2021), 
DragonFlow (OpenStack 
Docs: Distributed Dragonflow, 
no date), Onix (Koponen,
et al., 2010), and ONOS (Open 
Network Operating System 
(ONOS) SDN Controller for 
SDN/NFV Solutions, no date)

Fully Distributed Horizontal (Flat) Very  
High 

Very  
High

Low Manage consistency at 
the application level 

Low (shares with 
other instances when 
necessary).

DISCO (Phemius, Bouet 
and Leguay, 2014) and ODL 
(Home - OpenDaylight, no 
date) 

Fig. 4. Distributed software-defined networking topologies.

organizes controllers in a vertical arrangement, with the 
root controller positioned at the top. This root controller 
manages the global network state, whereas local controllers 
are responsible for handling their specific domains. The root 
controller ensures network-wide connectivity by overseeing 

subordinate controllers (Blial, Ben Mamoun and Benaini, 
2016), (Ahmad and Mir, 2021), (Oktian, et al., 2017), 
(Espinel Sarmiento, et al., 2021).

While this method improves scalability over centralized 
systems, robustness remains limited due to the root controller 
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being a SPOF (Blial, Ben Mamoun and Benaini, 2016), 
(Ahmad and Mir, 2021), (Espinel Sarmiento, et al., 2021), 
(Informatique and Informatique, 2021).

Replicating the root controller across multiple controllers 
can reduce SPOF risk, but having too many root controllers 
can complicate coordination and reduce network efficiency 
(Oktian, et al., 2017), (Espinel Sarmiento, et al., 2021).

There are no East/West-bound API connections between 
the local SDN controllers in the cluster. Instead, they 
communicate solely with the root controller. This dependency 
for cross-domain communication introduces latency and 
performance degradation (Ahmad and Mir, 2021), (Oktian, 
et al., 2017), (Espinel Sarmiento, et al., 2021).

B. Flat
In flat architectures, controllers are arranged horizontally, 

each managing part of the network, whereas simultaneously 
carrying out the same responsibilities (Blial, Ben Mamoun 
and Benaini, 2016), (Ahmad and Mir, 2021).

To tackle consistency, flat systems can use either leader-
based or leaderless coordination. In leader-based systems 
(e.g., Onix [Koponen, et al., 2010], ONOS [Open Network 
Operating System (ONOS) SDN Controller for SDN/
NFV Solutions, no date], and ElstiCon [Dixi, et al., 
2014]), a cluster elects a leader to manage communication 
(Oktian, et al., 2017). Leaderless systems (e.g., HyperFlow 
[Tootoonchian and Ganjali, 2010] or DISCO [Phemius, 
Bouet and Leguay, 2014]), allow controllers to communicate 
directly, sharing equal roles (Oktian, et al., 2017).

Flat architectures enhance failure resilience and 
performance but complicate consistency management 
(Blial, Ben Mamoun and Benaini, 2016), (Informatique and 
Informatique, 2021).

When a horizontal interface is used, it means that in 
addition to the time needed for the system to reply to a user 
request locally (such as CPU, memory, and thread utilization), 
the time required to synchronize with remote sites and 
provide a final response must also be taken into account. The 
synchronization process will create a synchronization overhead 
affecting the system’s performance. The technical execution 
of the solution may cause this latency and will affect the total 
time required to provide an inter-site service, which affects 
the system responsiveness (Ahmad and Mir, 2021), (Oktianm, 
et al., 2017), (Espinel Sarmiento, et al., 2021).

The Flat architecture can be logically centralized physically 
distributed, or fully distributed (Blial, Ben Mamoun and 
Benaini, 2016), (Espinel Sarmiento, et al., 2021), (as per 
Fig. 3). Both topologies will be explained in the following 
subtitles.
Logically centralized physically distributed

In this architecture, each site has one controller responsible 
for intra- and inter-site operations, as seen in systems such 
as, HyperFlow (Tootoonchian and Ganjali, 2010), Onix 
(Koponen, et al., 2010), ONOS (Open Network Operating 
System (ONOS) SDN Controller for SDN/NFV Solutions, 
no date), ElstiCon (Dixi, et al., 2014), and Orion (Ferguson, 
et al., 2021). Whenever a controller creates or modifies a 

network resource, it broadcasts any changes (e.g., device or 
link failure) to other controllers through synchronizations. In 
synchronization, each controller in many domains must share 
a portion of their local network state with other controllers to 
build a global network state. However, no standards dictate 
what information must be shared (Blial, Ben Mamoun and 
Benaini, 2016), (Oktian, et al., 2017), (Tadros, Mokhtar 
and Rizk, 2019), (Hoang, et al., 2022), (Alowa and Fevens, 
2020), (Levin, et al., 2012).

Distributed hash tables, transactional databases, and 
partial quorum techniques (Saito and Shapiro, 2010) are a 
few examples of distributed, replicated storage formats that 
can be utilized to implement the NOS state distribution and 
management (Levin, et al., 2012), (Saito and Shapiro, 2010).

As shown in Fig. 3, a logically centralized physically 
distributed structure allows multiple controllers to share 
network information, functioning as a single controller. 
This design mirrors the original SDN proposal, enabling 
centralized network control logic whereas distributing 
responsibility across controllers. It allows management from 
a global network perspective, improving control in SDN 
environments (Blial, Ben Mamoun and Benaini, 2016), 
(Tadros, Mokhtar and Rizk, 2019), (Espinel Sarmiento, et al., 
2021), (Bannour, Souihi and Mellouk, 2018b).

There are several ways to obtain network information 
from SDN controllers. First, is polling, where controllers 
periodically request updates, even if no changes have 
occurred. Second, the more efficient publish/subscribe 
method, where controllers only receive updates when 
changes happen(Oktian, et al., 2017). In addition, a shared 
distributed data store allows controllers to exchange states 
(Espinel Sarmiento, et al., 2021).

The shift toward logical centralization of control within 
the distributed SDN paradigm helps mitigate the complexity 
of distributed systems. In this context, incorporating a 
Knowledge Plane into the architecture can leverage various 
machine learning (ML) techniques, such as Deep Learning. 
Collecting network knowledge and then utilizing that 
knowledge to control and manage the network, exploiting 
the capabilities of SDN logically centralized control 
(Mestres, et al., 2017).

However, these systems’ effectiveness depends on the 
capabilities provided by the database system. Even that some 
of them have specific database systems built for them such 
as ONOS (Open Network Operating System (ONOS) SDN 
Controller for SDN/NFV Solutions, no date) distributed 
controllers linked through Atomix system (Atomix, no 
date), they fall short of issues such as network partitioning 
(depending on the database system) or data locality awareness 
(Espinel Sarmiento, et al., 2021).
Fully distributed

In fully distributed architectures such as DISCO (Phemius, 
Bouet and Leguay, 2014), controllers are both physically 
and logically distributed. Each controller maintains a local 
network view and communicates with other controllers 
only when necessary to exchange service-specific data. This 
approach reduces communication overhead and alleviates 
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scalability limitations encountered in centralized designs 
(Blial, Ben Mamoun and Benaini, 2016), (Espinel Sarmiento, 
et al., 2021), (Informatique and Informatique, 2021), 
(Bannour, Souihi and Mellouk, 2018b).

Fully distributed architecture avoids the initial tendency of 
SDN by giving many controllers different roles throughout 
the network (Blial, Ben Mamoun and Benaini, 2016). This 
architecture suits multi-domain heterogeneous environments, 
especially WANs and overlay networks. It has the ability 
to function under multiple Autonomous Systems (ASes) 
operating under various administrative domains in large-scale 
networks such as the Internet (Bannour, Souihi and Mellouk, 
2018b), (Informatique and Informatique, 2021).

In this architecture, intra-domain modules handle core 
functions such as network monitoring, whereas inter-domain 
modules manage communication between domain controllers 
using protocols such as Advanced Message Queuing Protocol 
or Representational State Transfer APIs for the East-West 
interface (Almadani, Beg and Mahmoud, 2021), (Ahmad 
and Mir, 2021), (Espinel Sarmiento, et al., 2021), (Bannour, 
Souihi and Mellouk, 2018b).

Fully distributed systems provide robustness against 
network disconnections, as failures affect only part of 
the infrastructure (Espinel Sarmiento, et al., 2021). Fully 
distributed solutions face drawbacks such as static division 
into independent entities, contrasting with David D. Clark’s 
Knowledge Plane theory (Clark, et al., 2003), which 
advocates centralized management. In addition, network 
optimization is local, with entities following their own 
policies rather than serving the overall network’s interests 
(Bannour, Souihi and Mellouk, 2018b), (Informatique and 
Informatique, 2021).

Fully distributed systems face challenges in dynamic 
environments, where conflict resolution and tasks such as 
dynamic IP assignment are more complex. Moreover, in 
fully distributed architectures, consistency is managed at 
the application level due to independent local databases. 
The East-West interface lacks built-in conflict resolution, 
requiring additional calls to handle conflicts. These solutions 
focus on read/write operations and database concurrency, 
which is beyond our scope (Espinel Sarmiento, et al., 2021).

The researchers (Hu, Li and Huang, 2014) evaluate the 
SDN controller’s scalability in handling flow initiation 
requests. According to their findings, the best scalability 
points are found in the flat fully distributed SDN controller 
with a slight gap. The hierarchical model competes for 
second place. Interestingly, in their experiment, the logically 
centralized physically distributed SDN controller suffers 
significantly (Oktian, et al., 2017).

From Table I and the discussion, logically centralized 
physically distributed architectures are better for management 
solutions due to the global network view. Applications can 
access and control the environment from any part of the 
cluster (Espinel Sarmiento, et al., 2021). However, the 
synchronization required for consistency introduces overhead, 
reducing scalability and increasing latency. The degree of 
synchronization depends on the consistency model used. In 
the next section, we explore different consistency approaches.

V. Network State Consistency
In distributed SDN architectures, controllers must maintain 

consistent network information across their data structures 
(Ahmad and Mir, 2021), (Informatique and Informatique, 
2021), (Zhang, Wang and Huang, 2018).

According to the (CAP) theorem, (C) Consistency, (A) 
Availability, and (P) Partition Tolerance, only two of the 
three qualities can be met in case of failure (Brewer, 2000), 
(Seth Gilbert and Nancy Lynch, 2002), (Panda, et al., 2013). 
A network with several highly available partitions (A and 
P) specifically results in a lower level of consistency. As a 
result, this outdated state impacts how applications work 
correctly. A system with significant consistency (C and P), on 
the other hand, leads to reduced network availability (Hoang, 
et al., 2022).

In addition, on a regular working system without 
considering failure, the choice between consistency and 
latency has also impacted distributed SDN architecture. This 
tradeoff with CAP is combined in the novel formulation 
PACELC (Abadi, 2012)—the PACELC theorem, which 
stands for Partitioned, Availability, Consistency Else Latency, 
Consistency. In light of this new formulation, in the case 
of network partitioning (P), one must choose between 
availability (A) and consistency (C) in a distributed computer 
system. Else (E), if the system is functioning normally in the 
absence of partitions, one must choose between latency (L) 
and consistency (C) (Abadi, 2012).

These theorems are essential as the distributed SDN 
controller, specifically, the logically centralized physically 
distributed architecture, uses the datastore to store the state 
of the entire network, which needs to be consistent.

The distributed SDN controller will probably inherit the 
characteristic of the implemented datastore (i.e., whether it is 
CP or AP) (Oktian, et al., 2017).

The consistency issue arises from the hardness of 
resolving the update problems in the network. In other 
words, maintaining consistency depends on the order of 
operations computed sequence in the execution network 
devices (Foerster, Schmid and Vissicchio, 2019).

Besides the degradation of application performance, 
inconsistency can cause other severe problems in the 
networks, such as isolation and reachability violation, black 
holes, and forwarding loops (Aslan and Matrawy, 2016), 
(Poularakis, et al., 2019).

Three consistency approaches can be applied: strong, 
eventual, and adaptive. Table II compares the consistency 
models according to Consistency level, Scalability, 
Availability, State synchronization Overhead, and Latency.

A. Strong Consistency Model
Strong consistency ensures that controllers operate 

with a consistent global view (Levin, et al., 2012). Strong 
consistency is based on a blocking synchronization procedure 
that prevents switches from reading data till the controllers 
are fully updated. It reduces the scalability and availability 
of the network and limits the system’s responsiveness 
(Levin, et al., 2012), (Informatique and Informatique, 2021).
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Applications requiring high reliability, such as security-
sensitive systems (e.g., firewalls), rely on strong consistency 
to prevent unauthorized traffic and ensure data accuracy 
(Aslan and Matrawy, 2016), (Espinel Sarmiento, et al., 2021), 
(Foerster, Schmid and Vissicchio, 2019).

However, most studies on distributed SDN networks 
focus on strong consistency (Hoang, et al., 2022). Network 
application developers may decide not to design their 
programs to be strongly consistent for various reasons. 
Strong consistency increases latency and reduces availability, 
which is problematic in dynamic networks with frequent 
node failures. Applications that require low latency or high 
availability often favor more flexible consistency models 
to maintain performance and responsiveness (Aslan and 
Matrawy, 2016).

B. Eventual Consistency Model
Eventually, consistent designs incorporate information as 

it becomes available and eventually reconcile modifications 
as each domain has knowledge of them. In other words, all 
controller copies will “eventually” converge over time and 
achieve global network view consistency. This resolves the 
problem of blocking during the synchronization period, which 
is encountered in strong consistency (Levin, et al., 2012), 
(Informatique and Informatique, 2021), (Sakic, et al., 2017).

Accordingly, controllers can handle higher update rates 
and react quicker, but they can temporarily have inconsistent 
network views, which could lead to inappropriate 
application behavior (Levin, et al., 2012), (Informatique 
and Informatique, 2021), (Saito and Shapiro, 2010). Many 
emerging applications for SDN controller platforms with high 
availability and scalability on a large scale choose eventual 
consistency (Informatique and Informatique, 2021).

C. Adaptive Consistency Models
Adaptively consistent architecture for distributed SDN 

controllers transforms the inconsistency issue into an 
automatic control in which the adaptivity module will 
automatically adjust the value of the synchronization period 
according to the performance of the target application. The 
adaptivity module utilizes a feedback loop from measurement 
or/and prediction extracted data from the fluctuating network 
environment (Aslan and Matrawy, 2016). In other words, 
the state synchronization takes place in accordance with 
performance and consistency restrictions established by 
the application at runtime by employing triggers according 
to specified thresholds to enable dynamic change of a 
consistency level (Bannour, Souihi and Mellouk, 2018a), 
(Sakic, et al., 2017). A system can use adaptive consistency 
to deploy applications that tolerate some inconsistency.

From Table II, whereas a strongly consistent network state 
leads to increased overhead, a weakly consistent network 
state will produce good performance but less accurate 
network functioning. Adaptive consistency is an effort to 
create a solution between the two consistency extremes.

VI. Distributed SDN: Future Direction
Standard static eventual consistency is commonly 

used for logically centralized physically distributed SDN 
Control. It suggests a method of synchronization process at 
fixed intervals, such as the one used by Orion (Ferguson, 
et al., 2021), in modern SDN systems to achieve effective 
scalability. It is argued that it provides no bounds on the 
tolerated state inconsistencies by SDN applications (Bannour, 
Souihi and Mellouk, 2018a). The fixed synchronization 
periods may result in utilizing outdated data, disrupt the 
network, and cause the application to perform less well by 
sending unnecessary synchronization messages.

Adopting the idea of adaptive consistency in SDN 
controllers is necessary to leverage administering solutions 
with a logically centralized physically distributed approach. 
Adaptive consistency addresses the limitations of static 
eventual consistency and strong consistency approaches 
(Aslan and Matrawy, 2016), (Bannour, Souihi and Mellouk, 
2018a). This model combines the idea of eventual consistency 
with a cost-based approach to adjust the consistency level 
based on observed state convergence and the inefficiencies 
caused using stale state as inputs (Sakic, et al., 2017).

An adaptive controller can be defined as a controller that 
has the ability to dynamically and autonomously adjust its 
configuration to reach a predetermined level of performance 
based on its requirements and measured in developed metrics 
(Aslan and Matrawy, 2016), (Bannour, Souihi and Mellouk, 
2018a). Several works in the literature recently introduced 
adaptive consistency, such as Aslan and Matrawy, 2016, 
Bannour, Souihi and Mellouk, 2018a, and Sakic, et al., 2017.

From Table II and the discussion, the key advantages and 
motivations behind adopting an adaptive consistency model 
for the logically centralized physically distributed SDN 
architecture are as follows:

Reduced Complexity: By dynamically adjusting 
the consistency level, the adaptive model reduces the 
complexity of application development. Developers do not 
need to explicitly handle synchronization or worry about 
inconsistencies in real time. The model abstracts away the 
complexity of consistency management, making it easier to 
build and maintain applications.

Minimized Controller State Distribution Overhead: In 
traditional synchronization approaches, controllers often 

Table II
Consistency Models for Logically Centralized Physically Distributed SDN Architecture Comparisons

Consistency model Consistency Level Scalability Availability State Synchronization overhead Latency
Strong consistency Very high Low Low Very High High 
Eventual consistency Low High High Medium Medium 
Adaptive consistency Medium High High Low Low 
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exchange unnecessary synchronization messages, leading 
to increased overhead. The adaptive consistency model 
removes the distribution of unused messages, reducing 
the synchronization overhead while still maintaining the 
required level of consistency. This optimization improves the 
scalability and performance of the system.

Responding to Changing Network Conditions: SDN 
environments are dynamic, and network conditions can 
change rapidly. The adaptive consistency model allows 
controllers to respond quickly to these changes. It ensures 
that the system adapts its consistency level based on observed 
convergence rates, enabling controllers to make decisions 
based on the up-to-date information available.

Reduced Controller-to-Controller Contacts: By adjusting 
the consistency level based on observed state convergence, 
the adaptive model can minimize the frequency of controller-
to-controller contacts. This reduction in inter-controller 
communication leads to improved system response time and 
efficiency.

VII. Conclusion
Distributed SDN architectures offer significant advantages 
over centralized designs, particularly in managing large-scale 
networks and addressing challenges such as SPOF, scalability, 
reliability, and performance bottlenecks. This study has 
shown that distributed architectures—whether hierarchical, 
flat, or logically centralized but physically distributed—
each have their strengths and tradeoffs based on network 
needs. Hierarchical architectures improve scalability but 
introduce higher latency due to reliance on a root controller. 
Flat architectures enhance reliability and performance but 
complicate consistency management.

The logically centralized physically distributed architecture 
offers a balanced approach by combining centralized control 
logic with a global network perspective. This architecture is 
more efficient in resolving conflicts at the East-West interface 
and is better suited for global optimization than fully 
distributed architectures, which focus on local optimizations 
in multi-domain environments. However, synchronization 
overhead between controllers remains a key challenge, 
impacting scalability and latency.

Our analysis of consistency models—strong, eventual, 
and adaptive—reveals that strong consistency ensures data 
accuracy but adds overhead, whereas eventual consistency 
improves scalability at the cost of temporary inconsistencies. 
The adaptive consistency model, which dynamically adjusts 
synchronization levels based on real-time conditions, strikes 
a balance by reducing overhead and maintaining adequate 
performance, particularly for applications such as load 
balancing and routing.

In conclusion, our findings suggest that the logically 
centralized physically distributed architecture, combined 
with adaptive consistency, offers the best solution for 
managing large-scale fluctuating networks by minimizing 
synchronization overhead and improving scalability and 
reliability. Future work should further explore dynamic 

consistency models to better optimize the balance between 
consistency, scalability, and performance in SDN systems.
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