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Abstract – Micropollutants, an array of organic compounds such 
as pharmaceuticals, personal care products, and agrochemicals, are 
pervasive in contemporary ecosystems, posing significant threats 
to environmental health even in trace concentrations. Therefore, 
exploring an efficient and effective technique to remediate these 
pollutants is essential. Nitrification–denitrification (ND) have 
emerged as one of the most sustainable treatment methods 
that effectively mitigate micropollutants while facilitating their 
biotransformation. This review provides a comprehensive analysis 
of the intricate interactions fundamentally and mechanically 
between the ND process and the influencing factors, such as 
dissolved oxygen (DO) concentration and pH optimization, which 
are vital to the success of micropollutant biotransformation. 
Insights gained from this examination contribute to a deeper 
understanding of microbial strategies, which offer potential avenues 
for sustainable environmental management and the protection of 
ecosystem integrity.

Index Terms – Biotransformation, Denitrification, Micropollutant, 
Nitrification, Wastewater treatment

I. Introduction
Nitrification and denitrification (ND) are crucial processes 
in wastewater treatment and environmental sciences, 
playing a significant role in the fate and transformation of 
micropollutants such as pharmaceuticals, personal care 
products, and agrochemicals, are typically present in 
wastewater at concentrations ranging from a few nanograms 
per liter to several micrograms per liter (Suneethi et al., 
2015). Despite their low concentrations, these compounds 
can be toxic, mutagenic, genotoxic, and disruptive to 

endocrine systems, raising concerns about their impact on 
environmental and human health (Alzate Marin, Caravelli 
and Zaritzky, 2016; Miao et al., 2019). Conventional 
wastewater treatment plants (WWTPs) primarily focus 
on removing pathogens, total suspended solids (TSS), 
biochemical oxygen demand (BOD), and chemical oxygen 
demand (COD) (James and Vijayanandan, 2023), whereas 
nitrogen and micropollutants are left behind in the discharged 
of the so-called treated wastewater (Phan et al., 2014). This 
partially treated wastewater discharge is a significant global 
concern, with an estimated 80% of wastewater worldwide 
being inadequately treated (WWAP, 2017). This underscores 
the urgent need for sustainable and cost-effective solutions 
for nitrogen and micropollutant removal.

Biological treatment methods, particularly those 
involving ND, are crucial in eliminating the amount of 
existing nitrogen and the majority of the micropollutants. 
Because ND processes utilize microbial activity to convert 
ammonia (NH₃) into nitrogen gas (N₃), simultaneously 
reducing nitrogen levels and transforming micropollutants. 
However, the efficiency of ND processes is influenced by 
various factors, including the types of pollutants, microbial 
community composition (the variety of microorganisms and 
their food [M\F]), and operational conditions such as DO 
concentration, pH, and hydraulic retention time (HRT), the 
retention time of the sludge (SRT), aeration time, temperature, 
salinity, the sludge characteristics, and reactor configuration 
(Smith, 1978; Wang et al., 2020). Because the sensitivity 
of the microorganisms increases exponentially with various 
sources of pollutants; hence, microbial sensors could be 
used to quantify nitrifiable compounds and detect the effects 
of nitrification inhibiting (Hammar, 2002). Reid (1907) 
explained that the efficiency of this system is indirectly 
related to the pore size of the used filter particles, so the finer 
the particles are the better the effluent will be to discharge. In 
addition, dissolved oxygen concentration (DO), the ratio of 
carbon to nitrogen (C:N), the variety of microorganisms and 
their food (M\F), the retention SRT, the retention time for the 
hydraulic (HRT), pH, aeration time, temperature, salinity, the 
sludge characteristics, and reactor configuration contribute in 
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the efficiency determination (Smith, 1978; Wang et al., 2020). 
Each one of the mentioned factors has its contribution to the 
system efficiency, for example, existing DO is crucial in the 
ND process as it directly proportioned to removing efficiency 
of total nitrogen (91.17% total nitrogen removal at 1 mg/L 
DO concentration) (Huang et al., 2022).

NO3
−-N is not the only pollution that needs attention, 

micropollutants, such as pharmaceuticals, personal care 
products, industrial chemicals, and pesticides that are 
anthropogenic compounds (Luo et al., 2014) as well are 
vital in the cleaning process. The concentration of these 
micropollutants varies from a few ng/L to several μg/L (Wang 
and Wang, 2016). Even though these micropollutants exist 
in very low concentrations, they can be toxic, mutagenic, 
genotoxic, resistant to antibiotics, and disruptive to endocrine 
(Marti et al., 2014).

This review aims to synthesize current research 
on the effectiveness of ND in wastewater treatment, 
with a particular focus on the factors that enhance the 
process for both nitrogen and micropollutant removal. 
Therefore, by analyzing existing knowledge, the process’s 
adaptability can be assessed in diverse treatment scenarios 
and explores the fate of micropollutants in these systems. 
The goal is to provide insights that will inform the 
development of more efficient and sustainable wastewater 
treatment strategies.

II. Mechanism and Pathway of Nd
According to Liu et al. (2010), depending on the existing 

microbial populations and the achieved redox conditions with 
the flocs’ physical nature, the mechanisms in this process can 
be categorized into several pathways: direct conversion of 
ammonia into di-nitrogen gas, and autotrophic nitrification, 

heterotrophic denitrification, heterotrophic nitrification, 
and aerobic denitrification (Liu et al., 2010; James and 
Vijayanandan, 2023) (Fig. 1). Besides, the production of 
various microbial enzymes contributes to the biological 
degradation pathways. The floc size and density are essential 
contributors to the DO diffusion, Aeration rate and time, 
organic matter, and nitrogen concentration (He, Xue and Wang, 
2009). The key factor in biological treatment is the microbial 
community, therefore enhancing the existence of the vital 
microorganisms based on the types of micropollutants through 
optimizing the environmental condition, such as carbon source, 
temperature, pH, aeration pattern, DO concentration, and free 
ammonia is crucial (Xiao and Tang, 2014). For example, 
autotrophic and heterotrophic bacteria grow in two different 
environments depending on the DO concentration, therefore, 
for these two different bacteria to coexist, enhancement should 
be the priority (Chang et al., 2019).

A. Conventional Autotrophic Nitrification and Heterotrophic 
Denitrification

All the sources of nitrogen (total nitrogen) when it 
reaches the sewer system immediately naturally undergo 
a series of transformations starting with the hydrolysis of 
organic nitrogen to ammonia (NH3), then it automatically 
converts into ammonium (NH4

+) depending on the pH of 
the water (American Water Works Association, 2013). The 
amount of NH4 increases when the pH is low (acidic water) 
and vice versa (Bueno et al., 2018). The presence of novel 
bacteria in conventional nitrification is involved mostly in 
the establishment of the nitrification and denitrification of 
hydrolyzed sewage (Chai et al., 2019; Jia et al., 2020); thus, 
process will take place in mainly two stages; nitrification 
and then denitrification (Alzate Marin, Caravelli and 
Zaritzky, 2016).
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Fig. 1: Pathways of nitrogen transformation (James and Vijayanandan, 2023).
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First: Autotrophic nitrification
The autotrophic bacteria (nitrifiers) using ammonia 

monooxygenase (AMO) and nitrite reductase enzymes 
convert the existing ammonium (NH4 

+-N) into 
nitrite (NO2 

−-N) and then oxidize the latter into 
nitrate (NO3 

−-N) in various biological processes using DO 
(Smith, 1978). In this stage, most total organic carbon is 
reduced compared to the anaerobic zone (50% of COD 
is removed) (Khin and Annachhatre, 2004; Alzate Marin 
et al., 2016). Furthermore, research indicates that nitrifying 
enzymes significantly contribute to the cometabolic 
biotransformation of organic micropollutants. This process 
involves the simultaneous oxidation of ammonia and the 
degradation of various pollutants, including pharmaceuticals, 
under nitrifying conditions (Kennes-Veiga, et al., 2022). In 
addition, micropollutant degradation can be enhanced by 
certain phosphorus-accumulating organisms (PAOs) during 
nitrification (Kolakovic et al., 2022).

The nitrification process is sensitive to environmental 
factors such as the depth of the wastewater, pH, temperature, 
and the presence of specific chemicals, for example, 
nitrification can be enhanced by adding CaO, which 
maintains a pH of 8–9, whereas inhibitory substances 
such as chlorine lime and aluminum sulfate can hinder the 
process (Smith, 1978; Thakur and Medhi, 2019). In addition, 
the stability of nitrification is often challenged by the 
accumulation of nitrite-oxidizing bacteria (NOB) in nitrite-
rich conditions (Li et al., 2013), which can be mitigated by 
optimizing the growth environment for nitrifiers (Di Capua 
et al., 2022). However, this could be enhanced through 
optimum conditions provision for the microorganisms, which 
leads to a significant increase in the efficiency of the process 
hence overcoming the limitations (Abu Bakar et al., 2018; 
Ma et al., 2017) which also make the structure cost-effective 
(Yan et al., 2019; Yang and Yang, 2011).
Second: Heterotrophic denitrification

This is a key process in environmental engineering, that 
is performed by many different groups of microbes, such as 
Bacillus cereus and Bacillus tequilensis (Saïd et al., 2014). 
Following nitrification, when oxygen is depleted (under 
anoxic conditions), where heterotrophic bacteria use nitrate 
as an electron acceptor in the absence of oxygen for their 
respiration and the creation of nitrogen gas (N2) which 
bubbles out of the water (Zhang, Yang and Furukawa, 
2010). This process not only reduces nitrogen levels but 
also decreases biochemical oxygen demand (BOD) by up 
to 80% as declared by Zhang, Yang and Furukawa, 2010. 
Interestingly, denitrification might occur even in well-
oxygenated conditions within particulate matrices, where 
microcolonies of denitrifying bacteria metabolically shade 
each other (Smriga et al., 2021). Besides, Xu et al., (2015) 
explained that simultaneous nitrification and denitrification 
are more efficient and promising in removing nitrogen, 
chemical oxygen demand, sulfide, and micropollutants. 
Although stimulated nitrification–denitrification (ND) 
are cost-effective, consumes low energy, produces little 
sludge, and has a small footprint as elucidated by James 

and Vijayanandan in 2023, it cannot be applied to treat 
mainstream wastewater. During this process, nitrite and 
nitrate, nitrous oxide, and nitric oxide reductase are produced 
by denitrifiers to catalyze the reactions (Singh et al., 2022).

B. Heterotrophic Nitrification and Aerobic Denitrification
Denitrification can occur by different types of aerobic 

heterotrophic bacteria that produce N2 gas using NO3 
−-N as 

oxidizing agents; however, the vital enzyme that is essential in 
this process is periplasmic nitrate reductase, which is normally 
found in aerobic nitrifiers (Bucci et al., 2021; Ji et al., 2015; 
Qu et al., 2015); therefore, aerobic denitrifies (heterotrophic 
nitrification) utilize organic carbon to perform nitrification 
(Rout et al., 2017; Song et al., 2021). Removing nitrogen 
under saline conditions using isolated halophilic stains, and 
Halomonas campisalis ha3 was efficient (Guo et al., 2013). 
This process is particularly efficient in environments with low 
temperatures or high salinity, where traditional nitrification and 
denitrification processes might be less effective (Song et al., 
2021).

C. Direct Conversion of Ammonia into Di-nitrogen Gas
In this process, some microorganisms, such as Cupriavidus, 

and Thiosphaera pantotropha, convert NH4
+ to N2 directly 

by first, producing hydroxylamine (NH2OH) by AMO under 
aerobic conditions through hydroxylation of NH4 +-N, and 
next, oxidizing NH2OH to NO2 −-N by hydroxylamine 
oxidase, then the latter is directly transferred to N2 (figure 1) 
(James and Vijayanandan, 2023). This pathway, while less 
common, highlights the diversity of microbial strategies 
available for nitrogen removal in wastewater treatment.

III. Factors Affecting Nd
Physicochemical and operational parameters are the key 

factors that control the efficiency of this process; therefore, 
optimizing these factors helps in treating wastewater using 
the ND process. The essential factors that play a role in the 
procedure are as follows:

A. pH
In general, the performance of the ND system can be 

evaluated using pH as an indicator, because pH in the reactor 
controls the amount of the existing microorganisms and 
their types as well (Hayatsu, Katsuyama and Tago, 2021; 
Huang et al., 2023) 3.5 g alkalinity is produced due to the 
reduction of 1 g NO3 –N in denitrification, whereas 7.14 g 
of alkalinity is consumed due to the oxidation of 1 g NH4 
+–N in nitrification; thus, pH can be maintained without any 
chemical additions (He, Xue and Wang, 2009). In addition, 
lead and copper are released from their bearing materials 
due to the reduction in pH and DO by nitrification (Zhang, 
Yang and Furukawa, 2010). Lead release increased from lead 
piping when pH was >7.5 (100 mg/L alkalinity as CaCO3); 
however, soluble lead release increased 65 times more when 
pH was < 6.5 (American Water Works Association, 2013). 
Maintaining an optimal pH is critical for both processes, 
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generally within the range of 6.5–7.5 for denitrification 
(Gan et al., 2019; Hayatsu, Katsuyama and Tago, 2021; 
Huang et al., 2023) and 8–8.4 for nitrification (He, Xue and 
Wang, 2009). For the highest specific rate of nitrate reduction, 
a pH of 10.5 may be required (Dhamole et al., 2008), 
whereas a range of 7–7.5 is optimal for overall ammonium 
and total nitrogen removal (Hossini et al., 2015). However, 
the acidophilic partial nitrification process recently has been 
developed for nitrification to occur effectively at a pH of 
lower than 6 even achieving stable nitrogen removal rates at 
5.36 (Qian et al., 2019; F. Zhang et al., 2024). Therefore, the 
biotransformation of micropollutants’ efficiency is determined 
significantly by the pH (Zhou et al., 2023)

B. Temperature
Temperature controls microbial growth, as it affects enzyme 

denaturation, metabolism rate, and the overall efficiency of 
the ND process (Zhang et al., 2009). This parameter is directly 
proportioned to the micropollutant biotransformation and ammonia 
oxidation rate; however, it is inversely proportional to DO 
concentration (Fernandez-Fontaina et al., 2012). Hence, inhabited 
denitrification occurs when the temperature gets lowered (around 
15°C) (Kanda et al., 2016), while the removal efficiencies drop 
from 98.0% at 18°C to 78.1% at 13°C for nitrification (Zhang 
et al., 2019). The optimum temperature for nitrifiers is 22–27°C, 
whereas it is 20–40°C for denitrifiers (He, Xue and Wang, 2009). 
Nitrate nitrogen removal was nearly 99.26% at 40°C (Qu et al., 
2022). The activity of certain microbial pathways increases at 
higher temperatures causing the N2O gas emission which leads to 
a potent greenhouse gas (Nair et al., 2021). Hence, enhancing the 
ND process requires maintaining a temperature range of 18–35°C 
(James and Vijayanandan, 2023).

C. Free Ammonia and Salinity
Free ammonia and salinity can significantly limit 

the existence of both the growth of ammonia-oxidizing 
bacteria (AOB) and NOB (Xiao and Tang, 2014; Zhu et al., 
2015). The efficacy of AOB in degrading pharmaceutical 
compounds has been documented, as the broad substrate 
specificity of AOB allows them to metabolize a variety 
of micropollutants, thereby improving their removal from 
wastewater (Sharma et al., 2023).

It has been indicated that nitrification can be promoted 
when the concentration of free ammonia is nearly 10–
15 mg/L, whereas Nitrosomonas which is essential for the 
effective nitrification processes becomes abundant the higher 
levels (Statiris et al., 2022; Sun et al., 2012).

Besides, salinity is inversely proportional to the 
ammonium oxidation rate; higher salinity levels decrease the 
ammonium oxidation rate, with a reduction by half observed 
when salinity increases from 2% to 1% (She et al., 2018). 
In addition, within high saline wastewater, halophilic or 
halotolerant species that are not that efficient at removing 
nitrogen will increase (Arumugham et al., 2024a; Zhou et al., 
2023). At high salinity, ND can be enhanced through the NO2 
−-N pathway, because NOB are more sensitive to the salinity 
(Corsino et al., 2016).

D. DO Concentration
The existence of DO is a crucial factor that determines 

the type of bacteria that work on the nitrification (needs 
>2 mg/L) and denitrification (<0.2 mg/L) process (Pochana 
and Keller, 1999). High DO is necessary for the maximum 
removal of COD and NH4 

+N, as the availability of organic 
carbon is low in the flocs (James and Vijayanandan, 2023). 
However, nitrogen removal efficiency decreases when DO 
levels are higher than 3 mg/L, this also leads to increased 
nitrous oxide emissions (Li et al., 2020).

Sarioglu et al. (2009) manifest that around 1.8 mg O2 
per litter is sufficient to remove about 85–95% nitrogen for 
sustaining simultaneous ND in a membrane bioreactor. On the 
contrary, the persistence of certain micropollutants increases 
in the oxygen-activated sludge ND process (Levine, Meyer 
and Kish, 2006). Besides, the proliferation of heterotrophic 
bacteria is promoted due to the organic carbon utilization that 
leads to less organic carbon penetration into flocs (Liu et al., 
2010), thus, with a high rate of DO, the electron acceptors 
shift from NO3 −-N/NO2 −-N to oxygen for denitrifies. 
Therefore, to improve the breakdown of micropollutants, 
recent advancements in wastewater treatments have focused 
on optimizing DO levels (Zhang et al., 2024).

E. Food/Microorganism (F/M)
The F/M ratio is essential for reducing competition 

between heterotrophic and autotrophic nitrifiers. Besides, 
the provision of a sufficient amount of carbon substrates 
for denitrification is important (James and Vijayanandan, 
2023). A low C/N ratio typically enhances nitrification, 
whereas denitrification gets suppressed; thus, it is essential 
for micropollutants to be metabolized and transformed by 
microorganisms (Arumugham et al., 2024a). F/M can be 
increased due to the maintenance of a high concentration 
of mixed liquor volatile suspended solids in the membrane 
bioreactor, leading to an increase in NH4 +-N Removal (He, 
Xue and Wang, 2009).

F. HRT
The contact time between microorganisms and pollutants 

is important because the removal efficiency lowers once the 
contact time is insufficient (Wang et al., 2017a). HRT also 
impacts the diversity and richness of microbial communities, 
which are crucial for effective denitrification (Liu et al., 
2010). Chang et al., (2019) explain that removing NH4 
+-N and total nitrogen (TN) decreases by 42.11%, and 
49.5% when the retention time was lowered from 12 h to 
4 h, respectively. Even with low HRT, the availability of 
carbon substrate can maintain high denitrification efficiency 
(Pous et al., 2017a; Wang et al., 2017a). Song et al., 
(2020) declared that, for maximizing nitrogen removal, it is 
necessary to have an optimal HRT of around 5–6 h, based 
on the influent nitrate concentration, whereas denitrification 
performance improves when HRT get increased, however, 
excessively long HRTs cause nitrite accumulation and 
decrease treatment efficiency (Wang et al., 2017b). A study 
highlighted that increasing HRT can improve denitrification 
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performance by providing sufficient contact time between 
substrates and denitrifying bacteria. Optimized HRT ensures 
efficient hydraulic shear, which helps in forming denitrifying 
granular sludge. However, excessively long HRTs may lead 
to decreased treatment efficiency and nitrite accumulation, 
indicating a need for careful management of HRT to balance 
performance and efficiency (Pous et al., 2017b). In general, 
HRT through ND processes enhances the biotransformation 
of micropollutants (Ilies and Mavinic, 2001).

G. SRT
SRT is a critical loading parameter that influences the 

growth rate of microorganisms, nutrient transformations 
involved in ND, effluent concentrations, and treatment 
efficiency (Clara et al., 2005), especially in the secondary 
clarifier, where it can impact effluent quality (James et al., 
2015). Longer retention times may provide microbes with 
more time to perform these processes, whereas shorter 
retention times could potentially limit their effectiveness; 
thus, optimizing SRT is essential in managing and enhancing 
the efficiency of ND systems. In general, SRT is longer than 
HRT to allow sufficient time for microbial reproduction 
(Clara et al., 2005). It has been indicated that for nitrification 
to be effective and efficient, 10–20 days is vital, whereas the 
optimal SRT is 10–30 days for efficient denitrification (Li 
and Wu, 2014).

H. Aeration Time
Ammonia-nitrogen oxidation is affected by the aeration 

rates and patterns, for instance, 99% nitrification efficiency 
was achieved with the aeration rates of 9 L-air/min (Mota 
et al., 2005). Besides, the removal and the composition of 
nitrifying bacterial communities greatly lie on lengths of 
aeration and non-aeration periods, for example, higher 
levels of certain AOB were achieved at short aeration times 
(e.g., 30 minutes), but for effective denitrification longer 
non-aeration periods (up to 4 h) was essential (Landi and 
Lu, 2022). Thus, oxidizing NH4 +-N completely is based 
on the aeration time (Abbassi, et al., 2014); however, 
temperature plays an important role as well, which is 
inversely proportioned with aeration (Zhang et al., 2009). 
Over-aeration can lead to NO₃₃-N accumulation and the 
deterioration of nitrification efficiency (Peng et al., 2004). 
Recently, the importance of aeration has been interconnected 
with ND processes to achieve the most effective treatment 
of wastewater containing micropollutants (Ghasemi, Hasani 
Zonoozi and Hoseini Shamsabadi, 2024).

IV. Reactor Configuration
Two factors control the efficiency of the configuration: 

the gradient of DO concentration, and the creation of an 
anoxic microenvironment inside the flocs (Yan et al., 2019). 
Besides, the intermittent feeding and microbial community 
composition represent the reactor conditions that significantly 
influence the removal efficiency of micropollutants 
(Gonzalez-Gil, Carballa and Lema, 2017).

The reactor should be designed in a way that guarantees 
the coexistence of nitrifiers and denitrifiers at a gradient 
concentration of DO; furthermore, the formation of flocs 
that have optimum size and density is essential in the reactor 
(James and Vijayanandan, 2023). For instance, in the Closed 
Down-Flow Hanging Sponge Reactor, DO concentration 
should be 1.2 mg-O2/L to achieve significant nitrite 
production while maintaining high ammonium removal rates 
(Landi and Lu, 2022).

Zhang et al., in 2009, claimed that the thickness of biofilm 
in the attached growth system affects total nitrogen removal 
and organic carbon significantly. The thicker the biofilm is, 
first; the more diffusion of organic carbon occurs using less 
oxygen (Li and Irvin, 2007), second; a favorable anoxic 
environment denitrifying bacteria can be developed due to 
the penetration of oxygen (0.20–0.25 mm depth) into the 
thicker biofilm (Gieseke et al., 2002). Besides the thickness, 
aeration time is vital as well, for example, the penetration 
increases up to 1.5 mm when the time is increased up 
to 3hrs (James and Vijayanandan, 2023). To optimize 
and enhance, this process, prediction, and prevention of 
interferences of biotransforming micropollutants with a focus 
on the biodegradability of potential inhibitory compounds is 
essential (Pagga, Bachner and Strotmann, 2006). This can 
be simulated by a computer model (Sanz et al., 1996). For 
example, a model in continuous up-flow filters, which has 
been validated in a semi-scale filtration plant for nitrification 
was stimulated by Qi in 2009; while a kinetic model 
highlighted the role of carbon sources and the potential for 
nitrite accumulation in the denitrification process (Michioku 
et al., 2016).

V. Biotransformation
Biotransformation in the environment refers to how living 

organisms, particularly microorganisms, chemically modify 
or break down pollutants, toxins, or other organic compounds 
into less harmful or more easily degradable substances. This 
process plays a critical role in the natural detoxification of 
ecosystems and can involve various metabolic pathways, 
often leading to the complete mineralization of pollutants into 
basic inorganic compounds such as water, carbon dioxide, 
and minerals (Schwarzenbach, Gschwend and Imboden, 
2017). Because all biological reactions are enzyme-catalyzed, 
biotransformation includes the vitro enzymatic reactions, 
metabolism of the compounds, and biosynthetic pathways in 
the plants (Doble, Kruthiventi and Gaikar, 2004). Recently, 
complete ammonia oxidizers (comammox), these bacteria 
are the complete ammonia oxidizers have been discovered 
that can oxidize ammonia to nitrate in a single step, hence 
enhancing micropollutant biotransformation (Han et al., 2019).

Biotransformation seems to be the key to developing eco-
friendly methods, in which enzymes are mostly in control. 
They elucidate that there are six groups of enzymes: ligases 
catalyze, oxidoreductases catalyze oxidation-reduction, 
transferases mediate, hydrolases catalyze the hydrolysis, 
lyases catalyze, and isomerases (Radley et al., 2023). There 
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are plenty of different micropollutants that have been treated 
using biotransformation, for instance, anti-cancer drugs (Gao 
et al., 2013). Every aspect of pesticide biotransformation 
in plants and microorganisms concludes that the persistent 
variation of pollutants in the process (Hall, Hoagland and 
Zablotowicz, 2000).

VI. Fate of Micropollutants
Micropollutants are emerging contaminants found in 

wastewater at low concentrations but with potentially harmful 
effects. Consuming water bodies that contain micropollutants 
is harmful to humans, therefore, removing them is vital 
(Phan et al., 2014). In general, the fate of micropollutants 
in WWTPs is governed by various processes, including 
biotransformation, photo-degradation, volatilization, 
and sorption which are commonly used in reducing 
micropollutants in treated effluent (Lakshminarasimman 
et al., 2018). However, the physicochemical properties of 
micropollutants and the treatment conditions determine the 
removal efficiency (Jonas et al., 2015).

Cometabolism is a primary degradable substrate used 
in this process, which produces biomass and acts as a 
source of electron donors (James and Vijayanandan, 2023). 
Besides the organic matter, micropollutants can act as 
an energy and carbon source for microbes; however, the 
ratio and concentration of both primary substrates and the 
micropollutants are essential (Dawas-Massalha et al., 2014; 
Tiwari et al., 2017).

In tandem with these, aeration, hydraulic, solid 
retention time, and redox condition are also critical 
operational parameters to determine the success of the 
process (Arumugham et al., 2024b). Nitrification helps 
the degradation of micropollutants through cometabolism 
(Dorival-García et al., 2013), for instance, ethinylestradiol, 
naproxen, and roxithromycin were transformed in a 
nitrification process (Suarez, Lema and Omil, 2010). This 
transformation is done through the production of the AMO 
enzymes by AOB (Dorival-García et al., 2013; Alvarino 
et al., 2018). That enzyme contributes to the degradation 
depending on the micropollutant’s diffusion across the cell 
membrane, and their structure as well (Fernandez-Fontaina 
et al., 2012). Although not all micropollutants are degradable 
in nitrifying conditions, redox is the best condition for this 
purpose, due to mono- and di-oxygenase enzymes that are 
produced by both nitrifying and denitrifying bacteria (Dawas-
Massalha et al., 2014; Hammer and Palmowski, 2021).

The redox conditions are vital in secreting various 
enzymes by microbial communities and the structure 
of the micropollutants is of great importance when it 
comes to biotransformation (Tiwari et al., 2017), for 
example, sulfamethoxazole, trimethoprim, and atenolol 
degrade perfectly in any condition (anaerobic, anoxic, 
and aerobic conditions); atenolol and trimethoprim were 
removed efficiently at anaerobic reactor (Alvarino et al., 
2018; Lakshminarasimman et al., 2018); however, some 
others such as carbamazepine, diazepam, and diclofenac 

were not undergoing any biotransformation at all (Sipma 
et al., 2010). In general, biodegradation makes simpler, less 
toxic, or completely mineralized into CO2 products (Tiwari 
et al., 2017). It is worth mentioning that during nitrification, 
microplastics affect negatively on ammonia oxidation rate, 
but positively on denitrification (Li et al., 2020).

VII. Conclusions
Nitrification and denitrification processes can help in 
biotransforming micropollutants and removing total nitrogen 
by harnessing the inherent capabilities of microorganisms 
to safeguard water quality. Recent research has highlighted 
the critical role of nitrifying enzymes in the cometabolic 
biotransformation of organic micropollutants. Besides, 
the discovery of comammox that are capable of oxidizing 
ammonia to nitrate in a single step, presents new 
opportunities for improving the efficiency of micropollutant 
biotransformation in wastewater treatment systems. 
Furthermore, enhanced biological phosphorus removal 
systems show a great contribution to micropollutant 
degradation by certain PAOs.

This process can be enhanced to make the process more 
efficient by controlling the gradient of DO in the same 
reactor within the flocs to co-exist with auto and heterotroph 
bacteria. Shifting from one mechanism to another depends 
on the microbial community, which can be influenced by 
operational parameters (e.g., DO, SRT, and HRT).

The efficiency of this system depends strongly on 
microbial diversity, environmental conditions (For example, 
the concentration of DO, the C:N ratio, microorganisms’ 
food, the retention time for the hydraulic, pH, aeration time, 
temperature, salinity, the sludge retention ratio and sludge 
characteristics, and reactor configuration), and the specific 
nature of micropollutants. However, among the environmental 
factors, optimizing DO, and pH are the most critical 
parameters to the success of the process of micropollutant 
biotransformation. Besides, controlling sludge production 
caused by freeing N2 into the atmosphere is challenging 
as well, thus innovating and adjusting a proper system is 
vital. ND process for micropollutant biotransformation 
was reviewed as a potential biological treatment process 
in removing carbon, nitrogen, and micropollutants from 
wastewater, which holds immense promise for sustainable 
and environmentally friendly solutions.
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