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Abstract––In this study, the performance of suggested scenarios 
for part input sequences in a 3-machine robotic cell producing 
different parts is determined through the application of data 
envelopment analysis (DEA) and the Banker–Charnes–Cooper 
model. A single gripper robot supports the manufacturing process 
by loading and unloading products and moving them inside the 
system. This study addresses random machine failures and repairs 
to minimize cycle time based on two robot move cycles in a three-
machine robotic cell and overall production costs. Here, simulation 
assists in the modeling of uncertainty and a simulation-based 
optimization approach is applied to find the best scenarios for 
sequencing patterns in the cell through several numerical examples 
using DEA. The results displayed that, efficient scenarios satisfying 
minimum time and cost, are those, in which the percentages of 
operations assigned to the machines are close to each other. This 
enables decision-makers in manufacturing systems to make precise 
selections of the optimal part sequencing pattern with the lowest 
production cost and cycle time for robotic cells.

Index Terms—Data envelopment analysis, Part 
sequencing, Robotic cell, Scenario design, Simulation.

I. Introduction
The dominance of robotic systems has arisen as a pivotal 
point of both academic and industrial consideration, obtaining 
considerable attention (Ali, 2024). A robotic manufacturing 
cell consists of computer numerical control (CNC) machines 
with at least one robot (to pick up products and load/unload 
the machines). Consideration is given to the problem of 
part sequencing in a robotic cell served by a single gripper 
robot and three machines that produce different parts. We 
are interested in minimizing cycle time and production 

costs. Cycle time is the average time required to process a 
component in a system. In the majority of published studies, 
cycle time minimization has served as the objective function 
for part sequencing problems. (Vaisi, Farughi and Raissi, 
2022) Surveyed recent developments in the problems of 
robotic manufacturing systems between 2005 and 2021, 
including the problem of determining optimal part sequencing 
in robotic manufacturing cells.

Simultaneous optimization of the robotic move sequence 
and part input sequence was studied by (Zhao and Guo, 2018), 
and an effective chemical reaction optimization (ECRO) 
was proposed as an encoding solution method. How to 
incorporate machine breakdowns into robotic manufacturing 
cells is an unanswered question in the part sequencing 
problem. By using a simulation-based optimization strategy, 
(Vaisi, Farughi, and Raissi, 2018) demonstrated that it is 
possible to determine the optimal part input sequence in an 
unreliable two-machine robotic cell. In another study, the 
performance of different layouts in two-machine robotic cells 
that produce non-identical parts was compared (Foumani and 
Tavakkoli Moghaddam, 2019). (Vaisi, Farughi and Raissi, 
2020) demonstrated the robustness of three-machine robotic 
cells using simulation-based optimization and multi-criteria 
decision-making techniques. In a recent study, (Vaisi, Farughi 
and Raissi, 2021) simulated the sequencing problem of a 
three-machine robotic cell under S6 cycle, where it produces 
different parts to obtain minimum cycle time/operational 
cost and maximum throughput. Then, response surface 
methodology and goal programming approach were utilized 
on the simulation results to optimize the sequencing problem. 
In a different study, a robotic cell was simulated to improve 
the reliability of the cell. By means of a supervised machine 
learning model, the faulty behavior of the critical component 
was classified (Mourtzis, Tsoubou and Angelopoulos, 2023). 
To find the optimal cycle time in two-machine circular 
robotic cells with swap ability to maximize the output, 
a study has recently been conducted by (Khebouche and 
Boudhar, 2024). However, optimal sequencing of parts in the 
case of an existing unreliable robotic cell with three machines 
through data envelopment analysis (DEA) is also on appeal. 
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Unreliable robotic cells are those that are subject to random 
failure and maintenance.

Complex decisions regarding sequencing issues in robotic 
manufacturing cells, as a result of uncertainty, can be 
supported by computer simulation models. The development 
of simulation techniques dates back to the early 1960s, and 
simulation may be the most widely used analytical tool 
(Pidd, 1986). Although simulation methods are commonly 
referred to as descriptive modeling techniques, it has been 
demonstrated that computer simulation is an effective 
interface between operations research and computer science 
(Fu, 2002). The use of simulation in manufacturing from 
2002 to 2013 was examined by (Negahban and Smith, 2014). 
The major milestones in the development of simulation 
tools were analyzed by (Mourtzis, Doukas and Bernidaki 
2014) through a comprehensive study. In the context of 
the manufacturing system, they examined recent industrial 
simulation practices, their evolution, advances, and future 
trends. Using computer simulation in manufacturing systems 
has been considered by a number of researchers, such 
as the simulation of a chain store as a service sector by 
(Vaisi, Raissi and Vaisi, 2015); the simulation of a flexible 
manufacturing system by (Florescu, Barabaş and Sârbu, 
2017); the simulation of an assembly line by (Yang, Chen 
and Lin, 2017); the simulation of capacitated assembly 
systems by (Woerner, Laumanns and Wagner, 2018); the 
simulation of a material handling system by (Leung and 
Lau, 2019), and so on. Furthermore, to support the strategic 
maintenance development in a production system, simulation-
based optimization was done by (Linnéusson, Ng and Aslam, 
2020). Simulation was also applied to train operators in 
a study done by (Karagiannis et al., 2021). The furniture 
manufacturing and assembly process in a furniture company 
were recently simulated through Arena software by (Kolny, 
Kaczmar-Kolny and Dulina, 2023). One more fresh study 
was done to simulate an automobile assembly manufacturing 
line and analyze bottlenecks in the manufacturing system, 
(Mohammed, Abdulghafour and AL-Enzi, 2024).

Following the aforementioned literature review, solution 
methods for the part sequencing problem primarily consisted 
of the Gilmore and Gomory algorithm, heuristics, and 
formulations based on the traveling salesman problem. 
A review of the relevant literature reveals that scenario 
design and scenario evaluation in three-machine robotic cells 
using DEA have not been previously conducted. Therefore, a 
scenario concept is being developed to bridge this gap. Two 
cycles are considered robot move cycles in 3-machine robotic 
manufacturing cells, which contributes to the novelty of the 
present study. The cycles are compared to determine the 
optimal sequencing pattern for the parts, in which each of the 
move cycles simultaneously minimizes cycle time and total 
production cost. It should be noted that there are six cycles 
for robot movements in three-machine robotic cells, and in 
“Table I”, all the cycles will be presented. In the current 
study, two of the cycles are selected because few researches 
have been focused on them as their complexity is high.

DEA as a nonparametric mathematical programming 
technique has been evaluated as one of the most notable 

Table I
Robot Activity Sequences in Three-Machine Robotic Cells

Cycles Encoding of robot activity sequences
S1 A01 A12 A23 A34

S2 A01 A12 A23 A34

S3 A01 A12 A23 A34

S4 A01 A12 A23 A34

S5 A01 A12 A23 A34

S6 A01 A12 A23 A34

methods for measuring the performance of homogeneous 
units, i.e., decision-making units (DMUs) that transform 
inputs into outputs. A study of DEA applications from 
1978 to August 2010 by (Liu et al., 2013) revealed that 
DEA is applicable in a variety of contexts for measuring 
efficiency. Furthermore, in another paper, (Emrouznejad 
and Yang, 2018) conducted a survey related to the theory 
and applications of DEA, reporting published papers from 
1978 to 2017. Here are some recent studies demonstrating 
the practical applications of DEA in various industries: 
(Vaisi and Raissi, 2014) in Pride’s spare parts manufacturing 
system; (Banker et al., 2017) in electric distribution firms; 
(Pjevcevic et al., 2017) in a port container terminal; (Vaisi, 
2017) in a production system; (Vaisi et al., 2018) in a two-
machine robotic cell; (Solgi et al., 2019) in complex product 
systems; (Wen et al., 2020) in the construction sector; (Zhu, 
Zhu and Emrouznejad, 2020) in manufacturing companies; 
(Vaisi, 2023) in a manufacturing system with a transport 
robot; and (Sinha, Vaisi and Edalatpanah, 2024) in the 
banking industry. With the exception of (Vaisi et al., 2018; 
Vaisi et al., 2023), there are no known published studies 
on the part sequencing problem utilizing DEA, which 
were done for a two-machine robotic cell. The current 
study seeks to fill this gap by considering a three-machine 
robotic manufacturing cell. It should be highlighted that 
the use of DEA to select the best sequencing patterns in 
robotic cells has been unparalleled in its field, and the 
current study is entirely distinct from our previous work 
due to the differences in terms of the nature of complexity 
for movement cycles in the two-machine and three-machine 
robotic cells.

Thus, the contribution of the current study is summarized 
as:
a. Application of a simulation-based optimization approach 

to solve the part input sequencing problem in unreliable 
three-machine robotic cells.

b. Presenting the DEA-based performance measurement of S2 
and S6 cycles as two movement cycles for robots in three-
machine robotic cells.

The structure of the paper is as follows: In the following 
section, the problem is defined, and assumptions and 
numerical examples are provided. In section III, the problem 
is modeled using a computer simulation technique. For the 
purpose of solving the problem, proposed scenarios are 
presented and DEA is utilized to determine the optimal part 
entrance sequence to the cell in section IV. In section V, the 
conclusion is presented.
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II. Problem Statement
In this section, the problem and solution tools are defined 

as they come in Fig. 1. Hence, the problem is defined in A, 
objective functions are described in B and C, the simulation-
based optimization approach and its tools are represented in 
D and E, assumptions are summarized in F, and numerical 
examples are denoted in sub-section G of the existing section.

A. Robotic Cell
In this study, an in-line robotic cell encompasses three 

similar CNC machines with no priority in operation, 
and a single gripper robot is assumed. A robotic cell is 
a manufacturing system composed of a number of CNC 
machines, a material-handling robot, and other relevant 
systems. The processing of each component begins in the 
input buffer and concludes in the output buffer (Vaisi et al., 
2020; Vaisi et al., 2023). “Fig. 2” depicts an in-line three-
machine robotic cell. It should be noted that different colors 
for the parts in “Fig. 2” represents that the cell produces 
different parts.

In-line robotic cells are a type of robotic cell layout. 
Based on this layout, robot movement between machines 
and buffers is linear. All machines are capable of performing 
the operations simultaneously. In addition, a single gripper 
robot is responsible for loading and unloading parts to 
and from the selected machine. In the current study, the 
output of this system consists of various part types and 
operates continuously. Each component requires processing 
by the machines, and there is no buffer storage between 
the machines. For the production of each part, multiple 

Fig. 1. Flowchart for the problem statement and optimization tools 
presentation.

types of operations must be performed on the machines; 
by percentage, some of these operations are performed on 
machine one, while the remaining ones are performed on 
machines two and three, respectively.

The primary objective of this study is to determine the 
sequence of entering parts into an unreliable three-machine 
robotic cell that experiences random failure and repair 
times while minimizing cycle time (S2/S6 cycles) and total 
production cost.

B. Cycle time
Six cycles, designated S1, S2, S3, S4, S5 and S6 cycles, may 

be utilized for part displacements in a 3-machine robotic 
cell. Here, we focused on the S2 and S6 cycles because they 
are well-known and commonly used cycles, but they have 
received less modeling attention than the other robot move 
cycles since they are more complicated. The move cycles S2 
and S6 are described in the following paragraphs.

Based on the S6 cycle, the robot begins following 
operations sequentially from the input buffer. (1) picking part 
i, (2) proceeding to the first machine, (3) loading the first 
machine, (4) transferring to the third machine, (5) Waiting 
for the completion of the process on part (i–2) (if required), 
(6) unloading the part from the third machine, (7) transferring 
the item to the output buffer, (8) loading the output buffer, 
(9) moving to the second machine, (10) If necessary, 
waiting for the completion of the process on the part (i-1), 
(11) unloading the part from the second machine, (12) moves 
the part to the third machine, (13) loads the part onto the 
third machine, (14) transferring to the first machine, 15) if 
necessary, waiting until the part i ‘s process is complete, 
(16) unloading the initial machine, (17) transferring the part 
from the first machine to the second machine, (18) loading 
the part on the second machine, and (19) returning to the 
input buffer. The activity sequence of the S6 cycle is encoded 
by A01 A34 A23 A12 and it is a one-unit cycle, as shown by 
(Sethi et al., 1992; Gultekin, Akturk and Karasan, 2007).

Equation (1) could be used to calculate the S6 cycle time 
based on Table II’s key cycle time calculation parameters and 
according to (Gultekin, Akturk and Karasan, 2008).

TS6=max{8∈+12δ,t(1)+4∈+4δ,t(2)+4∈+4δ,t(3)+4∈+4δ} (1)

The general process of S2 cycle in a three-machine cell is 
as follows. Once more, the input buffer is the initial location 
of the robot. Then, the robot performs the subsequent 
operations in succession. (1) The robot picks up part i, 
(2) moves to the first machine, (3) loads part i onto the first 
machine, (4) moves to the second machine, (5) Waits for 
the completion of the process on part (i-1) (if necessary), 
(6) unloads the component from the second machine (i-
1), (7) moves the part (i-1) to the third machine, (8) loads 
the part onto the third machine, (9) returns to the first 
machine, (10) If necessary, wait until the process on part 
i is complete, (11) unload the part from the first machine, 
(12) transfer it to the second machine, (13) load the part i 
onto the second machine, (14) proceeds to the third machine, 
(15) if necessary, waits until the third machine’s process is 
complete, (16) unloads the part (i–1) from the third machine, 
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Fig. 2. A typical layout for an in-line robotic manufacturing cell comprising 3 machines.

Table II
Cycle Time Parameters

Parameters Expression

∊ Loading/unloading time
δ Robot’s movement time between two consecutive locations
TS6 Cycle time based on S6 robot move cycle
TS2 Cycle time based on S2 robot move cycle
Apq Robot activity sequence from station, p, to station, q, for 

p=0,1,2,3 and p=0,1,2,3.
ti (j) Processing times of part ibased on the Percentage of operations 

done by each machine j; i=1,…., n; j=1,2,3.

(17) transports the product to the output buffer; (18) deposits 
the product at the output buffer; and (19) returns to the input 
buffer. As a general rule, the activity sequence of the S2 cycle 
is encoded by A01 A23 A12 A34, and this cycle produces one 
product in each cycle; see (Sethi et al., 1992). Equation 
(2) reveals the S2 cycle time based on “Table II” and in 
accordance with (Gultekin, Akturk and Karasan, 2008).

   

        
2 {8 12 , 1 6 8 , 2

1 2 3
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ST max t t

t t t
t

 

 

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 
   

   
(2)

The encoding of the movement cycles for three-machine 
robotic cells is tabulated in Table I.

C. Total Production Cost
Total production cost is the second objective function of 

this study. The components of the total cost of production are 
machining, tooling, and preventive maintenance (Akturk and 
Gurel, 2007). Although tool switching has been measured in 
several studies, such as (Kamalabadi, Sadeghi and Maihami, 
2012), (Farughi et al., 2017), and (Moradi, Yousefi Nejad 
Attari and Farughi, 2018), in the present study, it was ignored 
and the cost of tooling is considered to be a constant value. 
The following are the main parameters for calculating the 
total production cost:

CM Machining cost ($/min)
CPM Cost of a PM visit ($/visit) without considering any setup cost
CT Cost of tool ($/tool) Tool replacement prohibited in an operating 

cycle
DRj Expected down rate of machine j
OP Observation period 
n The number of produced parts by type based on the percentage of 

operations done by each machine during the simulation period
N Number of throughout products in the simulation period
F Total cost ($/times unit)
TTF Time to failure (times unit)
TTR Time to repair (times unit)
ti (j) Processing times of part based on the Percentage of operations 

done by each machine j; i=1,…., n; j=1,2,3

Consequently, the total cost per operating cycle could be 
calculated by Eq. (3).

3
1 1   ( ) CPM     N CTn

i ji jF n CM t j DR OP
 

    ;  
  j=1,2,3 (3)

D. Simulation
Simulation-based optimization approaches have become 

efficient measures for decision-makers to find near-optimal 
solutions within a reasonable time. In this research, a 
simulation model of different scenarios for parts sequencing in 
a three-machine robotic cell is developed using discrete-event 
simulation software. In the simulation model, each unique 
sequence of parts entering the robotic cell is considered a 
scenario, and a simulation model is developed to simulate the 
scenarios and generate output data for each one.

Simulation builds a real-process model of a system over 
time and conducts experiments to determine the system’s 
behavior (Shannon, 1998). The procedure for doing a 
simulation in a robotic cell (as an example) briefly includes 
formulating the problem and objectives; presenting a 
conceptual model for the cell or a series of mathematical 
equations regarding the context of the robotic cell; collecting 
data; developing the simulated model of the robotic cell; 
confirming the simulated model; designing experiments; 
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performing simulation runs; and analyzing and documenting 
results (Banks, 1998).

After a certain period of simulation run, the system 
could reach a stable state. This period is known as a warm-
up period and is typically set to 10% of the observation 
period in simulation software configurations. The beginning 
of the observation period coincides with the conclusion of 
the warm-up period. The simulation model is developed in 
Section III.

E. Banker–Charnes–Cooper (BCC) DEA model
As mentioned earlier, the use of simulation in connection with 

optimization may assist decision-makers in developing efficient 
scenarios. Using DEA as the optimization tool to evaluate and 
classify the scenarios is a distinctive aspect of three-machine 
robotic cells that have not been done yet. DEA is one of the 
most distinguished methods for measuring the performance 
of homogeneous DMUs. A DMU is an entity responsible for 
converting inputs into outputs. This method’s strengths are that it 
permits the use of multiple inputs and outputs, and the dimensions 
of input/output do not need to be converted. However, this 
method’s weakness is that outliers may affect the results.

In this study, one of the classical DEA models is used 
to evaluate the designed scenarios. Scenarios are treated 
as DMUs due to their output and input characteristics. We 
obtain DMU data through scenario execution. Here, DEA 
utilizes the BCC model to select the most effective scenarios.

The BCC DEA model can be described as follows (Banker 
et al., 1984): suppose there are “n” DMUs to be measured 
with “m” different inputs and “s” different outputs. DMU0 
consumes the input value xi0 and produces the output value 
yr0. Under the assumption xi0≥0, yr0≥0, the efficiency formula 

is
 

weighted sum of outputs
weighted sum of inputs

. Equation (4) represents the 

efficiency of DMU0 as a fractional linear program based on 
the BCC Ratio Model (Input Orientation). “ur”, and “vi” are 
the assigned output and input weights, while “W” is a free 
variable. In this study, the inputs/outputs will be determined, 
explained in detail, and implemented in sections III and IV.

01
0 

01

max
s

r rr
m

i ii

u y W
E

v x





 


 (4)

S.t.

 r

s
r rj

i

m
i ij

u y W

v x








1

1

1  j=1,2,….,n

W; free variable
ur≥0

vi≥0
r=1,2,….,s
i=1,2,….,m

F. Assumptions
Assume that machines in this robotic cell have two 

independent states: active and inactive. Failure and repair 

rates may be constant or time-dependent; λ(t) and μ(t) 
separately. The study’s basic assumptions are summarized:
1. The availability of components at the input buffer and an 

empty position at the output buffer are both true.
2. The processing time for parts on the machines has been 

specified, despite breakdowns, etc.
3. The machines are subject to random failures and require 

maintenance.
4. The statistical density functions of TTF and TTR have 

accepted reliable parameters.
5. Setup times are insignificant.
6. Pre-emption in the processing of any operation is prohibited.

G. Cases
The issue is investigated using an example derived from 

prior work (Batur, Karasan and Akturk, 2012). In the following 
examples, each color corresponds to a distinct type of part.

Example 1. A three-machine robotic cell produces three 
different products separately, including Blue (B): 57, Red (R): 
84, and Purple (P): 87, with their respective process times (in 
minutes), ∈=1 and δ=2 time units, see (Batur, Karasan and 
Akturk, 2012).

Example 2. A three-machine robotic cell is assumed to 
produce a product in 57 minutes (a Blue colored product). 
∈ and δ separately are 1 and 2 min; see (Batur, Karasan and 
Akturk, 2012).

Table III contains the cost parameters and their corresponding 
values for these three-machine robotic cells (Examples 1 and 2). 
These parameter values are assumed to be constant.

III. Developing Simulation Model
For the purpose of analyzing the existing robotic cell, the 

integration of computer simulation and linear programming 
optimization is used to control different sources of 
uncertainty. Enterprise dynamics (ED) is used to model the 
sequence of components in the presented robotic cell for 
simulation purposes. This simulation tool employs drag-and-
drop technology and has a user-friendly interface to facilitate 
the modeling of anticipatory layouts.

“Fig. 3” illustrates the system’s simulation model. In this 
model, three dissimilar products flow through the system 
based first on the move the cycle of the robot and then on the 
S2 move cycle, utilizing the ED special elements.

To obtain unbiased estimates, simulation models were 
run for long periods of time (>10000 h) following a 50-h 
warm-up period. In addition, the definition of performance 
measures (PFM) is as follows. The desired input and output 
variables of the DEA method are comprised PFMs.

Y1: The average time for each S6 (S2) cycle in the 
simulation period

Y2: The average operating cost per part in the simulation 
period

Table III
Characteristics Of Cost Parameters

Characteristics of Cost Parameters CM=50 CT=45
TTF=NegExp (10) TTR=NegExp (2)
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Y3: Number of generative throughout the simulation period
To select the inputs/outputs of the system, a fundamental 

understanding of the production system and data analysis 
is required. In general, the major resources that enter the 
manufacturing system are the inputs, and the primary output 
is the production quantity (Jain, Triantis and Liu, 2011). This 
is also true for the robotic cell. Therefore, cycle time and 
cost are the typical inputs, and the operational output of the 
current robotic cell is the produced throughput.

IV. Results
Simulation-based optimization methods were used to find 

the best sequencing patterns in a three-machine robotic cell. 
In this section, first, the validity of the simulation model is 
evaluated in A. Then, by defining the scenarios in B, DEA 
as the optimization tool will classify the scenarios in C. 
Discussion over the results will come in D.

A. Validation of the Simulated Model
Example 2 was simulated as a three-machine robotic cell 

(machine failures were ignored) based on the S6 cycle and the 
S2 cycle, respectively. After running the simulation model, 
it was determined with a confidence level of 95% that the 
average S6 cycle time and operating cost are 86.719 seconds 
and 187.5, respectively. ED software also reports that the 
average S2 cycle time and operating cost are 68.948 and 
187.5, respectively.

Mann–Whitney Hypothesis testing is used to compare 
the statistical differences between the simulated model 
dataset and the real dataset. This is performed to validate 
the simulation model. The results of Equations (1) and 
(2) are referred to as the real dataset. The simulated model 
data includes the mean daily production after 25 replications 
of the simulation model. A P-value >0.85 indicates that 
there is no significant difference to reject the equality of two 
means, and the simulation model’s validity is confirmed.

In the next step, several scenarios are created to determine 
the optimal sequence for the part’s entrance into the robotic 
cell.

B. Scenario Design
In this step, various sequencing patterns for the part’s 

entrance to the robotic cell are formed. Each sequence pattern 
is simulated by ED software as a scenario. Table IV depicts 
the designed scenarios derived from Example 1. B-P-R and 
B-R-P are two possible sequences for case study 1 which 
come in the right part of “Table IV,” and the percentage 
of operations performed by each machine is defined in the 
left part of the table. Example 1 was simulated twice, once 
according to the S6 cycle and the second time according to 
the S2 cycle. The results according to the definable PFMs 
for the S6 cycle and the S2 cycle are separately summarized 
in Tables V and VI. After adjusting the simulation time, it 
is possible to obtain the average cycle time (S2/S6), average 
cost, and number of generative throughput. The objective 
is to maximize throughput while minimizing cost and cycle 
time.

Let us discuss scenario 7 as an example. Consequently, 
scenario 7 indicates that 60% of the operations are done on 
Machine1 and Machine3, equally. The rest of the operations 
to produce a part are performed by Machine2. Meanwhile, 
the first part to be allocated to machines 2 and 3 is Blue (B) 
and the sequencing pattern for entering the parts to the cell is 
B-P-R, meaning Blue-Purple-Red; see (Cases in Section II). 
Results for this scenario show that based on the S6 cycle 
outcomes in “Table V,” the cycle time is 48.841, the cost is 
15959.735, and the throughput is 40539. Whereas based on 
the S2 cycle results in “Table VI,” the cycle time is 69.862, 
the cost is 22782.198, and the robotic cell can produce 28341 
parts during the simulation period.

On the dataset, the DEA tool is utilized to identify the 
optimal scenarios and the results will be displayed in C.

C. DEA Results
The optimal sequence is determined using a simulation-

based optimization approach and the DEA method. DMUs 
in this case have two inputs and one output. As previously 
mentioned, the inputs consist of average cycle time (S6/S2) 
and average cost, while the output is the number of produced 
throughput. The DEA method based on the “Equation (4)” is 
applied to compare the proposed scenarios.

Fig. 3. A simulated model for the 3-machine robotic cell layout using ED.
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Table VI
Definable PFM Values Based on the Scenarios of S2 Cycle in Example 1

PFMs Scenario Number (SN)

1 2 3 4 5 6
Y1 73.967 67.268 67.238 78.605 71.531 78.708
Y2 24114.609 24123.581 24112.815 25620.482 25645.829 25653.953
Y3 26768 26758 26770 25188 25163 25155
SN 7 8 9 10 11 12
Y1 69.862 69.865 69.876 81.572 81.649 89.89
Y2 22782.198 22783.799 22787 29231.379 29257.8 29282.941
Y3 28341 28339 28335 22065 22045 22026
SN 13 14 15 16 17 18
Y1 114.033 92.838 102.153 67.222 67.3 73.919
Y2 37118.066 33252.545 33262.809 24106.54 24135.253 24099.373
Y3 17363 19388 19382 26777 26745 26785
SN 19 20 21 22 23 24
Y1 71.498 78.633 91.69 69.816 69.862 69.881
Y2 25633.656 25629.602 29866.601 22767.807 22782.199 22788.601
Y3 25175 25179 21594 28359 28341 28333
SN 25 26 27 28 29 30
Y1 92.862 89.778 92.878 92.825 92.797 102.132
Y2 33261.095 29245.905 33266.227 33247.419 33237.167 33255.967
Y3 19383 22054 19380 19391 19397 19386

Table V
Definable PFM Values Based on the Scenarios of S6 Cycle in Example 1

PFMs Scenario Number (SN)

1 2 3 4 5 6
Y1 47.915 43.587 43.586 49.155 58.234 49.154
Y2 15659.37 15669.16 15668.785 17657.079 20898.394 17657.076
Y3 41322 41296 41297 36618 30909 36618
SN 7 8 9 10 11 12
Y1 48.841 44.406 44.367 54.779 54.744 60.157
Y2 15959.735 15961.3 15947.624 19665.213 19652.724 19632.534
Y3 40539 40535 40570 32858 32879 32913
SN 13 14 15 16 17 18
Y1 76.917 69.965 70.047 43.594 59.893 59.872
Y2 25071.426 25085.985 25115.143 15671.424 21490.558 21482.735
Y3 25742 25727 25697 41290 30053 30064
SN 19 20 21 22 23 24
Y1 49.221 49.196 64.08 48.819 44.382 44.365
Y2 17680.594 17671.95 20905.797 15952.7 15952.7 15946.842
Y3 36569 36587 30898 40557 40557 40572
SN 25 26 27 28 29 30
Y1 54.629 54.716 54.695 69.989 70.115 70.04
Y2 19611.201 19642.028 19635.499 25094.724 25139 25113.195
Y3 32949 32897 32908 25718 25672 25699

Table IV
Designed Scenarios for the Example 1

Scenario 
Group 
(SG)

Sequence Seq. 1 B-P-R Seq. 2 B-R-P

The Percentage of 
operations performed 

by each machine

The first allocated 
part to the Second and 

Third machine

The first allocated 
part to the Second 
and Third machine

SG M1 M2 M3 B P R B P R
Scenario Number

A 33.3% 33.3% 33.3% 1 2 3 16 17 18
B 20% 40% 40% 4 5 6 19 20 21
C 30% 40% 30% 7 8 9 22 23 24
D 25% 25% 50% 10 11 12 25 26 27
E 60% 20% 20% 13 14 15 28 29 30

Tables VII and VIII summarize the efficiency scores for 
each scenario, as well as the S6 and S2 cycles, in that order. 
Using the Lingo software, calculations were performed.

According to the results for scenario 7 (as an example), 
this scenario is more efficient based on the S2 movement 
cycle of the robot than S6. The efficiency scores of this 
scenario confirm this fact which is a 0.963 score based on 
the S6 cycle and 0.999 scores based on the S2 cycle. However, 
none of them is efficient, since the efficiency score is one.

V. Discussion
The relative score of an efficient scenario is one, according 

to DEA logic. Thus, scenarios numbered “1” and “3” will 
be the most efficient for Example 1 under S6. Concerning 
the foregoing, as shown in Example 1, the sequence Blue-
Purple-Red is preferred over any other sequence pattern 
when the Blue or Red part is the first one to be produced 
on the second and third machines. This applies to three 
different part types. Scenario “3” with 43.586-time units 
has a lower average S6 cycle time score than scenario “1” 
with 47.915 time units. In contrast, scenario “1” has lower 
production costs than scenario “3.” During the observation 
period, the output rate for scenario “1” is 41322 versus 
41297 for scenario “3”.

In a three-machine robotic cell operating on the S2 cycle, 
the “22” scenario has the optimal part sequence pattern for 
Example 1. The Blue-Red-Purple sequence when Blue part is 
the first part on the second and third machines is the optimal 
part sequence pattern for these three different part types, 
robotic cell under S2.

In optimal scenarios, although the average cycle time and 
cost under S6 are less than those values under S2, the number 
of total products produced during the simulation period under 
S6 exceeds that of S2. Among the efficient scenarios, scenario 
coded “1” (which is under S6) has the highest throughput, 
which is just over 41,300 during the simulation period.

Figs. 4 and 5 compare the average efficiency of each 
scenario group based on the two candidate sequences for 
the move cycles (S6/S2). Clearly, the efficiency scores of the 
two sequences based on both cycles follow a nearly identical 
trend.

Scenario number 7 till 15 and scenario number 22 till 30 
for the S6 movement cycle in both sequence patterns have 
comparable amounts of efficiency, whereas the trends of 
both sequence patterns based on the S2 cycle are volatile, 
fluctuating between 0.375 and 1. Nevertheless, on average, 
sequence pattern 1 has more efficient scenarios in both cycles.

Overall, the comparison demonstrates that the scenarios, 
as DMUs in the DEA method, are more efficient when the 
percentage of operations assigned to machines is closer to 
one another. Moreover, due to the similarity of the machines 
and their TTF/TTR, the optimal assignment of operations to 
machines occurs when the number of operations allocated 
to each machine is close. Consider the characteristics of 
scenarios 1, 2, 3, 7, 8, 9, 22, 23, and 24 as the near-optimal 
scenarios in both cycles.
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Table VII
Efficiency Scores of Scenarios Based on the BCC Model for S6 Cycle 

in Example 1

SN Scenario Number (SN) Efficiency Scores (ES) (Below comes)

1 2 3 4 5 6
ES 1 0.999 1 0.786 0.56 0.786
SN 7 8 9 10 11 12
ES 0.963 0.963 0.965 0.633 0.634 0.635
SN 13 14 15 16 17 18
ES 0.39 0.388 0.387 0.999 0.529 0.529
SN 19 20 21 22 23 24
ES 0.784 0.785 0.56 0.963 0.964 0.965
SN 25 26 27 28 29 30
ES 0.63656 0.634 0.635 0.388 0.386 0.387

Table VIII
Efficiency Scores of Scenarios Based on the BCC Model for S2 Cycle 

in the Example 1

SN Scenario Number (SN) Efficiency scores (ES) (Below comes)

1 2 3 4 5 6
ES 0.891 0.979 0.98 0.789 0.866 0.787
SN 7 8 9 10 11 12
ES 0.999 0.998 0.998 0.666 0.665 0.603
SN 13 14 15 16 17 18
ES 0.375 0.514 0.467 0.981 0.978 0.892
SN 19 20 21 22 23 24
ES 0.867 0.788 0.579 1 0.998 0.998
SN 25 26 27 28 29 30
ES 0.514 0.605 0.514 0.514 0.515 0.467

V. Conclusion
Simulation-based optimization, as a novel practice, was 
demonstrated in this study to determine the sequencing pattern 
of the parts in a robotic cell under breakdowns resulting from 
random failures. The cell consists of three machines that 
produce dissimilar parts and follow a S6 or S2 cyclic pattern 
for the robot. For the production of a part, multiple types of 
operations are performed on the machines. By percentage, 
some of these operations are done on machine one, while 
the remainder are performed on machines two and three 
separately. Optimal scenarios for the part’s entrance into the 
robotic manufacturing cell are evidence of the simultaneous 
minimization of cycle time and cost. Using the DEA method, 
the proposed scenarios, which have been designed based 
on different sequences for entering the parts of the cell, 
were compared in numerical examples. Furthermore, the 
comparison reveals that the efficient scenarios are those, in 
which the percentages of operations assigned to the machines 
are close to each other, due to the similarity of the machines 
and their TTF/TTR. The results endorse the practicality 
of applying the DEA approach in robotic cell problems, 
which can be a helpful tool for decision-makers in robotic 
manufacturing systems. There is a range of robotic cells 
available to any industry, such as the automotive industry, 
to fabricate, finish, weld, transfer, or assemble parts. This 
depends on the size, weight, or type of the robots used. It is 
possible to extend the results of this study to include robotic 
cells with robot failures or robotic cells with dual gripper 
robots instead of single ones. Consequently, evaluating parts 
sequencing in unreliable m-machine robotic cells with the 
above features using simulation and other DEA models is an 
excellent practical topic for future study.
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