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Abstract—Wireless sensor networks’ coverage and efficient 
connectivity are pivotal for reliable data collection and communication. 
However, dead nodes, resulting from hardware failure or power 
depletion, can affect coverage and connectivity, leading to information 
loss and degraded performance. Previous research in the same 
context indicates the need for further investigation to achieve optimal 
trade-offs in network resource allocation. This research introduces 
a hybrid Artificial Bee Colony-Sequential Re-connectivity and 
Coverage Algorithm (ABC-SRCA) approach, combining the ABC 
algorithm with a developed SRCA. The ABC algorithm adjusts 
sensor node placement to maximize the coverage and minimize holes, 
while the SRCA algorithm restores connectivity by reconnecting the 
network when nodes fail. The approach uses probabilistic selection to 
explore various solutions, making the approach adaptive to diverse 
scenarios. The simulation outcomes indicate that the ABC-SRCA 
method enhances coverage accuracy by up to 30% compared to ABC 
and SRCA when they are used separately. In addition, the rate of 
connectivity error detection decreases by about 25%, highlighting the 
method’s effectiveness in dynamic network conditions. The approach 
also surpasses existing methods, including Genetic Algorithms and 
Sensing Radius Adaptive Coverage Control (SRACC), by achieving 
coverage level up to 98% while conserving resources. The ABC-SRCA 
achieves better energy consumption than Particle Swarm Optimization 
(PSO) and PSO Voronoi Diagram and achieves competent energy 
when compared with SRACC. The hybrid approach provides an 
effective solution for ensuring efficient and reliable network operations, 
supporting the successful deployment of WSNs in diverse applications.

Index Terms—ABC algorithm, Coverage optimization, 
Dead nodes, Hybrid approach, Re-connectivity, SRCA 
algorithm, Wireless sensor networks.

I. Introduction
Wireless sensor networks (WSNs) have gained considerable 
interest across diverse applications, including environmental 

monitoring, surveillance, and smart systems. A WSN is 
often defined as a group of interconnected wireless sensor 
nodes that capture the surroundings at a region of interest, 
communicate with each other, and send information to the 
end user (Bhat and Santhosh, 2022). One of the characteristic 
features of WSNs is that many nodes can be placed in a 
definite area to guarantee coverage. However, sensor nodes 
are prone to frequent failure due lack of power, physical 
harm, or environmental interferences (Adu-Manu, et al., 
2022). However, a relatively congested network results in 
numerous problems like node overlap (Ling, et al., 2020) 
and failure of a group of nodes that reduce the multi-hop 
paths in the network (Baradaran and Navi, 2020), which can 
bring about a “disconnection” that isolates a subset of non-
failed nodes from the other nodes. If no path exists between 
two nodes, they are considered disconnected (Zhang, et al., 
2020a). Therefore, sensor node non-existence or failure can 
affect coverage and connectivity, which, in turn, influences 
sensor network performance and the quality of service of 
the entire WSN (Wang, et al., 2022). Ensuring complete 
coverage and maintaining connectivity is a vital challenge in 
WSNs (Zeng, et al., 2023), however, dead nodes, which no 
longer function can affect coverage and connectivity, leading 
to information loss and reduced network performance. 
Network coverage can be improved by addressing optimal 
node locations that managing the sensing range, identifying 
alternative paths, and adjusting transmission ranges, and 
ensuring sustained connectivity. This guarantees the network 
operation’s dependability and resilience. To tackle coverage 
and re-connectivity issues, this study proposes an approach 
combining the Artificial Bee Colony (ABC) optimization 
algorithm with a developed sequential re-connectivity and 
coverage algorithm (SRCA) to achieve efficient coverage 
and re-connectivity, with a specific focus on dead nodes. 
The approach optimizes the deployment of sensor nodes, 
ensuring maximum coverage range and facilitating re-
connectivity in the presence of dead nodes or connectivity 
gaps. The two algorithms are run sequentially, the ABC 
algorithm first optimizes the placement of sensor nodes 
within the network, ensuring coverage requirements are met 
and minimizing coverage gaps. Then, the SRCA algorithm 
re-establishes connectivity, reconnecting the network in the 
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presence of dead nodes. By adapting to dynamic changes 
in network topology, ABC-SRCA achieves greater resource 
efficiency than existing techniques. Amalgamating the 
ABC and SRCA algorithms, the hybrid approach offers 
several benefits. It enhances network coverage by selecting 
optimal node locations that maximize the sensing range. In 
addition, it resolves dead nodes by identifying alternative 
paths and adjusting transmission ranges to ensure sustained 
connectivity. This results in a more dependable and resilient 
network operation.

The remainder of this paper is organized as follows: 
Section 2 provides the related work. Section 3 demonstrates 
the problem statement. Section 4 presents the ABC-SRCA 
approach. Section 5 highlights the results and discussions, 
while Section 6 concludes and offers future directions for the 
study.

II. Related Work
Many techniques have been proposed for deployment to 

avoid node failures and enhance the coverage of WSNs. (Lu, 
et al., 2025) proposed an approach to optimize the deployment 
strategy of heterogeneous WSNs concentrating on balancing 
network coverage, connectivity, and deployment costs. The 
authors present an improved Secretary Bird Optimization 
Algorithm (ISBOA) integrating Gaussian Cuckoo Mutation 
and a smooth exploitation mechanism. Simulation results 
indicate that the ISBOA attains higher accuracy and faster 
convergence compared to other algorithms. The authors 
suggest a minimum spanning tree domain reduction 
strategy for large-scale issues to enhance efficiency with 
minimum loss of accuracy. However, the research does not 
utilize dynamic adaptive and fault recovery mechanisms 
to maintain the network efficiency and stability in a long-
term operation. (Guo, et al., 2025) introduced a perception 
model incorporating path loss and false alarm probability to 
optimize coverage problems in WSNs using an intelligent 
optimization algorithm and longevity. The model includes 
a logarithmic-based path loss model and the Neyman–
Pearson criterion for maximizing detection probability. 
The simulation results indicate that the model attains full 
coverage with fewer nodes than traditional models, hence, 
improving network performance and longevity. However, 
the research does not explain whether the algorithm adapts 
to changing parameters or conditions during execution. 
(Velavalapalli, Ramamurthy and and Satyanarayana, 2024) 
proposed a wholly distributed approach for enabling each 
node of delay tolerant networks to rapidly determine if its 
sensor generates faulty data. A continuous-time state equation 
is used to model the approach’s dynamic behavior. The 
research also considers the effect of misbehaving nodes to 
deactivate the fault detection. The research evaluates the 
detection and false alarm rates by comparing theoretical 
predictions with simulation results. The simulations show 
that the packet reception delay metric beats the expected 
transmission count metric and also energy consumption and 
end-to-end delay metrics, while still preserving a high packet 

delivery ratio. However, the proposed approach encounters 
complexity in implementation, and challenges in handling 
misbehaving nodes and network resource constraints. (Khedr, 
Osamy and Salim, 2018) suggested a design that involves 
random provisioning of Heterogenous WSNs (HWSNs) and a 
distributed algorithm for detecting holes that result from node 
failures. Accordingly, nodes in this new scheme can work 
together to detect and predict any possible coverage gaps. 
Alternatively, (Yan, et al., 2020) proposed a connectivity-
based k-coverage hole detection algorithm for WSNs, 
utilizing homology theory and Rips complex to effectively 
identify and reduce coverage holes. The simulation results 
indicate that the proposed algorithm can reliably detect over 
95% of non-triangular K-coverage holes. The algorithm 
reduces the energy consumption, as fewer nodes are active 
at any given time, which helps in extending the network’s 
operational lifetime. However, the algorithm can only detect 
non-triangular coverage holes because the Rips complex 
cannot capture triangular holes, leading to missing some 
coverage holes.

A coverage hole patching algorithm is proposed by 
(Lu, et al., 2022). Depending on the size of the coverage 
holes, the algorithm prioritizes patching to reduce node 
redundancy, improve network coverage, and balance 
resource allocation. The results show that the proposed 
algorithm coverage rate and node redundancy reduction 
are better than the conventional coverage hole patching 
algorithms. A localization and deployment model using the 
Arithmetic Optimization Algorithm is presented in (Khatir, 
et al., 2021). By implementing this algorithm, a deployment 
model is developed to achieve a fully connected network. 
Considering the average localization error within 5 m, the 
algorithm demonstrates its accuracy in localizing nodes 
and identifying coverage holes in different fields. Based 
on the simplified Rips complex, (Zhang, Chu, and Feng, 
2020b) proposed an efficient algorithm to detect coverage 
holes. The algorithm decreases the computational efficiency 
and enhances the detection accuracy. The results indicate 
that the proposed algorithm exhibits reduced complexity 
and achieves higher accuracy, reaching 99.03%, when 
compared to other algorithms. The algorithm enhances 
energy consumption by implementing redundant node 
sleeping and edge deletion, which help simplify the network 
structure, reducing the number of active nodes and edges 
required to communicate and process data. However, the 
algorithm may face challenges in dense or highly dynamic 
networks where node locations and network topology 
change continually. An improved Coverage Hole Patching 
Technique (CHPT) based on tree algorithms is proposed by 
(Das and Debbarma, 2020). The Delaunay triangle and void 
circle properties are used to detect hole patching. A hole’s 
location is estimated using the inner empty circle property. 
The results of the experiments show that CHPT increases the 
coverage percentage to 98.6% compared to other techniques. 
(Al-Fuhaidi, et al., 2020) proposed a deployment model 
based on probabilistic sensing models (PSM) and Harmony 
Search Algorithms (HSA) to balance network coverage and 
cost in HWSNs. The HSA optimizes the deployment of 
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nodes by balancing coverage and cost, while the PSM is 
utilized to solve the overlapping problem among sensors. 
Based on the simulation results, the proposed deployment 
model achieves maximum coverage and minimum sensor 
number, and it attains superior results when compared with 
other algorithms. (Amer, et al., 2024) introduced a hybrid 
algorithm, CFL-PSO, combining an enhanced Fick’s Law 
algorithm with comprehensive learning and Particle Swarm 
Optimization (PSO) to enhance connectivity and coverage by 
optimizing router node placement in WSNs. The simulation 
results show that CFL-PSO improves network performance, 
attaining up to 66.5% better connectivity, 16.56% better 
coverage, and a 21.4% improvement in the objective function 
value compared to several algorithms including the standard 
FLA. However, the research does not address the network 
scalability and does not consider energy consumption. 
Accordingly, (Aljubori, Khalilpour Akram, and Challenger, 
2022) developed a distributed algorithm based on 2-hop 
local neighborhood information to identify redundant nodes. 
In the proposed algorithm, nodes are classified as redundant 
based on their connections with their neighbors. An Artificial 
Hydrocarbon Network Technique is presented by (Gutiérrez 
and Ponce, 2019) to detect sensor failures at a remote 
location. The method can predict the temperature and detect 
malfunctions at remote sensors utilizing information from 
a web service and comparing it with data from the field 
temperature sensor. In discussing the automatic detection of 
coverage holes, (Jain, 2020) proposed a four-step architecture 
that includes cluster formation, coverage hole detection, 
Cluster Head (CH) selection, recovery, and routing for 
dynamic clustering, focusing on coverage hole detection and 
recovery to enhance energy efficiency in IoT applications. 
The results show that the architecture reduces energy 
consumption, increases network lifetime, and improves the 
WSN’s overall efficiency. However, the complexity of cluster 
maintenance and the time-consuming of using fuzzy logic 
for coverage holes should be considered. (Lai, et al., 2022) 
introduced a method for tracing coverage holes in WSNS 
known as Force-Directed and Transfer Learning. It depends 
on the layout generation capabilities of force-directed 
algorithms and the image recognition capabilities related to 
convolutional neural networks. Similarly, (Satyanarayana, 
et al., 2023) developed a fault detection model to improve 
the coverage area by establishing relay nodes for positioning 
sensor nodes in the environment and simulating the entire 
module with different analyses including transmission 
range, sensing range, and distance traveled to compare 
its performance with existing techniques. The simulation 
results reveal the effectiveness of the proposed algorithm 
in enhancing the coverage area and energy efficiency of 
the WSN. However, the proposed algorithm suffers from 
implementation complexity and computational resources. 
Moreover, it faces challenges in preserving connectivity 
and performance in the existence of multiple node failures. 
(Siamantas and Kandris, 2024) presented a new algorithm 
based on Particle Swarm Optimization (PSO) to improve 
WSNs coverage and connectivity by placing a predefined 
number of sensor nodes within a square target area. The 

research introduced a new objective function obtained 
from circle-packing geometric problems. The simulations 
and statistical tests revealing the algorithm effectiveness 
compared to other algorithms. However, the research focuses 
on attaining only 1-connectivity, which may not provide 
adequate network robustness and fault tolerance compared 
to m-connectivity. In (Kuthadi, et al., 2021), an Optimized 
Energy Management Model for Data Dissemination 
is proposed to enhance transmission links and energy 
consumption. The model utilizes a non-adaptive routing 
approach to disperse data efficiently from a single source to 
several points, integrating a dispersed collaboration system 
and priority task planning to improve energy usage. The 
results show that the model enhances the data transmission 
rate and reduces energy consumption by 20.11% in WSNs. 
However, the model may be complex to implement and need 
substantial computational resources due to the mathematical 
calculations. (Abdulzahra, Al-Qurabat and Abdulzahra, 2023) 
proposed an energy-efficient fuzzy-based unequal clustering 
with a sleep scheduling (EFUCSS) protocol for IoT that uses 
WSN to extend the network lifetime and reduce energy. The 
results show that the proposed protocol conserves energy by 
26.92–213.4% and network lifespan by 39.58–408.13%. The 
network lifespan shows significant improvement compared 
to other algorithms. However, the protocol may increase the 
implementation complexity and require more computational 
resources due to clustering, CH selection using fuzzy logic, 
and sleep scheduling.

The literature proposed several techniques to improve 
coverage and connectivity in WSNs. However, there is still 
a significant gap in repairing and reconnecting dead nodes, 
dynamic adaptation, and energy efficiency, which are critical 
to maintaining network reliability and robustness. Existing 
research has suggested methods meant to maintain coverage 
and connectivity; there remains a notable gap in the literature 
regarding the proper repair and re-connection of non-
functional sensor nodes, as well as the effective remediation 
of coverage holes yet. Many approaches lack mechanisms 
for dynamic adaptation to changing network conditions, such 
as node failures or varying environmental factors, which 
can impact network reliability. Accordingly, we integrate 
the ABC algorithm with a developed SRCA algorithm to 
develop range and connectivity for coverage hole detection 
formations between two nodes. The approach ensures 
continuous monitoring and adaptation to dynamic changes 
within the system. A comparison between the research is 
introduced in Table I below:

Table I shows a comparison of several research in the 
literature, underscoring their strengths and limitations, which 
help understand the gaps that the proposed hybrid ABC-
SRCA approach aims to handle.

III. Problem Statement
Ensuring robust network coverage and connectivity in 

WSNs is a critical but unresolved problem due to several 
challenges. These include dynamic environments, energy 
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TABLE I
Comparing of Research

Research Approach Strengths Limitations
Lu, et al. (2025) Improved Secretary Bird Optimization 

Algorithm 
Higher accuracy, faster convergence, 
efficient for large-scale issues

Lacks dynamic adaptive and fault 
recovery mechanisms

Guo, et al. (2025) Perception model with path loss and 
false alarm probability

Full coverage with fewer nodes, 
improved network performance

Does not adapt to changing parameters 
or conditions during execution

Velavalapalli, Ramamurthy and 
Satyanarayana (2024)

Distributed approach for detecting 
faulty data

High packet delivery ratio, effective fault 
detection

Implementation complexity, challenges 
in handling misbehaving nodes and 
resource constraints

Khedr, Osamy and Salim (2018) Random provisioning design for 
HWSNs

Detects and predicts coverage gaps Does not address dynamic adaptation

Yan, et al. (2020) Connectivity-based k-coverage hole 
detection algorithm

Reliable detection of non-triangular 
holes, reduced energy consumption

Miss triangular holes, limited 
effectiveness

Lu, et al. (2022) Coverage hole patching algorithm Improved coverage rate, reduced node 
redundancy

Does not address dynamic network 
conditions

Khatir, et al. (2021) Localization and deployment model 
using Arithmetic Optimization 
Algorithm

Accurate localization, identification of 
coverage holes

Challenges in dense or highly dynamic 
networks

Zhang, Chu and Feng (2020b) Efficient algorithm based on simplified 
Rips complex

High accuracy, reduced complexity Struggles in dynamic networks with 
changing node locations

Amer, et al. (2024) Hybrid CFL-PSO algorithm Improved connectivity and coverage, 
better network performance

Does not address network scalability 
and energy consumption

Al-Fuhaidi, et al. (2020) Deployment model using PSM and 
HSA

Maximum coverage with minimum 
sensors, balanced coverage, and cost

Does not consider dynamic adaptation

Kuthadi, et al. (2021) Optimized energy management model Enhanced transmission links, reduced 
energy consumption

Complex implementation, substantial 
computational resources required

Abdulzahra, Al-Qurabat and 
Abdulzahra (2023)

Fuzzy-based unequal clustering with 
sleep scheduling protocol

Conserves energy, extends network 
lifespan

Increased implementation complexity, 
requires more computational resources

limitations, and irregular sensor deployment. The irregular 
distribution of nodes, often resulting from random sensor 
deployment, aggravates coverage gaps and makes repairing 
dead nodes a significant challenge. Existing solutions 
usually fail optimally to balance coverage and energy 
efficiency trade-offs while adapting to various conditions. 
In addition, the complexities of sensor networks and their 
operating environments have prevented the development of a 
universally accepted solution. Moreover, the lack of scalable 
and generalizable approaches ensures this issue remains 
an open research area. The previous research underscores 
different approaches to enhance coverage and connectivity in 
WSNs. Many approaches focus on optimizing deployment, 
catching coverage holes, and handling energy consumption. 
However, there is a significant gap in dynamic adaptation 
and fault recovery mechanisms, which are essential for 
preserving network dependability and robustness. The hybrid 
ABC-SRCA approach combines the strengths of the SRCA 
and ABC algorithms to manage these gaps by incorporating 
dynamic adaptation, energy-aware optimization, and scalable 
re-connectivity, presenting a more thorough solution for 
WSNs.

IV. The Proposed Approach
The hybrid ABC-SRCA approach combines two 

techniques: the ABC algorithm and a developed SRCA. The 
proposed approach integrates the strengths of both algorithms 
to tackle coverage and re-connectivity issues. The ABC 
algorithm is a nature-inspired optimization algorithm that 
simulates bees’ foraging behavior. It is easy to implement, 

and there are fewer parameters to adjust. Moreover, it 
utilizes exploration and exploitation mechanisms to adjust 
the placement of sensor nodes in the network iteratively 
(Wang, et al, 2023). Thus, this algorithm can optimize 
network resource utilization and maximize the coverage area. 
However, it may obtain a local minimum and can achieve 
the global optimum with relative computational simplicity 
(Wang, et al, 2023). On the other hand, the SRCA algorithm 
is developed by the author to establish connectivity among 
deployed nodes by manipulating their transmission ranges. 
The SRCA has two main functions. First, it identifies 
disconnected nodes and adjusts their transmission ranges 
sequentially to establish connectivity with neighboring 
nodes. Second, the SRCA algorithm identifies coverage 
holes and constructs coverage by adjusting node positions. 
To achieve these functions, several steps are performed 
including (1) initialization of nodes sensors positions, (2) 
node distance estimation, (3) coverage hole detection, and (4) 
re-connectivity to dead nodes. All these steps are explained 
in the following sections B and C. The algorithm iteratively 
refines the positions of nodes by evaluating their fitness and 
generating new solutions. This process ensures the network 
remains connected even with dead nodes, enabling seamless 
data transmission and communication, thereby addressing the 
local optima problem effectively. Therefore, integrating these 
algorithms provide a robust solution for optimizing network 
coverage and connectivity, thereby addressing the local 
optima problem effectively. Moreover, improving coverage 
and facilitating re-connectivity in the presence of dead nodes 
can indirectly contribute to energy efficiency by reducing the 
need for redundant nodes and minimizing communication 
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overhead. In addition, maintaining connectivity and coverage 
can help in efficient network operations, which may lead to 
better energy utilization.

The proposed approach can improve the coverage and re-
connecting to the dead node in WSNs and considers that all 
sensor nodes are heterogeneous randomly deployed in the 
ROI. All nodes are assumed to be capable of sensing the 
environment to detect physical constraints. All sensors are 
presumed to uphold a synchronization protocol, enabling 
consistent time synchronization across the network. This 
allows them to make informed decisions about maintaining 
reconnection with their neighbors. Presumably, the sensing 
range (Rs) and communication range (Rc) of each node 
are (Rc > 2RS), with no conflict likely to occur after 
deployment. It is used in the proposed approach to optimize 
the deployment and routing of sensor nodes and to estimate 
distance among nodes. In this algorithm, new solutions are 
produced, where the iteration for the node searching process 
is to find a new position and apply a distance estimation 
process. This procedure is started by selecting the start node 
and then generating the distance for the next node (from the 
start node to the end node) in ROI after the sensor node is 
randomly deployed using a post-deployment algorithm. The 
SRCA algorithm prioritizes creating connections between 
deployed nodes by adjusting their transmission ranges. It 
identifies disconnected nodes and gradually modifies their 
transmission ranges to link up with neighboring nodes, 
aiming to establish connectivity.

This approach can be customized based on prioritizing 
coverage holes or dead nodes which are two common 
challenges in WSNs Prioritization depends on the approach 
focus. If the approach strategy focuses on sustaining network 
functionality, re-connectivity for dead nodes should be 
carried out first. Moreover, handling coverage holes might 
be preferable if the focus is on accurate monitoring or data 
collection. The ABC-SRCA approach involves three main 
steps shown in Fig. 1, and explained in the following sections.

A. Node Distance Estimation
The step related to node distance estimation involves 

the utilization of the ABC algorithm to calculate the node 
distance estimation and adjust sensor node positions. The 
ABC algorithm is a metaheuristic optimization algorithm 
commonly utilized for solving optimization problems but 
is not explicitly designed for distance estimation. To use the 
ABC algorithm for estimating distances, there is a need for 
distance-based objective function or fitness measure. The ABC 
algorithm is customized to estimate the node distance and 
adjust sensor nodes’ positions. The ABC algorithm iteratively 
refines a population of node sources (representing solutions in 
a multi-dimensional space) by evaluating their fitness, creating 
neighbor solutions, selecting better solutions, and recording the 
best-found solution until evaluations up to a maximum. The 
algorithm procedure is introduced in the following:

Input: Number of node sources SN (solution), number of 
dimensions D, lower bounds xmin, upper bounds xmax, max 
evaluations MaxEval, abandonment limit L

1. Initialization:
for i = 1 to SN:
for j = 1 to D:

( )[0,1]= + −j j j j
i min max minx x rand x x  (1)

end for
evaluate fitness (fi) for each solution xi.
set EvalCount = SN
bestSolution = best(xi)
2. Repeat until EvalCount ≥ MaxEval:
/Employed Bee Phase:
for each employed bee associated with solution xi:
 choose a random neighbor index k (k ≠ i) and a random 
dimension j ∈ {1,…, D}
generate new solution (neighbor) vi:
vij = xij + φij * (xij - xkj) (2)
where φij ∈ [-1, 1] (random)
evaluate fitness f(vi)
evalCount = EvalCount + 1
if f(v_i) is better than f(xi):
update xi = v_i
reset trial counter for xi
else:
increment trial counter for xi
end for
//Onlooker Bee Phase:
calculate selection probabilities for each solution:
for i = 1 to SN:

1=

=
∑

i
i SN

nn

fitness
p

fitness  (3)

end for
for each onlooker bee:
 select a solution xi based on probability pi (e.g., using 
roulette wheel selection)
 choose a random neighbor index k (k ≠ i) and a random 
dimension j ∈ {1,…, D}
generate new solution vi using:
vij = xij + φij * (xij - xkj) (2a)
evaluate fitness f(vi)
evalCount = EvalCount + 1
if f(v_i) is better than f(xi):
update xi = vi
reset trial counter for xi
else:
increment trial counter for xi
end for
//Scout Bee Phase:
for each solution xi:
if trial counter for xi exceeds limit L:
 //Abandon current solution and generate a new one 
randomly
for j = 1 to D:

( )[0,1]= + −j j j j
i min max minx x rand x x  (1a)

end For
evaluate fitness f(xi)
evalCount = EvalCount + 1
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Fig. 1. Flow chart for the combined artificial bee colony-sequential re-connectivity and coverage algorithm algorithms proposal/approach.

reset trial counter for xi
end For
//update the best solution found so far:
bestSolution = best (BestSolution, {xi})
end Repeat
Output: BestSolution
Overall, this procedure resembles a population-based 

optimization algorithm inspired by the behavior of bees in 
a colony. It aims to iteratively refine the solutions (node 
sources) and introduce new random solutions to improve the 
overall performance or fitness of the nodes based on defined 
parameters and fitness evaluations. The algorithm evaluates 
solutions based on their “fitness” or performance, giving a 
higher probability to solutions that perform better rather than 
randomly choosing solutions. Moreover, the algorithm avoids 
getting stuck in local optima by continuously exploring new 

areas. In general, the algorithm provides efficient, scalable, 
and adaptive methods for optimizing problems, making 
it particularly appropriate for WSN optimization, where 
maintaining connectivity and coverage is crucial.

B. Coverage Hole
The coverage hole step includes the usage of the SRCA 

algorithm, whose function is to determine and construct 
the coverage holes. The SRCA initializes the sensor node 
position and calculates the coverage area by saving distance 
estimation and node location information. It usually updates 
its position through the node-finding process to determine 
the coverage area in the ROI. The selected backup node 
must maintain a one-hop information table corresponding 
to the critical node. The node degree represents the number 
of communication links it has with other nodes in the ROI, 
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which is equivalent to the number of its neighboring nodes. 
A higher node degree indicates a more significant number of 
surrounding dead nodes. The proposed approach selects node 
positions from start to end to reconnect to the dead node as a 
new position. When a node dies, the backup node is chosen 
from its neighbor to minimize dead nodes, messages, and 
time. During the initialization of the node table, each node 
sends a broadcast message containing its ID and coordinates. 
All nodes within the communication range receive the 
message. After exchanging information, each node determines 
whether it is nearest to the dead node through the node table 
neighborhood list. However, live/active nodes must not 
break network connectivity. Therefore, a backup node must 
be selected only for the dead node. Selecting backup nodes 
depends on the minimum distance between the dead node 
and the nearest node and the node degree.

C. Re-Connectivity to Dead Nodes
This step includes recovering the dead node and re-

connecting to it using the connectivity algorithm to the 
dead node. The SRCA algorithm establishes connections 
among deployed nodes by fine-tuning their transmission 
ranges. It detects isolated nodes and systematically 
adjusts their transmission ranges, striving to connect them 
with neighboring nodes and ultimately achieve network 
connectivity. Sensor nodes are deployed randomly, resulting 
in highly connected networks in some areas while leaving 
others only partially connected. This uneven distribution can 
compromise coverage. To address this, sensor nodes must be 
able to adjust their positions to achieve uniform distribution 
and maximize coverage. Typically, the sink node oversees this 
distribution, processing data and making decisions. However, 
this approach increases communication overhead and incurs 
delays, as decisions must be transmitted across the entire 
network. As a result, self-organizing nodes are recommended 
to reduce overall network message traffic. The effects of 
node failure are pretty different in highly interconnected 
networks where all nodes are placed close to each other. Any 
loss of one or more nodes can affect connectivity, splitting 
the network into several disjoint segments. Furthermore, 
numerous nodes cannot send data to the sink node [30]. The 
SRCA and dead node reconnection in WSNs work, assuming 
all sensor nodes are heterogeneous sensors placed randomly 
in the ROI. Hence, all nodes are supposed to be aware of the 
environment and physical limitations. The SRCA selects the 
backup (alternative) node to each dead node from its neighbor 
nodes through a neighborhood list (NL). The SRCA algorithm 
procedure for re-connectivity is introduced as follows:
1. If node position is not found, the algorithm terminates the 

condition, or else it turns up to step 8
2. The node position is often regarded as the current best 

location
3. Start re-connectivity sensor node in the coverage hole area
4. Select node position from start to end to re-connect to the 

failed node
5. If re-connectivity fails (SRCA), it is highly recommended 

to return to step 4

6. Optimize the result of the SRCA algorithm to re-connect 
the start and end nodes

7. Calculate each node position’s value (this value is supposed 
to be the current best new node position)

8. In case of reaching max iteration, the algorithm must be 
terminated; if not, go to step 3.

When a dead node is detected, the pre-established 
backup node will execute the restoration strategy and 
initiate cooperation with the nearest node. If the backup 
node itself is dead, the restoration algorithm will move 
to the next backup node until a functional one is found. 
Before selection a backup node, it sends a message to its 
neighboring nodes, updating their neighbor information 
tables. When choosing the location for backup nodes, the 
communication areas of the backup node and its neighboring 
nodes should be considered. The goal is to optimize the 
backup node’s position to maximize effective connectivity 
while estimating the presence of dead nodes. On detecting 
a dead node (failure) within its monitoring area, the backup 
node calculates the optimal destination coordinates to 
maximize local connectivity. This involves minimizing 
overlapping areas, and the coordinates corresponding to 
the minimum overlapping area function are determined. 
These calculated coordinates are considered the optimal 
position for the dead node, ensuring necessary connectivity 
for lifetime coverage. The SRCA algorithm supposes that 
heterogeneous nodes can decide their location with their 
neighbors. If the heterogeneous node is not equipped before 
the dead, it will need some time to react. In this way, the 
SRCA algorithm yields an ongoing relocation of mobile 
nodes if the failure occurs, guaranteeing connectivity and 
coverage with no wasted time. In general, the algorithm 
iterates the reconnection attempts for improved efficiency 
and systematically iterates different node positions. In 
addition, the algorithm provides robust failure handling by 
retrying alternative paths and positions when connectivity 
fails.

D. The ABC - SRCA Approach Pseudo Code
The ABC-SRCA approach outlines a multi-step process 

primarily focused on optimizing node deployment, coverage, 
and connectivity within a sensor network. The ABC-
SRCA algorithm is designed to optimize the sensor nodes 
deployment in WSNs by iteratively refining node positions. 
Initially, nodes are randomly deployed, and their coverage 
areas are calculated based on a uniform detection range. 
A set of preliminary solutions is generated and evaluated, 
with bees performing neighborhood searches to improve 
solution quality. Solutions are selected based on fitness 
values, with a roulette selection method used to determine the 
probability of selection. In addition to optimizing coverage, 
the algorithm considers potential issues such as failed nodes 
and coverage holes by incorporating mechanisms to detect 
and address neglected solutions. Throughout the iterative 
process, the algorithm updates the best solution found so 
far, aiming to enhance WSN coverage and efficiency while 
mitigating deployment challenges. Termination occurs when 
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a predefined criterion is met, at which point the best result is 
outputted. The pseudo code of this approach is introduced in 
the following:

Input: area covered by sensor node i. (A_covi), detection 
range of the sensor node (R), Set of all sensor nodes in the 
network (S), A sensor node in the set S (n), A candidate 
solution in the neighborhood search (new solution) (xij), 
modified candidate solution in the domain search (vij) 
Probability of selecting a solution, calculated based on its 
fitness (𝑝i).

Step 1: initialize running time measurement
start_timer ()
record start time Tstart
Step 2: random deployment Nodes using the post-

deployment algorithm.
The optimal deployment distance selection is originally 

related to the plane area intensity. The following equation 
illustrates this intensity:

2

1 1= =

=
∑ ∑

i n N
imi m

N
d

ϕ  (4)

Step 3: Nodes normally share their information with other 
sensor neighbors

Step 4: Sensor nodes usually communicate with each other
Step 5: Sensor field as accounted for in 2D
Step 6: Sensor nodes possess the same detection range
Step 7: Sensor Si is located at a particular point (xi, yi), for 

each point P the node coverage ratio is counted using

 ,  = ∈coviA
XR n S

R
 (5)

Step 8: For any point, the Euclidean distance

( ) 2 2, ( ) ( )= − + −i i id s N x x y y  (6)
Step 9: Randomly create (bee colony size) to perform as 

preliminary solutions, then match half of them with bees, 
calculate each solution’s fitness value, and finally record the 
best solutions.

Step 10: repeat = 1.
Step 11: The honeybee performs a neighborhood search to 

yield a new solution vij, calculates its fitness value, then do 
the SRCA selection of xij and vij.

Step 12: Calculate the probability of selection 𝑝i related 
to 𝑥i.

Step 13: Select the solution with probability pi using the 
roulette selection method, and then do a domain search to 
yield a new solution, calculate the fitness value, and then do 
the SRCA choice of xij and vij.

Step 14: Determine if a solution to be neglected is available. 
If so, use equation (3) to do a random search to produce a new 
solution that will be used instead of the old one.

Step 15: Determine the best of all solutions yet.
Step 16: Repeat = repeat + 1, if 𝑐𝑦𝑐𝑙𝑒 < SRCA; after that 

go to step 8 or output the best result.
Step 17: The ABC-SRCA algorithm normally updates its 

location under the node-finding process.

Step 18: running time measurement
end_timer (), record end time Tend, compute and record 

running time for current sensor node count
Step 19: output the best solution and running_time for the 

current sensor node configuration
This approach incorporates deployment and optimization, 

guaranteeing robust coverage and connectivity by starting 
with a random deployment and then using ABC and SRCA 
algorithms to optimize node positions. It uses probabilistic 
selection to explore various solutions, making the approach 
adaptive to diverse scenarios. Moreover, it can handle many 
nodes (scalable) due to ABC’s iterative and probabilistic 
nature.

V. Performance Metric
Evaluation of the proposed approach requires covering more 

aspects and provides better insight into its overall performance. 
This study used the following performance metrics:
•	 Energy Consumption

Efficient energy use is vital for extending the network’s 
operational lifetime. Since the sensor energy is limited, it 
is required to reduce sensor motion. The following equation 
is used to calculate the energy consumption for sensor n 
moving from point a to point b is calculated by (Guo and 
Jafarkhani, 2019):

En (a,b)= θn ∥ b-a∥ (7)
Where θn is the energy cost per unit distance for moving 

node 𝑛 to a new position. The term ∥b-a∥ denotes the 
Euclidean distance between the initial locations and the final 
destination, which represents the energy needed to move or 
communicate between the nodes.
•	 Connectivity

The WSNs connectivity refers to the ability of each sensor 
node to find a path to reach the selected sink node. If no 
route is available, the sink node cannot process the data 
collected by that node. The connectivity represents the ability 
of nodes to communicate.
•	 Coverage

The sensor network coverage refers to the ability of 
sensors to monitor the field of interest. The metric measures 
network sensing capability. Coverage in ABC-SRCA is the 
measure of the duration and extent for which the sensors can 
monitor the field of interest.
•	 Scalability

The approach’s performance is tested on two different area 
scales with varying numbers of nodes, which may reflect its 
efficiency in larger or real-world deployments.
•	 Running Time

Running or processing time in WSNs denotes the duration 
for algorithms to perform tasks such as node deployment, 
coverage optimization, and energy management. It relies 
on the sensor node number, network size, and algorithm 
complexity. Evaluating the running time of the research 
approach is done using the MATLAB.
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VI. Results And Analysis
The experimental procedure is performed by installing 

MATLAB version R2020 on a pc with Intel@ Core i7-
3770 CPU@3.40GHz and 16GB RAM. A WSN square area 
100 m × 100 m is considered, where 50 wireless sensor 
nodes were deployed to monitor the area. The sensing radius 
is 10m. The overall performance concerning coverage, 
and connectivity of ABC algorithms and the ABC-SRCA 
approach is compared. The outcomes are recorded in 
Tables II-IV. MATLAB is used for implementing and 
simulating the ABC-SRCA optimization approach because 
it can address complex mathematical calculations and 
algorithms, making it well-suited. Simulation is a necessary 
first step in evaluating the approach’s feasibility and 
outcomes in a controlled environment before testing it in 
real-world conditions.

Table II and Fig. 2 display the results of the connectivity 
between sensor nodes that employ an isolated node 
localization model considering different node numbers. The 
results show that the actual connectivity error detection 
rates using the proposed ABC-SRCA approach are better 
for the different number of deployment nodes regardless the 
inconsistency in the error detection rate of the approach. 
An increased error detection rate with more nodes indicates 
improved network coverage and monitoring capabilities. 
However, it may indicate inefficiencies such as false 
positives, network congestion, or redundancy in error 
reporting (Adday, et al., 2022) The SRCA and ABC-SRCA 
dynamically adjust reallocation and transmission power 
based on node density. A higher node count leads to reducing 
errors per node probability, increasing the approach ability to 
correct coverage gaps and optimize deployment. This leads 
to a lower percentage of errors despite a larger network. 
However, increased sensor numbers can increase interference 
and data collisions, overlapping, communication overhead, 
scalability challenges, and sudden node failures, which may 
negatively affect the overall error detection rate.

Table III and Fig. 3 show that the proposed approach 
achieves better coverage accuracy (how accurately nodes 
deployed with how much coverage) on different sizes of 
ROI for various node numbers compared with the ABC and 
SRCA. The proposed approach revealed promising results 
in optimizing sensor node placement, leading to improved 
coverage of the target area. However, the approach’s coverage 
accuracy can vary depending on problem formulation, 
network topology, and implementation details; additionally, 
proper parameter tuning and optimization strategy selection 
are critical for optimal results.

Table IV introduces a comparison between the proposed 
approach and previous studies in similar scenario including 
the same number of nodes and the same deployed area. The 
first study was (Yue, Cao, and Luo, 2019), who presented 
an improved ABC algorithm (IABC) and compared its 
coverage performance with GA and the Random Distribution 
Algorithm (RDA). The study deployed different sensor nodes 
within a 200 m × 200 m area. The second study is the study 
of (Wang, et al., 2018), who introduced a sensing radius 

TABLE II
Connectivity Error Detection of the Proposed Approach

No. of nodes considered Error detection rate

ABC (%) SRCA (%) ABC-SRCA (%)
10 16.6 19.6 26.9
20 15.85 18.85 27.61
30 14.8 16.8 26.41
40 13.69 15.69 25.9
50 12.98 14.98 27.93
ABC: Artificial bee colony, SRCA: Sequential re-connectivity and coverage algorithm

adaptive coverage control algorithm (SRACC) and compared 
it with the particle swarm optimization and Voronoi diagram 
(PSO-VD). The study deployed different sensor nodes within 
a 100 m × 100 m area. The ABC-SRCA approach combines 
the strengths of the ABC and SRCA algorithms to enhance 
network coverage and connectivity. The efficacy of this 
combination is shown through the comparative analysis with 
other hybrid approaches, such as ABC-GA and ABC-PSO. 
Table IV reveals that the ABC-SRCA approach accomplishes 
the best coverage accuracy, reaching up to 97.89% in a 200 m 
× 200 m area and 98.05% in a 100 m ×100 m area. These 
results demonstrate that the ABC-SRCA approach exceeds 
the Improved ABC Algorithm (IABC), Genetic Algorithm 
(GA), Random Distribution Algorithm (RDA), SRACC, and 
PSO-VD in terms of coverage accuracy. The higher coverage 
accuracy attained by ABC-SRCA underscores its efficacy in 
optimizing sensor node placement and sustaining network 

Fig. 2. Error detection rate.

Fig. 3. Coverage accuracy of artificial bee colony-sequential re-
connectivity and coverage algorithm in different areas.
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significantly increasing energy usage, as energy efficiency is 
a critical factor in WSN design and operation.

The ABC-SRCA can be considered real-time if the 
computation time for determining node placement and 
maintaining network connectivity is evaluated. Table VII 
introduces the computation times for different numbers of 
deployed nodes.

Table VII and Fig. 8 show that the running time increases 
as the number of sensor nodes increases, which is expected. 
The larger area (200 m × 200 m) consistently shows a longer 
running time compared to the smaller area (100 m × 100 m). 
This indicates that the size of the area impacts the running 
time, even with the same number of sensor nodes. The growth 
in running time appears to be roughly linear for both areas, 
but the larger area exhibits a slightly higher rate of increase. 
This is due to several reasons. First reason is due increases 
the number of sensor nodes, which increases the complexity 

TABLE IV
Comparison of Coverage Accuracies

Deployed 
nodes 
number 

Coverage accuracy Coverage accuracy

Research approach
200×200 m

(Yue, Cao and Luo, 2019)
200×200 m

Research approach
100×100 m

(Wang, et al., 2018)
100×100 m

ABC-SRCA 
approach (%)

Improved ABC 
algorithm (%)

Genetic 
algorithm (%)

Random distribution 
algorithm (%)

ABC-SRCA 
algorithm (%)

SRACC (%) PSO-VD (%)

10 86.44 54 54 43 89.00 -
20 90.33 76 67 57 91.23 -
30 92.42 85 76 64 94.12 37 34
40 95.22 93 86 67 96.10 77 69
50 97.89 96 91 72 98.05 85 80
ABC: Artificial bee colony, SRCA: Sequential re-connectivity and coverage algorithm, SRACC: Sensing radius adaptive coverage control, PSO-VD: Particle Swarm Optimization 
Voronoi Diagram

TABLE III
Coverage Accuracy of the Proposed Approach

Number of deployed nodes Research approach

100×100 m 200×200 m

ABC (%) SRCA (%) ABC-SRCA (%) ABC (%) SRCA (%) ABC-SRCA (%)
10 85 75 89 84.00 75.00 86.44
20 86 78 91.23 87.00 78.00 90.33
30 89 80 94.12 89.00 80.00 92.42
40 90 82 96.10 91.00 82.00 95.22
50 91 85 98.05 92.00 85.00 97.89
ABC: Artificial bee colony, SRCA: Sequential re-connectivity and coverage algorithm

connectivity, making it a proper solution for WSNs compared 
to other hybrid combinations.

The comparison results in Fig. 4 reveal that the ABC-
SRCA significantly outperforms the other algorithms in 
attaining better coverage by employing various node numbers 
deployed in area 200 m × 200 m. The ABC-SRCA steadily 
attains the highest coverage accuracy, starting at 86.44% (10 
nodes) and reaching 97.89% (50 nodes), outperforming all 
other approaches.

The comparison results in Fig. 5 show that the ABC-SRCA 
achieves better coverage accuracy for various nodes number 
deployed in Area 100 m × 100 m. The ABC-SRCA achieves 
the highest accuracy in this smaller area, reaching 98.05% at 
50 nodes.

Table V and Fig. 6 show that the energy consumption 
scales linearly with the number of nodes due to the 
complexity of interactions and connectivity maintenance. The 
200 m × 200 m area consumes more energy due to higher 
transmission distances and communication overhead.

To evaluate the energy efficiency of the research approach, 
it is compared with other algorithms in 100 m × 100 m area 
and the results are introduced in the Table VI.

Table VI and Fig. 7 show that the ABC-SRCA approach 
consumes 11J of energy, which is lower than PSO (14J) 
and PSO-VD (12J) but slightly higher than SRACC (10J). 
The ABC-SRCA approach consumes slightly more energy 
(I J) because it ensures high coverage and connectivity 
and manages dead nodes, which is not considered by other 
algorithms. This indicates the extra processes conducted 
by the hybrid algorithm do not cause extra resource 
consumption. The approach attains its objectives without 

Fig. 4. Comparison of coverage accuracy in area 200 m × 200 m.
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TABLE V
Energy Consumption for ABC-SRCA

Number 
of nodes

Hybrid ABC-SRCA energy (J)
100 m×100 m

Hybrid ABC-SRCA energy (J)
200 m×200 m

10 3 5 
20 5 7 
30 7 9
40 9 11
50 11 13
ABC: Artificial bee colony, SRCA: Sequential re-connectivity and coverage algorithm

TABLE VI
Energy Consumption Comparison for Area 100 m×100 m

Number 
of Nodes

Research 
approach

Wang, et al., 2018

ABC-SRCA 
energy (J)

PSO 
Energy (J)

PSO-VD 
energy (J) 

SRACC 
energy (J)

45 11 14 12 10
ABC: Artificial bee colony, SRCA: Sequential re-connectivity and coverage algorithm, 
PSO-VD: Particle Swarm Optimization Voronoi Diagram

TABLE VII
ABC-SRCA Running Times

Number of sensor nodes Running time (Second)

Area 100 m×100 m Area 200 m×200 m
10 1 1.2 
20 2 2.4 
30 3.5 4.2 
40 5 6 
50 6.5 8 
ABC: Artificial bee colony, SRCA: Sequential re-connectivity and coverage algorithm

of managing and coordinating these nodes. Second reason 
is increasing distance between nodes leading to longer 
communication paths and increased latency. Third reason is 
the propagation of signals. As signals are transmitted over 
longer distances, their strength can decrease, requiring more 
time and possibly causing them to be retransmitted. Forth 
reason is the increase volume of data which requires more 
processing time.

VII. Discussion

The research approach integrates ABC’s strength for 
coverage optimization and SRCA’s strength for connectivity 
recovery. This integration ensures that the network remains 
robust and adaptive to dynamic changes, such as node 
failures or environmental interference. The ABC algorithm 
performs well in exploration and exploitation, making it 
well-suited to optimizing sensor node placement. However, 
it can get stuck in local optima. By integrating SRCA, this 

Fig. 5. Comparison of coverage accuracy in area 100 m × 100 m.

Fig. 7. Energy consumption comparison.

Fig. 6. Artificial bee colony-sequential re-connectivity and coverage 
algorithm energy consumption.

Fig. 8. Running time of artificial bee colony-sequential re-connectivity 
and coverage algorithm.
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limitation is handled by introducing a sequential mechanism 
to dynamically adjust transmission ranges and reconnect 
nodes, ensuring global optimization. The study results 
indicate the efficacy of the hybrid ABC-SRCA approach in 
improving coverage and connectivity in WSNs compared 
to other techniques. The GA often suffers from slow and 
slow convergence to local optima, particularly in dynamic 
environments like WSNs. The SRACC is focuses on energy 
and coverage but lacks reliable mechanisms for handling 
dead nodes or dynamic network changes. The PSO is simple 
and has fast convergence but does not cope with maintaining 
a diversity of solutions, leading to suboptimal coverage in 
complex WSNs. The ABC-SRCA approach, with its adaptive 
nature and sequential re-connectivity mechanism, addresses 
these issues by dynamically adjusting node positions and 
transmission ranges, ensuring better performance in real-time 
scenarios.

The results show that the research approach consistently 
surpassed the ABC and the SRCA algorithms, as well as 
other existent techniques such as GA and SRACC. The 
approach attained up to 98% coverage accuracy, particularly 
higher than other algorithms, which implies its robustness in 
optimizing sensor node placement and sustaining network 
performance. In addition, the ABC-SRCA approach reduced 
the connectivity error detection rate by approximately 25%, 
underscoring its ability to keep reliable communication 
paths even in dead nodes’ presence. The analysis of energy 
consumption showed that while the ABC-SRCA approach 
consumes slightly more energy than SRACC, it is more 
efficient than PSO and PSO-VD. The approach exhibits a 
balanced trade-off between network performance and energy 
efficiency. The approach linear scalability concerning the 
node number and area size further highlights its usefulness 
for large-scale deployments. In general, the hybrid ABC-
SRCA approach significantly contributes to the WSN field 
by proposing a vigorous, adaptive, and efficient solution 
for confirming optimal coverage and connectivity, thereby 
reinforcing the WSN’s successful deployment in various 
applications.

VIII. Conclusion and Future Direction
Sensing and connectivity are crucial and essential features of 
WSN. The quality of a sensor’s coverage is known through 
how well it monitors the area of interest where the sensors 
are placed. Nodes’ connectivity measures their capability to 
communicate with each other. The proposed ABC-SRCA 
approach has been employed to maintain the sensing range 
and monitor the movement of deployed nodes to prevent 
failed nodes from re-connecting and jointly enhance coverage 
connectivity. The proposed approach has shown promise in 
addressing optimization challenges in WSNs, particularly 
regarding coverage and re-connectivity with dead nodes. 
The approach offers optimization capabilities, adaptability to 
changing network conditions, and scalability for large-scale 
sensor networks. The advantage of this approach lies in its 
capacity to calculate the distance and value of neighboring 

nodes, coverage, and connectivity to control the message 
between the sensing range and the newly covered area. 
Finally, the suggested approach can efficiently maintain the 
detection of coverage sensing nodes within the radius by 
expanding the sensing range of the selected node. To evaluate 
the performance of the proposed approach, we compare its 
performance results with algorithms in terms of accuracy, 
average energy consumption, and running time, and it shows 
promising results. However, there are limitations regarding 
parameter tuning, convergence speed, and sensitivity to 
problem formulation. Future directions include more research 
to improve the efficiency and performance of the approach. 
Researchers’ contribution to this collaborative effort is highly 
valued.
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