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Abstract—This study aims to develop novel and accurate data-
driven predictive models to replace labor-intensive laboratory 
testing for estimating the unconfined compressive strength 
(UCS) of problematic soils treated with rice husk ash (RHA) Full 
Quadratic, Interaction, M5P-tree, and Artificial Neural Network 
(ANN) were trained and evaluated using a dataset of 211 samples 
that involved seven key geotechnical parameters, including RHA 
content (0–30%), liquid limit (22–108%), plasticity index (1.3–82%), 
maximum dry density (1.2–1.9 g/cm3), optimum moisture content 
(10.5–42.6%), and curing time (CT) (0–112 days). Among all these 
models, the ANN model demonstrated superior performance 
(R2 = 0.97, RMSE = 24 kPa, MAE = 17 kPa, SI = 0.10). Sensitivity 
analysis revealed CT as the most influence factor (21.9%), 
followed by moisture content (16.1%) and RHA content (15.3%). 
The findings present that these predictive models provide a 
hybrid empirical–machine learning approach, and an accurate 
alternative to traditional UCS testing, significantly reducing the 
need for laboratory experiments. They also emphasize enhanced 
geotechnical performance and the sustainable reuse of agricultural 
waste. Furthermore, the models can offer a time-efficient solution 
with practical applications in areas such as highway development 
and foundation engineering.

Index Terms—Modeling techniques, Rice husk ash 
stabilization, Soil properties, Unconfined compressive 
strength prediction

I. Introduction
Clay soils are among the most common soil types in 
earthwork projects. These soils are usually susceptible to 
volume changes, which can cause shrinkage, swelling, and 
differential settlements (Estabragh, Moghadas, and Javadi, 
2013). These volume changes can significantly impact 
the structural stability of underlying infrastructures such 
as pavements and foundations. Mechanical and chemical 

approaches have been used to address problems of clayey 
soil (Abbey, Eyo and Ng’ambi, 2020; Ahmed, 2013; Blayi, 
et al., 2024; Lin and Cerato, 2012). Over last decades, 
integrating industrial and agricultural waste materials (e.g., 
rice husk ash [RHA]) has gained substantial attention as 
alternative soil stabilizer, attributable to their sustainability 
and easy availability (Behak and Musso, 2016; Canakci, 
Aziz and Celik, 2015; Choobbasti, et al., 2010; Eberemu 
Adrian, Amadi Agapitus and Sule, 2012). RHA, which is 
a byproduct of rice milling, is an eco-friendly solid waste 
material with high amorphous silica content, making it an 
alternative to traditional soil stabilizers, including cement 
and lime. Replacing one ton of cement with RHA reduces 
CO2 emissions by 0.9 tons, offering a cost-effective and 
sustainable alternative for geotechnical projects (Khan, et al., 
2012; Rahman, 1987).

One of the geotechnical parameters used as a measurement 
of soil improvement is unconfined compressive strength 
(UCS). Studies found that the UCS of natural and treated 
soil can varies with physical properties of soil, including 
the addition of RHA and other combined agents, the liquid 
limit (LL), plasticity index (PI), maximum dry density 
(MDD), optimum moisture content (OMC), and the curing 
times (CT) (Anwar Hossain Khandaker, 2011; Behak and 
Musso, 2016; Canakci, Aziz and Celik, 2015; Choobbasti, 
et al., 2010; Eberemu Adrian, Amadi Agapitus and Sule, 
2012; Zivari, Siavoshnia and Rezaei, 2023). In addition, 
studies have shown that combining RHA with additional 
stabilizers, including lime, cement, and calcium chloride 
can further improve soil properties (Ashango and Patra, 
2014; Choobbasti, et al., 2010; Maithili, Nagakumar, and 
Shashishankar, 2024; Pushpakumara and Mendis, 2022). 
Using RHA as a soil additive not only improves its mechanical 
properties but also aligns with sustainable development 
goals by utilizing industrial byproducts to stabilize soil 
(Ashango and Patra, 2014; Choobbasti et al., 2010; Maithili, 
Nagakumar, and Shashishankar, 2024; Pushpakumara and 
Mendis, 2022).

In addition, Free swelling (FS) index, as a measure of soil 
swelling potential, can complement UCS in evaluating soil 
stability for predicting soil behavior under varying moisture 
conditions. Traditional UCS testing is often time-consuming, 
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labor-intensive, and unusable for large-scale projects. 
Therefore, studies have explored alternative methods, 
including predictive modeling to evaluate UCS of soils 
(Goktepe, et al., 2008; Mawlood et al., 2021 (Mohammed 
and Vipulanandan, 2015; Mozumder and Laskar, 2015; 
Mohammed, 2018; Sharma and Singh, 2018; Vipulanandan 
and Mohammed, 2020). Precise prediction of the UCS is 
important to obtain the desired improved properties. Soft 
computing models, including full quadratic (FQ), Interaction 
(IA), M5P-tree, and ANN models, are commonly used for 
predicting soil properties. These models can handle difficult 
conditions in large datasets (Ali, et al., 2024; Mohammed 
et al., 2021). Recent studies revealed that ANN can be highly 
effective under certain conditions (Hossain and Kim, 2015; 
Mozumder and Laskar, 2015; Sharma and Singh, 2018), 
while FQ, linear, or multilinear regression models may be 
more suitable in others. Studies use statistical indicators 
such as R2, RMSE, MAE, and SI to assess prediction model 
performance (Mousavi et al., 2011; Westerberg et al., 2015; 
Zaimoglu, 2015). These measures evaluate the accuracy and 
reliability of models (Blayi et al., 2021; Baghbani, et al., 
2023; Cabalar and Omar, 2023; Baghbani, et al., 2023).

Based on the literature analysis, no prediction models have 
been developed specifically for estimating the UCS of fine-grain 
soils treated with RHA. Therefore, this study aims to develop 
various machine learning and statistical methods to predict the 
UCS of RHA-treated soil based on easily measurable input 
parameters (McBratney et al., 2000; Wattanapanich et al., 2024; 
Zhang et al., 2024). This approach addresses the challenge 
of conducting geotechnical testing at every site, which can 
be particularly difficult for small-scale projects. The models 
investigated include Artificial Neural Networks (ANN), M5P-
tree, FQ, and IA models. These models can predict UCS values 
given sufficient data, relevant input parameters, and a wide 
range of UCS values. The study employs multiple evaluation 
techniques to assess the performance and accuracy of each 
model in predicting UCS for RHA-stabilized soils. ANN models 
are particularly interesting for their ability to capture complex, 
nonlinear IAs between material characteristics, stabilization 
parameters, and performance results, even in high-dimensional 
data forms. FQ and IA models take IA effects into account 
when interpreting data, while M5P-tree dividers datasets in 
an interpretable method. This comparison emphasizes on each 
model’s prediction accuracy and practicality for optimizing RHA 
content and stabilization strategies. Ultimately, the study presents 
a novel application of FQ, IA, M5P-tree, and ANN models 
for predicting the UCS of RHA-stabilized soils, representing 
a highly accurate, data-driven alternative to traditional labor-
intensive and time-consuming testing methods (Emad et al., 
2022; Gautam et al., 2023; Nasir Amin et al., 2023).

II. Objectives of the Study
This work aims to develop different models and 

correlations to predict the UCS of RHA-treated soil utilizing 
laboratory test results found in the published literature. Four 
various models, including FQ, IA, M5P-tree, and ANN were 

developed to predict UCS based on the addition of waste by-
product materials and geotechnical properties of the soils. In 
addition, linear and Vipulanandan model relationships were 
employed between UCS and FS values. The main objectives 
of this study are as follows:
1. Develop and compare predictive models to predict the UCS 

and establish correlations with FS index of the natural and 
RHA-stabilized soils

2. Evaluate the performance of the models with statistical 
assessment metrics (R2, RMSE, MAE, and SI), to identify 
the most accurate approach

3. Analyze the impact of the additives and soil properties on 
UCS by conducting a sensitivity analysis to identify the most 
significant parameters influencing UCS values

4. Establish a sustainable framework for soil improvement 
by promoting the use of RHA in geotechnical applications 
and advance the state-of-the-art in geotechnical engineering 
through AI-driven methods for predicting soil properties.

III. Methodology
This study focuses on developing soft computing and statistical 

models to predict the UCS of natural and RHA-treated soils and 
evaluate the impact of other geotechnical properties of soil on 
UCS values. 211 datasets were collected from various published 
research and randomly divided into training (70% of data) and 
testing (30% of data). The training datasets were employed to 
develop models to predict the UCS values. The models were 
evaluated using the testing datasets. The retaining 30% for 
testing assists in defining the model’s capacity to generalize to 
newly introduced data. Moreover, the dataset comprises main 
geotechnical properties impacting UCS, including RHA content 
(0–30%), LL (22–108%), PI (1.3–82%), MDD (1.2–1.9 g/cm3), 
OMC (10.5–42.6%), and CT (0–112 days). The collected data 
were preprocessed by removing irregularities and standardizing 
values to guarantee the best model performance. The models 
include two learning machine approaches, ANN and M5P-
tree, and two statistical regression models: FQ and IA. AI and 
FQ were chosen for their interpretability, while M5P-tree was 
included for its ability to combine decision-tree structures 
with regression. ANN was selected for its capability to capture 
complex, nonlinear relationships. The ANN architecture consisted 
of three hidden layers with 64, 32, and 16 neurons, respectively, 
using ReLU activation.

Table I shows the details of the datasets collected from 
various studies. The table includes the measured (UCS) kPa 
ranges, which are compared to the predicted values from the 
models later. These input parameters were used to develop 
the models, and their performance was evaluated using 
the actual values of the output parameters. Fig. 1 shows a 
flowchart of the study’s research approach, which consists of 
five steps. During the initial stage, data were gathered from 
numerous sources. In the second stage, input and output 
parameters were correlated to find potential relationships. In 
the third stage, the data was divided into two groups: training 
(70%) and testing (30%). In the fourth stage, models were 



 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11967 239

TABLE I
The number and the range of used input and output datasets

Authors Data ranges

No. data RHA (%) Additives 
(%)

LL (%) PI (%) MDD (g/cm3) OMC (%) Curing 
(days)

UCS (kPa)

Rahman (1986) 5 0–16 0 50–53.4 18.2–27.2 1.39–1.56 22–25.7 0 211.2–371.6
Muntohar (2004) 4 0–12.5 0 64–74 25–43 1.18–1.32 34–37.9 0 219–268
Muntohar (2004) 4 0–12.5 6 Lime 54–74 5–23 1.15–1.32 26.5–34 0 238–269
Basha, et al. (2005) 5 0–20 0 35.6–46.5 11.2–14 1.45–1.68 15–24 0 100–140
Alhassan (2008) 1 0 0 49.5 25.1 1.48 18.38 7 180
Murty and Praveen (2008) 5 0–8 0 63–108 32–82 1.50–1.58 24–28.3 0 186–321
Murty and Praveen (2008) 44 0–8 0.25–1

CaCl2

44–76 14–47 1.45–1.61 22–28.5 0–14 181–481

Anwar Hossain Khandaker (2011) 1 0 0 39 19 1.63 21.58 7 94
Yadu, Tripathi and Singh, (2011) 5 6–15 0 52–74 5–10 1.62–1.76 14.4–19.6 0 128–180
Sarkar, et al. (2012) 5 0–12.5 0 46–56 20–24 1.42–1.55 21.4–30.2 0 58–255
Fattah, Rahil and Al-Soudany (2013) 4 0–9 0 56.9–63 28.1–37.2 1.53–1.76 22–25 0 81.9–128.2
Anupam, Kumar and Ransingchung (2014) 1 0 0 46 25 1.68 16.91 7 83.28
Adhikary and Jana (2016) 11 0–20 0 48–63.5 17.8–22 1.29–1.61 20–30.8 0–28 93–235
Kumar Yadav, et al. (2017) 6 0–12.5 0 34.5–36.1 6.2–12.4 1.55–1.64 17–23.3 0 110.9–216.9
Nahar, et al. (2021) 1 0 0 37.5 7.8 1.7 18.7 0 42
Adajar, et al. (2019) 11 0–25 0 48–75 18–53 1.19–1.42 27.3–40.2 7–28 90–320
Jalal, et al. (2021) 35 0–12 0 30.7–36.3 14.6–20.5 1.48–1.7 19.8–26 3–112 75–665
Ordoñez Muñoz, et al. (2021) 14 0–15 2–5

Cement
45.9–51.7 6.9–15 1.34–1.40 25–33 7–90 350–815

Hossain, et al. (2022) 4 0–9 0 35–42 10.5–12 1.56–1.77 15.9–20.1 0 82.7–193.1
Pushpakumara and Mendis (2022) 4 0–20 0 51–66.5 29–33.4 1.37–1.48 26.3–42.6 0 75–87
Pushpakumara and Mendis (2022) 10 0–30 10–20

Lime
38–55 16.5–33 1.23–1.43 26–42 0 79–106

Zivari, Siavoshnia and Rezaei, (2023) 14 0–10 1–4
Lime

22–31.3 1.3–5 1.72–1.84 12.2–16.2 7–28 125–625

Charyulu, et al. (2023) 4 0–15 0–15 63.2–75 34–38 1.3–1.9 22–30 0 72–104
Ingabire and Kumar (2023) 5 0–15 6 Sawdust 

ash
25–40 10.2–21.1 1.38–1.56 17.8–19.7 0 13.1–24.6

Maithili, Nagakumar and Shashishankar (2024) 3 5–15 5–15 32–35 7.5–16 1.63–1.84 13–16.8 0 92–128
Abdulrahman, et al. (2024) 5 0–10 0–10 55–62 14–41 1.6–1.74 10.5–15 0 65–100
RHA: Rice husk ash, LL: Liquid limit, PI: Plasticity index, MDD: Maximum dry density, OMC: Optimum moisture content, UCS: Unconfined compressive strength

developed based on input characteristics to estimate UCS. In 
the fifth stage, the models were evaluated based on testing 
data to establish their accuracy in predictions. Finally, in the 
sixth stage, sensitivity analysis was performed to determine 
the highest impact of input parameters.

IV. Correlations Between Input and Output 
Parameters

Figs. 2 and 3 showed the correlation and matrix plots 
between the input parameters and UCS values. Among all 
the parameters, CT showed a moderate positive relationship 
with UCS (r = 0.58). Other parameters, such as LL, PI, 
and dry density, showed weak or negative correlations. CT 
supports pozzolanic reactions in RHA-treated soil, resulting 
in cementitious products that increase strength. Insufficient 
curing causes incomplete reaction and reduced UCS. While 
LL and PI affect soil workability and water retention, they 
do not strongly correlate with UCS unless combined with 
density, moisture content, and CT.

Table II shows descriptive statistics for each variable. 
Kurtosis and skewness describe the form of a distribution. 
In numerical analysis, kurtosis denotes a distribution’s peak Fig. 1. The process of the work by a flow chart diagram.
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Fig. 2. Matrix plot between the input parameters and the unconfined compressive strength.

or flatness, whereas skewness refers to asymmetry. Negative 
kurtosis indicates shorter and thinner tails than normal 
distributions. A positive kurtosis value suggests lengthier and 
fatter tails than a normal distribution. Generally, a normal 
distribution has a kurtosis value of 0 (nearly zero in LL, MDD, 
and OMC). A distribution with high negative kurtosis may 
imply that there are lesser extreme values. Hence, input and 
output values should be chosen to avoid extreme distribution 

ends. A negative skewness number proposes a longer left tail, 
while a positive skewness value indicates a longer right tail. 
Similarly, LL, MDD, and OMC have the smallest values. 
This is illustrated in Figs. 2c, 2e, and 3f. Overall, negative 
skewness and kurtosis in MDD and OMC suggest that the 
dataset contains uniformly distributed soil properties with a 
tendency to higher values. This distribution helps consistent 
and predictable UCS outputs in fine-grained soils.



 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.11967 241

RHA (%) Additives (%) LL (%) PI (%) MDD (g/cm3) OMC (%) Curing time (days) UCS (kPa)
RHA (%) 1
Additives (%) 0.21 1
LL (%) −0.14 −0.03 1
PI (%) −0.29 −0.07 0.79 1
MDD (g/cm3) −0.50 −0.26 −0.30 −0.14 1
OMC (%) 0.49 0.24 0.38 0.32 −0.85 1
Curing time (days) −0.01 −0.13 −0.33 −0.16 0.03 −0.05 1
UCS (kPa) 0.05 −0.12 −0.15 −0.16 −0.16 0.11 0.58 1
RHA: Rice husk ash, LL: Liquid limit, PI: Plasticity index, MDD: Maximum dry density, OMC: Optimum moisture content, UCS: Unconfined compressive strength

Fig. 3. Correlation matrix between the input and output parameters.

TABLE II
Statistical Measures for Input and Output Variables

RHA (%) OA (%) LL (%) PI (%) MDD (g/cm3) OMC (%) CT (days) UCS (kPa)
Min 0 0 22 1.3 1.2 10.5 0 13.1
Max 30.0 20 108 82 1.9 42.6 112.0 815
Mean 6.9 1.4 50.3 22.4 1.5 24.4 14.6 249.8
Median 6.0 0 51 19.4 1.5 24.7 7 219
Mode 0.0 0 51 25 1.5 22 0 130
Variance 35.4 12.6 239.1 166.5 0 42.3 725.2 26521.4
Standard deviation 5.9 3.5 15.5 12.9 0.2 6.5 26.9 162.9
Skewness 1.1 3.9 0.4 1.1 0 0.3 2.5 1.2
Kurtosis 1.7 16.6 0.1 2.2 −0.2 0.2 5.2 1.2
Sum 1462.5 295 10611.3 4734 321.3 5141.1 3088 52699.8
Count 211 211 211 211 211 211 211 211
RHA: Rice husk ash, LL: Liquid limit, PI: Plasticity index, MDD: Maximum dry density, OMC: Optimum moisture content, UCS: Unconfined compressive strength, CT: Curing time

V. Modeling
This section evaluates the predictive performance of four 

models – FQ, IA, M5P-tree, and ANN – using standard 
metrics on the UCS dataset. Models are employed to 
forecast UCS, and their performance is assessed compared 
to the measured data using valuation standards, including 
proportion difference between investigated and predicted 
data, R2 value, RMSE, MAE, and SI values. The least 
squares method is used in Excel and soft computing, such as 
WEKA to calculate parameter coefficients in all models. It 
includes minimizing the sum of squared variances between 
the observed data points and the predicted values of the 
line of best fit. Overall, the models show that non-linear 
correlations, IAs, and complicated variable dependencies 
must all be considered when predicting UCS (Vipulanandan 
et al., 2012).

A. FQ Model
The mathematical FQ model uses various input parameters 

to predict UCS values for natural and treated soils. This 
model can capture non-linear correlations between input 
parameters and UCS values (Ali, 2024; Hoque, et al., 2023; 
Meskini, et al., 2022; Wang, et al., 2023). The FQ model 
equation is as follows:

UCS = β0 + β1 * (RHA) + β2 * (OA) + β3 * (LL) + β4 * 
(PI) + β5 * (MDD) + β6 * (OMC) + β7 * (CT) + β8 * (RHA 
∗ OA) + β9 * (RHA ∗ LL) + β10 * (RHA ∗ PI) + β11 * (RHA 
∗ MDD) + β12 * (RHA ∗ OMC) + β13 * (RHA ∗ CT) + β14 
* (OA ∗ LL) + β15 * (OA ∗ PI) + β16 * (OA ∗ MDD) + β17 
* (OA ∗ OMC) + β18 * (OA ∗ CT) + β19 * (LL ∗ PI) + β20 * 

(LL ∗ MDD) + β21 * (LL ∗ OMC) + β22 * (LL ∗ CT) + β23 * 
(PI ∗ MDD) + β24 * (PI ∗ OMC) + β25 * (PI ∗ CT) + β26 * 
(MDD ∗ OMC) + β27 * (MDD ∗ CT) + β28 * (OMC ∗ CT) + 
β29 * (RHA)2 + β30 * (OA)2 + β31 * (LL)2 + β32 * (PI)2 + β33 * 
(MDD)2 + β34 * (OMC)2 + β35 * (CT)2 (1)

The model parameters are defined as β0–β35 values. The 
clarification of coefficients in the FQ model can be more 
composite than the multilinear linear regression model.

B. IA Model
IA multivariable models consider non-linear IAs among input 

and output parameters to predict UCS (Ahmed, et al., 2021; 
Ghafor, et al., 2022; Tahr, Mohammed, and Ali, 2022). The 
general equation for an IA multivariable model is as follows:

UCS = β0 + β1 * (RHA) + β2 * (OA) + β3 * (LL) + β4 * (PI) 
+ β5 * (MDD) + β6 * (OMC) + β7 * (CT) + β8 * (RHA * OA) 
+ β9 * (RHA * LL) + β10 * (RHA * PI) + β11 * (RHA * MDD) 
+ β12 * (RHA * OMC) + β13 * (RHA * CT) + β14 * (OA * LL) 
+ β15 * (OA * PI) + β16 * (OA * MDD) + β17 * (OA * OMC) 
+ β18 * (OA * CT) + β19 * (LL * PI) + β20 * (LL * MDD) + β21 
* (LL * OMC) + β22 * (LL * CT) + β23 * (PI * MDD) + β24 * 
(PI * OMC) + β25 * (PI * CT) + β26 * (MDD * OMC) + β27 * 
(MDD * CT) + β28 * (OMC * CT) (2)

Model parameters range from β0 to β28. The IA term indicates 
that the impact of one interpreter variable on the output variable 
is dependent on the values of another predictor variable.

C. M5P-tree Model
Fig. 4 shows the M5P-tree analysis tree for input and output 

parameters in a geotechnical context, almost certainly related to 
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soil stabilization using UCS values. The M5P-tree model offers 
both a logical structure for decision-making and the ability to 
model numerical data in a divided linear method. The UCS 
is organized into modules (UCS₁-UCS₈), with each branch 
corresponding to specific combinations of input parameters. In 
addition, this analysis reveals the complexities of parameters 
affecting soil strength and the systematic identification of 
their roles (Ahmad et al., 2022; Gnananandarao et al., 2022; 
Gnananandarao et al., 2023; Mahmood & Mohammed, 2022; 
Mohammed et al., 2020; Mohanty et al., 2019; Sihag et al., 
2021; Suthar, 2020). The M5P-tree model equation is as follows:

UCS1 = −6.56OA + 1.665LL − 0.412PI − 279.55MDD + 
0.58CT + 525.78 (3)

UCS2 = 4.25RHA + 33.44OA − 4.40LL − 9.80PI − 
294.66MDD + 2.39CT + 1032.67 (4)

UCS3 = −RHA + 22.41OA − 5.87LL − 
9.80PI - 294.66MDD + 1.89CT + 1156.28 (5)

UCS4 = −1.54RHA + 22.41OA − 5.80LL − 9.80PI − 
294.66MDD + 1.89CT + 1144.56 (6)

UCS5 = 11.25RHA + 9.65OA − 3.38LL − 0.39PI − 
363.15MDD + 1.72CT + 913.91 (7)

UCS6 = 12.37OA − 1.20LL + 1.35PI − 88.77MDD + 
1.21CT + 380.60 (8)

UCS7 = 12.37OA − 0.31LL + PI − 88.77MDD + 1.21CT + 
333.294 (9)

UCS8 = −27.48OA + 0.27LL − 0.39 PI − 88.77MDD + 
7.85OMC + 3.65CT + 177.97 (10)

D. ANN Model
ANN is an influential simulation program designed to 

process and analyze data evidence equally to a human brain. 
This mechanism learning technique is commonly used in 
construction engineering to predict how many numerical 
problems will behave in the future (Verma and Kumar, 2021; 
Wang and Huang, 1984). In this research, a multilayer feed-
forward Network is assembled using proportions, weight/bias, 
and parameters (RHA, OA, LL, PI, MDD, OMC, and CT) 
as inputs, whereas the output ANN is the UCS values. There 
is no conventional method to structure Network architecture; 
the ideal network construction procedure includes selecting 
the optimal number of training periods to achieve low MAE 
and RMSE while maintaining a high R-value (Mohammed, 
et al., 2021; Sharma and Singh, 2018; Zeng, et al., 2021). 
Multiple transfer functions and ANN architectures with 
hidden layers and neurons were tested to optimize the 
Network structure and forecast UCS. Fig. 5 represents the 
best Network architectures for estimating UCS of natural and 
treated soils. Overall, the architecture of three hidden layers 
with six neurons per layer is likely a viable compromise to 
meet the problem’s complexity while minimizing processing 
overhead.

VI. Model Valuation Tools

Model accuracy was assessed using R2, RMSE, MAE, and 
SI, summarized in Table III and Figs. 6-9. ANN consistently 
outperformed others, while FQ and IA performed better in 
lower UCS ranges. The formulas below can be used to 
calculate the following metrics:

Fig. 4. M5P-tree analysis tree of input and output parameters.
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TABLE III
Comparative Analysis of Models Based on Ease of Use, Computational Efficiency, Interpretability and Accuracy

Models Ease of use Computational efficiency Interpretability Accuracy (R2)
Full quadratic High High High Moderate
Interaction model High Moderate Moderate Moderate
M5P-Tree Moderate High Moderate High
ANN Low (requires expertise) Low Low Very high

Fig. 5. The architecture of the used artificial neural network models and unconfined compressive strength.
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VII. Results and Discussion
Table III presents a qualitative comparison of the 

models’ accuracy, ease of use, and interpretability. Among 

Fig. 6. Correlation between unconfined compressive strength and 
free swelling of natural and treated soil (Belabbaci, Mamoune, and 

Bekkouche, 2013). Fig. 7. The R2 values of unconfined compressive strength for all four 
models.
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+ 0.321(RHA∗CT) + 1.172(OA∗LL) −0.901(OA∗PI) − 
25.778(OA∗MDD) + 0.181(OA∗OMC) + 2.504(OA∗CT) 
+ 0.089(LL∗PI) + 14.655(LL∗MDD) + 0.275(LL∗OMC) 
− 0.091(LL∗CT) − 4.920(PI∗MDD) + 0.133(PI∗OMC) − 
0.003(PI∗CT) − 82.853(MDD∗OMC) + 13.817(MDD∗CT) 
+ 0.003(OMC∗CT) − 0.834(RHA)2 − 0.216(OA)2 − 
0.003(LL)2 − 0.112(PI)2 − 681.150(MDD)2 − 2.121(OMC)2 + 
−0.050(CT)2 (15)

The parameters with a considerable positive effect on UCS 
are PI, MDD, and OMC, with coefficients of 4.8, 2905.4, and 
205, respectively. RHA, OA, LL, and CT negatively affect 
UCS, with values of −77.3, −19.4, −28.4, and −13.1.

B. IA Model
Fig. 11 compares actual and predicted UCS values using 

the IA model. The IA model offered similar interpretability to 
the FQ but with slightly lower accuracy (R2 = 0.74 training, 
0.78 testing). In addition, the training and testing data have 
RMSEs of 81 and 79 kPa. Therefore, the IA model may yield 
a satisfactory prediction for UCS values (Ali & Mohammed, 
2024; Ali et al., 2024; Eyo et al., 2022). Equation 16 shows 
the mathematical formula of the IA model for UCS.

UCS = −1007.088 − 1.391(RHA) + 0.021(OA) + 
19.370(LL) + 37.216(PI) + 360.966(MDD) + 4.433(OMC) 
− 26.413(CT) + 0.930(RHA*OA) − 0.258(RHA*LL) + 
0.704(RHA*PI) + 15.510(RHA*MDD) − 0.990(RHA*OMC) 
+ 0.443(RHA*CT) + 1.232(OA*LL) − 1.015(OA*PI) − 
31.099(OA*MDD) − 0.492(OA*OMC) + 1.817(OA*CT) 
+ 0.086(LL*PI) − 11.081(LL*MDD) − 0.082(LL*OMC) 
+ 0.029(LL*CT) − 18.231(PI*MDD) − 0.797(PI*OMC) + 
0.017(PI*CT) + 18.769(MDD*OMC) + 14.153(MDD*CT) + 
0.115(OMC*CT) (16)

C. M5P Model
Fig. 12 depicts a scatter plot of measured and predicted UCS 

values for natural and treated soils, using an M5P model. It 
performed moderately well (R2 = 0.75 training, 0.70 testing) 
but exhibited higher RMSE in predicting UCS >500 kPa. 
The figure shows ±30% error bands, indicating the model’s 

the evaluated models, the ANN approach demonstrated 
the highest predictive accuracy for UCS, outperforming 
M5P-tree, FQ, and IA models. While the FQ model was 
more interpretable, it lacked precision in nonlinear cases, 
which the ANN addressed effectively.

A. FQ Model
The FQ model achieved R2 values of 0.81 (training) and 

0.85 (testing) in predicting UCS. The training and testing 
datasets have RMSE values of 69 and 65 kPa, respectively. 
Fig. 10 compares the actual and expected UCS values. FQ 
provides equations incorporating linear, quadratic, and IA 
terms for input parameters. The coefficients in the equations 
represent how each parameter affects the result. Equation 15 
shows UCS models with assigned weights for each parameter 
(Hama Ali, 2023; Li et al., 2021; Mawlood et al., 2022).

UCS = −3403.37 − 77.337RHA − 19.438OA − 
28.439LL + 4.817PI + 2905.378MDD + 204.959OMC 
− 13.088CT + 0.917(RHA∗OA) − 0.172(RHA∗LL) + 
0.035(RHA∗PI) + 47.791(RHA∗MDD) + 1.138(RHA∗OMC) 

Fig. 10. Comparison between measured and predicted values of 
unconfined compressive strength for full quadratic model.Fig. 8. The RMSE values of unconfined compressive strength for all four 

models.

Fig. 9. The MAE values of unconfined compressive strength for all four 
models.
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predicted accuracy. Most data points, particularly those with 
lower UCS values, fit inside these bands, indicating high model 
performance in this range. Points beyond the ±30% error 
range indicate considerable deviations between the model’s 
predictions and actual results, especially for higher UCS values, 
which were similar to (Ahmad, et al., 2024; Ghanizadeh and 
Naseralavi, 2023; Pandey and Aggarwal, 2022; Sihag, Suthar, 
and Mohanty, 2021). The performance variance between 
training and testing data is small, implying that the M5P 
model generalizes reasonably well. Overall, while the M5P 
model displays satisfactory predictive capabilities with a low 
performance decrease between training and testing, improving 
the model for higher UCS values and experimenting with new 
modeling strategies may improve overall accuracy and strength.

D. ANN Model
Table IV compares various ANN designs to find the best 

model for UCS values. ANN using three hidden layers, 
six neurons on the left side (Fig. 5), 0.1 momentum, 0.1 
learning rate, and 50000 iterations produces the best 
UCS prediction. Fig. 13 compares predicted and actual 
UCS values for training and testing datasets. The ANN 

model significantly outperformed all others in accuracy 
and generalizability. It achieved RMSE values of 24 kPa 
(training) and 13 kPa (testing), with minimal bias across 
the full UCS range. Similar results were achieved by 
(Ghorbani and Hasanzadehshooiili, 2018; Jalal, et al., 
2021; Mohammed, Hummadi, and Mawlood, 2022; Pham, 
et al., 2021). The training and testing datasets for UCS 
have SI values of 0.1 and 0.07, respectively, as shown 
in Fig. 14. Also, the ANN model excels at predictive 
accuracy but faces limitations such as overfitting risks, 
computational complexity, reliance on massive datasets, 
low interpretability, and difficult hyperparameter tuning. 
Addressing these challenges through regulation, cross-
validation, and simplified model integration can increase its 
practical applicability.

E. The Linear and Vipulanandan Correlations between UCS, 
and FS

Fig. 6 represents the relationship between UCS and 
swelling potential, as measured by the free swell index (FS). 
For both natural and RHA-treated soils, two models are used 

Fig. 11. Comparison between measured and predicted values of 
unconfined compressive strength for the interaction model.

Fig. 12. Comparison between measured and predicted values of 
unconfined compressive strength for M5P model.

TABLE IV
ANN Testing Architecture for UCS

No. of 
hidden layers

No. of neurons in 
hidden layers

R-Square MAE (kPa) RMSE (kPa)

Left Middle Right
1 3 0 0 0.78 55.58 70.68
1 5 0 0 0.84 43.39 59.57
1 6 0 0 0.82 46.69 63.72
1 8 0 0 0.88 35.47 52.05
1 9 0 0 0.89 36.36 47.77
2 5 0 5 0.94 25.77 37.01
2 6 0 6 0.94 25.75 48.20
2 7 0 7 0.96 21.78 30.46
3 7 6 3 0.97 16.75 24.16 
3 7 5 2 0.96 17.65 28.08
3 5 4 2 0.93 35.41 46.35
3 5 5 5 0.91 32.28 43.47
Bold values indicate the best ANN model with highest R-square and lowest MAE and 
RMSE.

Fig. 13. Evaluation between measured and predicted values of 
unconfined compressive strength for artificial neural network model: 

training data and testing data.
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to represent this relationship. The negative slope reveals an 
inverse relationship between UCS and FS, implying that as 
UCS increases, FS decreases. This suggests that stronger 
soil, as indicated by greater UCS values, has a reduced 
swelling potential, which is beneficial for the stabilization 
process. The R2 value of 0.71 proposes a moderate to 
strong correlation, representing that the UCS describes 
71% of the variance in FS in this linear model. Moreover, 
the Vipulanandan correlation model (2014) has an R2 of 
0.75, showing 75% of the variance in FS. The improved 
fit implies that the Vipulanandan model may better reflect 
the behavior of soil swelling as UCS changes, mainly at 
higher UCS values (Mawlood, et al., 2022; Mohammed, 
2024; Rabat, Cano, and Tomás, 2020; Vipulanandan and 

Mohammed, 2020). Overall, The Vipulanandan model’s 
higher R2 value shows a more accurate depiction of the 
UCS-FS relationship for the natural and RHA-treated soils, 
specifically when predicting FS behavior is required. The 
linear and Vipulanandan correlation model equations are as 
follows:

FS (%) = −6.144ln(x) + 41.761 (Linear) (17)

FS   4 71 Vipulanandan Model
UCS

UCS
% .

. .
� � � � � �

�
0

0 093 3 023
 (18)

VIII. Comparison Models
The study compares the employment of four multivariable 

models (FQ, IA, M5P, and ANN) in predicting UCS 
properties. The effectiveness of the models was assessed 
using four quantitative tools: R2, RMSE, MAE, and SI, 
and the results were displayed in Figs. 7-9,14, respectively. 
These Figures show that the ANN model consistently 
outperformed others in all categories, particularly in 
reducing prediction error and residual spread The findings 
show that the ANN model has the greatest R2 value for 
UCS in training (0.97) and testing (0.99) data sets, and 
the lowest RMSE values for UCS in training (24 kPa) 
and testing (13 kPa) data sets, followed by FQ, IA, and 
M5P models. In addition, SI measures data scatter about 
the regression line. Lower SI values recommend a better 
fit of the model to the data. The results show that the ANN 
model has the lowest SI values for UCS in training (0.1) 
and testing (0.07) data sets, followed by FQ, IA, and M5P 
models. Overall, Figs. 7-9,14 shows that while simpler 
models like FQ and IA offer interpretability, they fall short 
in generalizing over wide UCS ranges or under varying 
soil conditions.

IX. Sensitivity Analysis
A sensitivity analysis was performed to identify the most 

influential input variables affecting UCS predictions. The 
analysis employed a variable-exclusion approach: each input 
(RHA, OA, LL, PI, MDD, OMC, and CT) was individually 
removed, and changes in RMSE, R2, and MAE were used 
to quantify its relative importance. The most comprehensive 
and precise model (the ANN model) was chosen to identify 
the parameter with the highest impact on UCS of natural and 
treated soils. The most common statistical measures (RMSE) 
were performed, as input parameter has a greater impact on 
RMSE values than other factors. Fig. 15 shows the results of the 
sensitivity analysis. The figure shows that CT had the highest 
influence (21.9%), followed by OMC (16.1%), RHA content 
(15.3%), MDD (14.3%), and PI (12.6%). The study found, 
when CT was excluded, the RMSE increased from 24 to 53 
kPa. Excluding OMC or RHA content also caused significant 
accuracy losses, while LL and PI had marginal effects.

Fig. 15. The production of the sensitivity analysis for the main 
parameters’ effect on the unconfined compressive strength.

Fig. 14. The SI values of unconfined compressive strength for all four 
models.
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X. Conclusions

A. Findings
This study utilized various predictive models, including 

ANN and M5P-tree, along with FQ and IA, to predict the 
UCS of fine-grained soils stabilized with RHA. The overall 
modeling framework, comparative performance, and key 

findings are visually synthesized and provided in Fig. 16. 
The followings are the main findings of this study:
1. Out of the four models tested, the ANN gave the most 

accurate and reliable UCS predictions.
2. Both ANN and FQ models exhibited strong predictive 

performance for UCS, with SI values below 0.2. The IA 
model had fair accuracy with SI values between 0.2 and 

Fig. 16. Summary of the research framework and findings.
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0.3, while the M5P model showed weak accuracy with SI 
values of 0.3 and above.

3. The ANN model achieved the highest accuracy with an R2 
of 0.97, RMSE of 24 kPa, and MAE of 17 kPa, using inputs 
such as RHA, OA, LL, PI, MDD, OMC, and CT.

4. CT, OMC, and RHA content were the most important factors 
in predicting UCS.

5. ANN is great for accurate predictions but hard to interpret. 
FQ is more user-friendly because it provides clear equations.

6. Sensitivity analysis indicated that the CT (21.90%) had 
the biggest impact on UCS, followed by moisture content 
(16.12%) and RHA (15.29%).

7. Both the linear and Vipulanandan models demonstrated an 
inverse relationship between UCS and FS, showing that as 
UCS increases, FS decreases – indicating that stronger soils 
exhibit lower FS values

B. Research Limitations
1. The dataset involves 211 UCS test results, whereas wide 

may not fully capture the variability of soil structures across 
various topographical areas. A larger dataset integrating 
field-scale UCS tests would improve model generalizability.

2. The model was trained on laboratory-scale data and has not 
been validated in field conditions.

3. The study focuses on UCS prediction only; other parameters 
such as durability, swelling potential, or long-term behavior 
were not considered.

4. ANN models require computational resources and expertise, 
which may limit their direct application by practitioners 
without technical support.

C. Future Work Recommendations
1. Apply additional machine learning techniques, including 

ensemble models and deep learning, to boost accuracy and 
compare with traditional models such as M5P and ANN.

2. Study the durability and behavior of treated soils under 
varying environmental conditions over time.

3. Use soils with a wide range of LLs from different regions 
to enhance the model’s adaptability and generalizability.

4. Perform large-scale real-world tests to confirm the reliability 
of ANN and other predictive models in actual geotechnical 
projects.
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