
ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X�

114 http://dx.doi.org/10.14500/aro.12034

Enhanced Category-Feature Association Measure: A 
Robust Approach for Text Classification through 

Feature Selection
Soran S. Badawi1, Ari M. Saeed2†, Sara A. Ahmed3 and Diyari A. Hassan4

1Language Center, Charmo University, 
Chamchamal, Kurdistan Region – F.R. Iraq

2Department of Computer Science, University of Halabja, 
Halabja, Kurdistan Region – F.R. Iraq

3Department of Computer Engineering, Komar University of Science and Technology, 
Sulaimaniyah, Kurdistan Region – F.R. Iraq

4Department of Biomedical Engineering, Faculty of Engineering and Computer Science, Qaiwan International University, 
Sulaimaniyah, Kurdistan Region – F.R. Iraq

Abstract—Text classification is one of the severe challenges for 
categorizing large and high-dimensional text data accurately and 
efficiently. Many features confuse the classification process, and 
feature selection (FS) strategies should be used to deal with the 
problem of high dimensionality. This paper proposes a novel FS 
technique based on enhanced category-feature association measure 
(ECFAM). ECFAM utilizes the existence and elimination of terms 
and the complicated relationships among the terms across different 
sections. This one-of-a-kind approach emphasizes the key role of 
ancillary terms in classifying and differentiating categories. The 
comparison is done on two important datasets, Reuters-21578 and 
20-Newsgroups, through two widely employed supervised machine
learning classifiers and one deep learning algorithm. Throughout
our experiments, we investigate the feature sizes in nine different
feature sets, ranging from 50 to 4000. Experimental data show that
ECFAM always performs better than other methods concerning
accuracy and computational cost.

Index Terms— Dimension reduction, Feature selection, 
Long short-term memory, Multinomial Naive Bayes, Support 
vector machines, Text classification

I. Introduction
In the modern digital era, classifying text data are considered 
one of the main tasks due to the massive availability 
of textual data. Historically, previous research in text 
classification (TC) was largely conducted on information 
retrieval and information science in different fields, including 

data mining, machine learning (ML), and pattern recognition 
(Palanivinayagam, et al., 2023).

TC obtains its essential functionality from feature selection 
(FS) because it reduces data dimensions while improving 
prediction models and making insights more interpretable. 
The need for efficient TC grows more crucial during this 
era of large multimedia data, which includes video, images, 
audio files, and text.

Applications such as social media analytics require TC. 
High-dimensional text data creates substantial processing 
problems with numerous obsolete features that reduce 
model accuracy. The identification and selection of the most 
essential attributes from textual data are achieved through FS 
techniques. FS reduces computational expenses and improves 
the classifier’s ability to perform on new, unobserved datasets 
(Deng, 2019).

Recently, there has been a notable shift toward 
implementing ML algorithms and statistically based methods 
in TC. This involves categorizing documents into predefined 
groups using classification algorithms trained on labeled 
data, as manual processing is impractical and error-prone 
when handling massive digital datasets. Multiple factors, 
particularly ML algorithms, contribute to improving accuracy 
and efficiency (Erenel, Adegboye and Kusetogullari, 2020). 
Conducting research in the realm of TC requires three 
phases: Preprocessing, model selection, and classification. 
During preprocessing, textual data undergoes tokenization 
that includes splitting the sentence items into separate entities 
to prepare them to be numerically represented, eliminating 
the non-functional or insignificant words, normalization, and 
stemming, which entails the removal of prefixes and suffixes 
attached to a word. FS then identifies the most relevant 
features from the text data by examining tokens. However, 
the high-dimensional nature of text data increases the risk 
of overfitting, which can negatively impact classification 
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performance (Mirończuk and Protasiewicz, 2018). To address 
this, FS is employed to eliminate unrelated or redundant 
features that lead to the reduction of dimensionality in the 
training data, thereby improving computational efficiency 
and classification accuracy (Gudakahriz, Moghadam and 
Mahmoudi, 2021; Zhou, Wang and Zhu, 2022).

FS techniques are generally categorized into filters, 
wrappers, and embedded methods (Pudjihartono, et al., 
2022). This study prioritizes filter-based methods over 
wrappers and embedded techniques because filter methods 
operate independently of classification algorithms, making 
them more efficient and less computationally intensive. 
Filter-based methods streamline the FS process, enhancing 
the reliability and speed of TC.

In this paper, we introduce a novel FS technique and 
evaluate its impact on ML and deep learning algorithms, 
particularly in the context of the English language. Two 
datasets are utilized in this study (Adi and Celebi, 2014; 
Russell-Rose, Stevenson and Whitehead, 2002): The 20 
NewsGroups dataset, which has approximately 20,000 
news texts distributed across 20 distinct categories, and the 
REUTERS dataset, involving 11,228 news articles divided 
into 46 topics. We compared our proposed method against 
six other FS methods using support vector machines (SVMs), 
multinomial Naive Bayes (MNB), and long short-term 
memory (LSTM) classifiers to assess its effectiveness.

The remainder of the paper is designed as follows: Section 
2 provides a literature overview of previous steered on filter-
based FS. Section 3 provides information on the datasets 
used in this study, along with the proposed method. Section 
4 evaluates and compares algorithm performance. The 
conclusion is crafted in the final section of the paper.

II. Related Works
The challenge of recognizing complex patterns in high-

dimensional data has led to an increased focus on FS 
techniques in the domain of TC (Bhavani and Santhosh 
Kumar, 2021). Despite ongoing advancements, researchers 
have developed various FS methods, combining established 
filter-based approaches with feature transformation and 
wrapper-based techniques in innovative configurations. 
Examples of filter-based FS methods include document 
frequency (Dhal and Azad, 2022), information gain, mutual 
information (Omuya, Okeyo and Kimwele, 2021), enhanced 
Gini index (Miao, et al., 2022), and deviation from Poisson’s 
distribution (López-González, et al., 2021). These methods 
have been extensively studied to enhance their effectiveness 
in TC applications.

TC accuracy suffers due to large textual data dimensions; 
thus, FS methods work as essential dimension reduction 
techniques in the TC domain. A research paper introduces the 
extensive feature selector (EFS), which applies corpus-based 
and class-based probabilities to solve TC feature problems. 
EFS goes through an evaluation process alongside nine 
established techniques for FS using MNB, SVM, and KNN 
classifiers. The new method, EFS, undergoes evaluation 

through testing on Reuters-21578, 20-Newsgroup, Mini 
20-Newsgroup, and Polarity datasets using six different FS 
sizes. The experimental outcome reveals that EFS delivers 
superior results than other methods in multiple scenarios 
according to micro-F1 and macro-F1 score analyses (Parlak 
and Uysal, 2023).

Another research presents a new TC FS method using 
association analysis, which utilizes frequent and interrelated 
items for duplicate and irrelevant feature reduction instead 
of traditional measures such as distance, dependency, 
and consistency. This approach was implemented on the 
SMS spam dataset from the UCI repository. The proposed 
method accomplished a classification accuracy level of 
95.155% while working with only 6% of the features, which 
proved effective in both feature redundancy reduction and 
classification improvement (Mamdouh Farghaly and Abd El-
Hafeez, 2023).

Moreover, scholars attempted to combine filters and 
wrappers. For instance, Alyasiri, Cheah and Abasi, (2021) 
merged Information Gain (IG) with the Gray Wolf Optimizer 
(GWO) in a wrapper-based FS approach (Alyasiri, Cheah 
and Abasi, 2021). IG was utilized to find the top features, 
and GWO was implemented to refine the feature sets. This 
approach was tested on nine benchmark datasets using 
MNB. The combined approach has shown promising results 
compared to other FS algorithms.

Finally, a few studies introduced hybrid approaches, 
such as combining correlation-based filters with SVM and 
Recursive Feature Elimination, which was called SVM-RFE. 
This method created vigorous FS results by first identifying 
predominant and paired features through a correlation-
based filters approach, then refining these into a concise 
feature subset using SVM-RFE, ultimately achieving high 
classification accuracy (Zhang, et al., 2014). Another study 
combines BERT for text embedding, Many-to-Many LSTM 
for token-level prediction, and Decision Templates for using 
outputs. This method is used for binary classification on 
IMDB movie reviews and multiclass classification on drug 
reviews. The research design demonstrates its proposed 
model, which outperforms current models based on 
evaluation metrics including accuracy, recall, precision, and 
F1-score (Jamshidi, et al., 2024)

Furthermore, another hybrid method binds a multi-scale 
CNN architecture with an LSTM model. The Multi-scale 
CNN extracts features from individual sentences, but the 
LSTM detects the patterns between words within their 
context. Both extracted feature vectors receive combined 
input into a SoftMax layer for classification purposes. This 
approach improved TC results on traditional CNN and 
LSTM models when specifically used for TC tasks (Dou, 
et al, 2023).

III. Filter-based Methods
FS filtering methods consist of picking related features due 

to their association with class labels. This approach is based 
on adding scores to each feature and selecting them by a pre-
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defined threshold. Filters, which move unrelated variables 
from the picture before classifying, are performed by ranking 
methods (Parlak and Uysal, 2023). Of all the characteristics 
of a feature that brings value, the most important is the 
ability to give useful information about different data classes, 
which is also called feature relevance (Ige and Gan, 2024). 
Our FS process is the input to the classification algorithm. 
To measure the relationship between features, consider 
the distance value of features, the information about the 
features, the correlation, and consistency scores of the 
feature sets. Filters, in turn, give advantages such as speed, 
scalability, and the independence of learning algorithms, 
providing sequential classifier evaluation (Lyu, Feng and 
Sakurai, 2023). Nevertheless, filter methods generally return 
abstract results that do not highly differentiate classes as the 
interactive classifiers (Jain and Singh, 2018).

Filter methods can be divided into single-variable and 
multivariate types. Univariate filter methods, however, do not 
account for relationships between features, potentially leading 
to the selection of redundant features that negatively impact 
classification accuracy (Noroozi, et al., 2023). However, 
multivariate filter methods are independent of classifiers, 
which do not model feature interdependencies.

The TC application field uses diverse FS methods based 
on the filter. In this research, six filter methods are utilized: 
Among, CHI-Square (CH12), Comprehensively Measure 
FS (CMFS), Discriminative Features Selector (DFS), 
Distinguishing Feature Selector (DFS), Discriminative power 
measure (DPM), and Gini-index are the metrics used during 
FS. Table I presents the nomenclature of FS methods for TC.
A:	 Refers to the number of documents containing the term t in 

the positive class.
B:	 Refers to the number of documents containing the term t in 

the negative class.
C:	 Refers to the number of documents not containing the term 

t in the positive class.
D:	 Refers to the number of documents not containing the term 

t in the negative class.

The FS methods are different based on the formulas, as 
shown in Table II.

The selection of these six FS filter methods (CHI2, 
CMFS, DFS, Gini-index, DFSS, and DPM) was motivated 
by their diversity in theoretical foundations, encompassing 
statistical, information-theoretic, and projection-based 
techniques. Moreover, their relevance to categorical data 
is well-established, with CHI2 and Gini-index serving as 
widely adopted benchmarks, and their inclusion enables 
direct comparison against state-of-the-art approaches such 
as CMFS and DPM. Furthermore, these methods highlight 

limitations in existing techniques, including biases toward 
high-frequency features or the neglect of inter-feature 
dependencies, while ensuring reproducibility through publicly 
available implementations. This rigorous selection strategy 
ensures a comprehensive evaluation of the proposed method’s 
robustness and advantages across diverse FS paradigms.

IV. Methodology
A. Proposed Method
In this study, we designed a novel filter-based method 

called the ECFAM. The proposed approach employs 
sophisticated calculations to determine critical term-category 
relationships. By utilizing multiple conditional probabilities, 
it analyzes interconnections between terms and categories 
within given datasets.

Based on Table I, the equation of ECFAM for a term is as 
follows:
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Equation 7 calculates the relationship and characteristics 
of the term based on its connection with the class. We 
calculate each term’s discriminant power across all of the 
available classes by increasing the specific term’s value that 
positively contributes to category definition. However, if a 
term is rarely present in other classes, its value will be 
decreased; this ultimately reduces the term’s importance in 
all of the classes. The evaluation process consists of four key 

probabilities: A
A C
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  function is to evaluate the 

significance of the term’s presence in other classes. Through 
this comprehensive calculation process of the probabilities, 
we can select the relevant and unique terms that can boost 
the TC process.

The proposed algorithm assigns scores to terms by taking 
the terms’ existence and relationship within specified classes 
into consideration, which can enhance the FS process for 
TC. If a term continuously appears in the documents of an 
assigned category, it receives a higher score to demonstrate 
its importance in that category. While a term that has lower 
or no existence in that category, a lower score is assigned 
to it. Moreover, if a term is common in other categories, 
its score should be reduced, as it is less distinctive in the 
selected category.

TABLE I
Contingency Table of Term t and Class c

Terms/ Classes c c

t A B

t C D
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The ECFAM is a robust tool that measures the strength 
of a term’s association with a specific category, considering 
its connections to other categories. ECFAM uses squared 
terms and their interactions in its numerator for a detailed 
understanding of the term-category relationship. While 
the denominator accounts for the term’s absence, ensuring 
a comprehensive analysis. This approach emphasizes the 
importance of terms in specific categories and highlights 
their unique ability to characterize and differentiate between 
them. ECFAM leads to a more informed and precise text 
feature set.
The proposed method is presented in pseudocode form 
below:
PROCEDURE:
1.	 Data preparation:

a.	 Preprocess training data and generate document-term 
matrix DTM

b.	 Compute term-document matrix DM = DTM^T

2.	 Build term-category matrix (TCM):
FOR each document d in D_train:
category c = class label of d
FOR each term t in d:
TCM[t][c]+ = 1

3.	 Compute modified feature score:
FOR each term t in vocabulary:
total_term_freq = sum(TCM[t])
FOR each category c in C:
//Calculate contingency table values with smoothing
	 A = (TCM[t][c] + 1)/(total_term_freq + |C|)//Term t in 

category c
	 B = (total_term_freq  -  TCM[t][c]  -  1)/(term_freq-

term_freq_per_cat[c] + |V|)//Term t, not in category c

	 C = (term_freq_per_cat[c] - TCM[t][c] - 1)/(term_freq_
per_cat[c] + |V|)//Not term t, in category c

	 D = (term_freq - total_term_freq - term_freq_per_cat[c] 
+ TCM[t][c] + 1)/(term_freq - term_freq_per_cat[c] + 
|V|)//Not term t, not in category c

//Calculate modified score
	 score[t][c] = (A/(A+C))20* (A/(A+B))20/(B/(B+D)  -  C/

(A+C))20+ 1

4.	 Feature ranking:
FOR each term t:
term_score[t] = max(score[t])

	 sorted_features = sort terms by term_score in descending 
order and take top K

5.	 Feature balancing:
Initialize cat_pos_neg[|C|][2] with zeros
Initialize balanced_features as empty list
FOR each term t in sorted_features:

	 sign = sign of TCM[t][argmax(|TCM[t]|)]//Sign for category 
with max occurrence
cat = argmax(|TCM[t]|)//Category with max occurrence

		  IF balanced_features.size() < K:
			�   IF (cat_pos_neg[cat,1]/max(1, cat_pos_

neg[cat,0]+cat_pos_neg[cat,1])) < NFR:
				    IF sign > 0:
				            cat_pos_neg[cat,0]+ = 1
				    ELSE:
				            cat_pos_neg[cat,1]+ = 1
				            APPEND t to balanced_features

6.	 Model training and evaluation:
a.	 Create feature matrices using subsets of sorted_features
b.	 Train SVM classifiers on each subset

TABLE II
Contingency Table of Term t and Class c

Feature‑selection method Formula
CH12: The CHI2 technique stands out as a significant approach to FS, assessing the 
deviation from the expected distribution when a feature’s occurrence isn’t tied to its 
class (Uysal and Gunal, 2012).  
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CMFS: The CMFS technique thoroughly assesses features, drawing from their class 
characteristics (Zhang, et al., 2014).
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DFS: Based on four predefined criteria, the DFS method ensures that FS aligns with 
specific conditions related to feature attributes and rejects non‑informative attributes 
(Parlak and Uysal, 2023). DFS
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Gini‑index: The Gini Index is a method that selects notable features based on their 
purity level (Saeed, et al., 2023). This method is suitable for different classification 
types. 
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DFSS: The DFSS technique is based on a list of pre‑determined criteria to streamline 
the process. The algorithm is crafted to select the most repeated features and rank 
them with higher occurrence rates while ignoring features present in every document. 
DFSS enhances class differentiation by focusing on informative FS (Yang, et al., 
2012).
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The DPM serves as a computationally effective FS approach, considering both 
affirmative and bad attributes (Kim and Zzang, 2019). DPM’s main objective is to 
discover the distinctive features that can be used for TC.
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CH12: Chi‑Square, CMFS: Comprehensively measure feature selector, DFS: Distinguishing feature selector, DFSS: Discriminative features selection, DPM: Discriminant projection 
method
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c.	 Evaluate accuracy on test set for each feature subset 
size

7.	 RETURN balanced_features and accuracy scores

B. Datasets
In this experiment, two distinct multiclass datasets were 

utilized. Firstly, the 20 News-Groups dataset was employed 
as a balanced dataset, comprising around 20k news articles 
spread across 20 different categories. The number of texts 
is balanced among classes and it is labeled for ten classes 
(Alt.atheism, Comp. graphics, Comp.os.ms-windows.misc, 
Comp.sys.ibm.pc.hardware, Comp.sys.mac.hardware, Comp.
windows.x, Misc.forsale, Rec.autos, Rec.motorcycles, Rec.
sport.baseball). Second, the REUTERS newswire dataset 
was employed as the imbalanced dataset, containing 11,228 
newswires from Reuters. The number of classes is 10, which 
consists of (Earn, Acq, Money-fx, Grain, Crude, Trade, 
Interest, Ship, Wheat, Corn). All of these were labeled across 
46 different topics (Adi and Celebi, 2014; Russell-Rose, 
Stevenson and Whitehead, 2002).

V. Classifiers
TC aims to categorize documents based on their assigned 

classes. On applying the algorithm, a novel model is utilized 
to determine the labels of the unseen data. In this study, 
MNB and SVM were utilized (Saeed, et al., 2022; Badawi, 
2023).

A. MNB
The MNB algorithm is widely used in TC problems 

that rely on the term “t” probability fitting to class “c,” as 
presented by Equation 8.

p c t
p c p t c

p t
,

. ( , )

( )
     � eq (8)

The MNB estimates the chance of term t being in class c, 
with p(c) representing the odds of class c′s occurrence, p (t, 
c) denoting the likelihood of term t existing in class c, and 
p(t) indicating the prospect of term t within the dataset. The 
algorithm leverages the estimation of choosing the term in a 
particular class. (Abbas, et al., 2019).

B. SVM
The SVM transforms the training data into vectors. The 

feature of the vectors is divided into positive and negative 
classes. When the classifier is ready, new occurrences are 
taken for testing, to predict the categories.

(wTXi+b ≥ 1)(Xi ∊ C)� eq (9)

(wTXi+b ≤ −1)(Xi ∊ Ƈ)� eq (10)

where w signifies the weight of the vectors and b represents 
the bias value (Zong, et al., 2015).

C. LSTM
The LSTM employed in this study is a carefully designed 

sequential pipeline that fully benefits from the model’s 
temporal modeling capabilities. Initially, we tokenize each 
document into its words and sequentially pass each token’s 
embedding through the LSTM network, which are then 
converted into 300-dimensional embedding vectors using 
custom-trained Word2Vec representations. The LSTM 
processes these embeddings one at a time while maintaining 
its internal hidden state. This allows the model to not only 
capture the presence of sentiment-bearing words but also 
their temporal relationships and contextual dependencies.

This sequential processing approach enables the LSTM to 
model the nuanced ways in which sentiment and meaning 
evolve throughout the text. By maintaining and updating 
its internal representation as it processes each token, the 
LSTM can build increasingly sophisticated document-
level representations that account for word order, negation, 
contrast, and other linguistic phenomena that are crucial for 
accurate TC.

To ensure domain-specific semantic representations 
optimized for our classification tasks, we trained custom 
Word2Vec embeddings directly from our experimental 
corpus. The Word2Vec model was trained using the Skip-
gram architecture (sg=1) on the datasets, combining both 
training and test sets to maximize vocabulary coverage 
and semantic learning. We used 300-dimensional vector 
representations with a context window size of 10 tokens, 
which allows the model to capture both local and broader 
contextual relationships between words. We set the minimum 
word count threshold to 3, effectively filtering out extremely 
rare terms while retaining meaningful vocabulary. In addition, 
we utilized negative sampling with 10 negative samples per 
positive sample to optimize training efficiency.

The model was trained for 10 epochs, starting with an initial 
learning rate of 0.025 that linearly decayed to 0.0001, and we 
employed multi-core parallel processing to accelerate training.

D. Classifier Evaluation
To test the effectiveness of FS with TC techniques, F1 

measure, and accuracy are considered as criteria for evaluating 
those methods’ outcomes. Such algorithms are designed on 
two possible outcomes for each test-case instance, as shown 
in Table III, which gives an example with the label “actual” 
which shows the data before the application of the classifier, 
and “predicting” which indicates the data after the classifier 
has been applied to testing instances. In this context, TP, 
FP, FN, and TN represent true positive, false positive, false 
negative, and true negative classifications, individually. 
“True” indicates correctly classified cases, whereas “false” 
means misclassification. In addition, “positive” means terms 
that are detected in a particular class, but “negative” denotes 
those terms that are not connected to the class (Saeed, et al., 
2022; Murshed, et al., 2022).

f measure precision recall
precision recall

1
2

 


. . � eq (11)
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� �precision TP
TP FP




� eq (12)

recall TP
TP FN

�
�

� � eq (13)

accuracy TP TN
TP TN FP FN



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� � eq (14)

VI. Experiments and Results
The experiment of this study is implemented using ten-fold 

cross-validation techniques with MNB, SVM, and LSTM 
algorithms. Six FS methods, including the proposed one, are 
executed on two datasets. For each dataset, nine subsets of 
features are selected with sizes of 50, 100, 250, 500, 750, 
1000, 2000, 3000, and 4000. The F1, accuracy, and time 
consumption of each TC algorithm are evaluated as shown 
in Tables IV–XIII. The highest score of each feature subset is 
bolded within the tables, while the highest score in each table 
is underlined.

Examining Table IV–XI, it is clear that the first column 
shows the total features, while the rest of the columns reveal 
the FS method used for comparison. The bold values are 
the superior values for each subset of features based on the 
feature selection methods, while the underlined bold ones are 
the superior values in each table. The results indicate that as 
the number of features increases, the F1 measure improves 
for nearly all feature sets.

As shown in Tables IV–VII, the accuracy scores achieved 
by different FS methods, such as DPM, CHI2, CMFS, DFS, 
GINI, DFSS, and ECFAM, across different subsets of features 
which are arranged from 50 to 4000 for 20 Newsgroup and 
Reuter datasets using SVM and MNB as two algorithms in 
TC. In Tables IV and V, when MNB and SVM on the 20 
Newsgroup dataset are implemented, the ECFAM acquires 
the highest score for each (50, 100, 250, 500, 750, and 2000) 
subset of features while DFS exhibits the highest score for 
the subset of features (3000 and 4000), and GINI scores the 
highest value in 1000 subset of features. In Table VI, when 
MNB on the Reuter dataset is implemented, the ECFAM 
attains the highest score for each (50, 100, 250, and 500) 
while DPM obtains the highest score for each (750, 1000, 
3000, and 4000) subset of features and GINI achieves the 
highest score in (2000) subset of features. In contrast, in 
Table VII, when SVM on the Reuter dataset is employed, 
the ECFAM receives the highest score for each (100, 500, 
1000, 2000, 3000, and 4000) subset of features while DPM 
attains the maximum score for each subset of features (50, 
250, and 750). Moreover, in Tables VIII and IX, when the 20 
Newsgroup dataset is considered, the ECFAM scores remain 
at peak for each (50, 500, 750, and 2000) when MNB is 
implemented while SVM is implemented, the ECFAM is the 
highest method for each subset of features (50, 250, 500, and 
750). However, when the subset of features is (100, 1000, 
3000, and 4000), each GINI and DFSS obtain the notable 
score, and GINI is highest with (250) subset of features 

in Table VIII. In addition, in Table IX, when the feature 
subset is (1000), CMFS exhibits the highest score, while 
GINI displays the highest score for the rest of the features. 
Moreover, in Tables X and XI, when the Reuter dataset 
is considered, the ECFAM shows the highest score for each 

TABLE III
Confusion Matrix

Prediction/Actual Positive Negative
Positive TP FP
Negative FN TN

TABLE IV
MNB ‑ Accuracy of 20‑NEWs Group

No. features DPM CHI2 CMFS DFS GINI DFSS ECFAM
50 28.00 21.97 26.55 15.51 31.31 25.69 32.34
100 33.51 30.66 35.25 25.19 38.17 37.73 38.52
250 41.44 41.40 47.62 40.60 50.39 49.19 50.90
500 48.94 47.17 53.41 51.13 54.97 54.86 56.19
750 53.33 50.58 56.60 53.28 58.13 56.35 57.61
1000 54.94 53.15 55.68 54.20 59.48 58.02 59.43
2000 59.55 56.33 57.87 59.17 59.23 59.77 62.12
3000 59.73 58.83 59.47 61.40 60.75 59.77 61.09
4000 60.63 60.41 59.85 62.94 61.38 60.71 61.71
MNB: Multinomial Naive Bayes, DPM: Discriminant projection method, 
CH12: Chi‑Square, CMFS: Comprehensively measure features selector, 
DFS: Discriminative features selector, DFSS: Discriminative features selection, 
ECFAM: Enhanced category‑feature association measure

TABLE V
SVM Accuracy‑score of 20‑NEWs Group

No. features DPM CHI2 CMFS DFS GINI DFSS ECFAM
50 26.47 22.90 24.50 17.55 30.21 22.28 33.38
100 31.20 34.65 32.45 23.32 34.67 30.24 37.49
250 37.75 42.41 38.78 34.87 40.46 38.47 43.12
500 42.86 46.23 41.25 40.63 47.84 42.93 50.62
750 44.68 49.55 44.67 44.83 55.29 53.28 56.29
1000 45.17 52.12 47.35 49.06 56.20 55.19 58.04
2000 46.61 54.14 50.65 53.19 58.74 57.34 62.08
3000 51.43 56.80 53.28 60.44 60.12 59.86 61.30
4000 53.48 57.10 56.52 61.45 61.24 60.21 61.59
MNB: Multinomial Naive Bayes, SVM: Support vector machine, DPM: Discriminant 
projection method, CH12: Chi‑Square, CMFS: Comprehensively measure features 
selector, DFS: Discriminative features selector, DFSS: Discriminative features selection, 
ECFAM: Enhanced category‑feature association measure

Table VI
MNB Accuracy‑score of Reuter

No. features DPM CHI2 CMFS DFS GINI DFSS ECFAM
50 70.74 65.11 62.42 57.45 69.12 67.50 71.35
100 78.71 68.58 66.62 65.85 75.36 74.05 80.44
250 84.98 79.82 77.09 78.44 83.90 80.90 85.29
500 86.37 83.90 81.83 84.37 86.29 83.60 86.45
750 87.10 84.60 82.83 85.87 86.37 85.14 86.45
1000 86.98 85.33 83.79 86.87 86.95 86.02 86.25
2000 88.06 86.41 86.02 87.37 87.83 86.87 85.41
3000 88.33 86.87 87.10 87.64 88.22 87.18 84.06
4000 88.26 87.68 87.41 87.72 88.22 87.37 83.13
MNB: Multinomial Naive Bayes, DPM: Discriminant projection method, 
CH12: Chi‑Square, CMFS: Comprehensively measure features selector, 
DFS: Discriminative features selector, DFSS: Discriminative features selection, 
ECFAM: Enhanced category‑feature association measure
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(50, 100, and 250) when MNB is implemented. In contrast, 
when SVM is implemented, the ECFAM demonstrates the 
highest value for each subset of features (50, 100, 500, 
1000, 2000, 3000, and 4000). Conversely, when the subset 
of features is (500, 1000, 2000, 3000, and 4000), DPM stays 
at the top, and GINI scores extraordinary with 4000 subsets 
of features in Table X. In addition, in Table XI, when the 
feature subset is (250, 750), DPM achieves the highest score.

Fig.  1 illustrates the frequency of successful FS method 
outcomes in each table. Each cell’s score represents the count 

of feature subsets (columns) corresponding to specific types 
of FS methods (rows). These scores indicate the success or 
failure of FS methods within each table, as depicted below:

As shown in Fig.  1, the horizontal bar represents the six 
FS methods with the developed one, while the vertical bar is 
the number of tables, which is eight. Each bar is the number 
of times FS methods displayed the best scores in each table. 
ECFAM remains almost successful for each feature subset (50, 
100, 250, 500, 750, 1000, 2000, 3000, and 4000). Moreover, 
the ECFAM success measure is 87.5% for the (50, 100, and 
500) subset of features, while for the (250 and 750) subset 
of features is 75%, and for the (1000, 2000, 3000, and 4000) 
subset of features is 25%. While CHI2, DFSS is getting the 

TABLE VII
SVM Accuracy‑score of Reuter

No. features DPM CHI2 CMFS DFS GINI DFSS ECFAM
50 76.55 71.43 70.20 65.96 75.24 72.70 74.70
100 82.25 76.63 74.36 72.04 80.98 78.63 82.56
250 86.29 79.94 80.05 81.29 85.02 83.21 85.75
500 86.83 83.25 82.63 84.98 86.64 85.02 86.83
750 86.91 83.33 83.06 86.02 86.79 85.44 86.87
1000 86.68 84.33 84.14 86.48 86.56 86.14 86.87
2000 86.41 86.06 85.60 86.25 86.02 86.06 86.91
3000 85.91 86.25 85.52 85.91 86.02 85.71 86.83
4000 85.75 86.02 85.44 85.60 85.52 85.48 86.79
SVM: Support vector machine, DPM: Discriminant projection method,  
CH12: Chi‑Square, CMFS: Comprehensively measure features selector,  
DFS: Discriminative features selector, DFSS: Discriminative features selection,  
ECFAM: Enhanced category‑feature association measure

TABLE VIII
MNB F1‑score of 20‑NEWs group

No. features DPM CHI2 CMFS DFS GINI DFSS ECFAM
50 28.65 23.59 29.99 15.57 36.57 29.47 37.22
100 34.34 34.45 40.33 28.65 43.39 42.46 43.02
250 41.72 43.76 50.41 45.84 52.95 53.59 53.47
500 49.28 47.33 54.21 54.96 55.69 56.13 57.02
750 53.57 49.97 56.88 56.52 58.47 56.85 57.92
1000 55.07 52.08 54.46 55.48 59.65 58.27 59.58
2000 59.69 54.88 56.59 58.99 57.85 59.92 62.16
3000 58.33 57.37 58.04 60.49 59.26 59.31 59.62
4000 59.18 58.83 58.43 61.57 59.93 59.96 60.19
MNB: Multinomial Naive Bayes, DPM: Discriminant projection method, 
CH12: Chi‑Square, CMFS: Comprehensively measure features selector, 
DFS: Discriminative features selector, DFSS: Discriminative features selection, 
ECFAM: Enhanced category‑feature association measure
The bold values are the superior values for each subset of features based on the feature 
selection methods, while the underlined bold ones are the superior values in each table

TABLE IX
SVM F1‑score of 20‑NEWs group

No. features DPM CHI2 CMFS DFS GINI DFSS ECFAM
50 29.03 21.06 30.52 18.54 37.00 31.87 38.36
100 33.44 39.77 39.99 31.16 42.90 42.29 42.47
250 39.62 41.80 46.02 43.75 48.08 47.38 48.69
500 45.45 43.18 46.78 46.81 48.69 48.31 49.45
750 47.54 45.21 47.99 44.61 49.32 48.64 49.86
1000 48.24 48.36 50.50 46.19 50.00 49.13 50.14
2000 50.11 50.63 51.65 47.10 54.70 50.06 51.36
3000 51.73 52.73 52.73 48.15 58.70 47.18 52.73
4000 52.83 52.78 53.80 49.31 59.80 47.17 53.76

SVM: Support vector machine, DPM: Discriminant projection method, 
CH12: Chi‑Square, CMFS: Comprehensively measure features selector, DFS: Discriminative 
features selector, DFSS: Discriminative features selection, ECFAM: Enhanced 
category‑feature association measure

TABLE X
MNB F1‑score of Reuter

No. features DPM CHI2 CMFS DFS GINI DFSS ECFAM
50 71.38 60.71 63.00 50.19 69.92 68.46 71.42
100 79.43 66.33 67.86 62.56 76.55 75.28 80.90
250 85.16 79.83 77.97 78.83 84.10 81.53 85.57
500 86.45 83.90 82.18 84.28 86.34 83.85 86.20
750 87.07 84.55 83.05 85.74 86.45 85.24 85.99
1000 86.99 85.19 83.83 86.69 86.99 86.12 85.63
2000 87.95 86.05 85.60 86.91 87.56 86.50 84.27
3000 87.97 86.40 86.60 87.07 87.86 86.66 82.55
4000 87.72 87.17 86.66 87.06 87.77 86.70 81.28
MNB: Multinomial Naive Bayes, DPM: Discriminant projection method, 
CH12: Chi‑Square, CMFS: Comprehensively measure features selector, 
DFS: Discriminative features selector, DFSS: Discriminative features selection, 
ECFAM: Enhanced category‑feature association measure

TABLE XI
SVM F1‑score of Reuter

No. features DPM CHI2 CMFS DFS GINI DFSS ECFAM
50 71.69 67.99 64.37 57.35 70.03 67.63 70.52
100 78.90 74.60 69.61 65.76 77.28 74.43 79.94
250 84.25 78.14 75.92 77.33 82.36 79.98 83.81
500 84.82 81.71 79.18 82.49 84.65 82.22 85.00
750 85.07 81.76 79.84 83.79 84.91 83.17 85.04
1000 84.89 82.70 81.37 84.67 84.80 84.30 85.03
2000 84.74 84.23 83.60 84.54 84.23 84.27 85.08
3000 84.09 84.40 83.64 84.15 84.23 83.90 85.00
4000 83.88 84.11 83.62 83.80 83.64 83.66 84.95
SVM: Support vector machine, DPM: Discriminant projection method, CH12: Chi‑Square, 
CMFS: Comprehensively measure features selector, DFS: Discriminative features selector, 
DFSS: Discriminative features selection, ECFAM: Enhanced category‑feature association 
measure
The bold values are the superior values for each subset of features based on the feature 
selection methods, while the underlined bold ones are the superior values in each table

TABLE XII
T‑test Comparison of EFCAM with Other Method

Compared method t‑statistic p‑value
DPM 4.9436 0.0011
CHI2 6.3448 0.0002
CMFS 6.2709 0.0002
DFS 3.1036 0.0146
GINI 2.0797 0.0711
DFSS 3.2888 0.0110
LSTM 5.7352 0.0004
SVM: Support vector machine, DPM: Discriminant projection method, CH12: Chi‑Square, 
CMFS: Comprehensively measure features selector, DFS: Discriminative features selector, 
DFSS: Discriminative features selection, LSTM: Long short‑term memory
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worst score, which is 0. CMFS succeeds only once when the 
number of feature subsets is 1000, while DFS only two times 
succeeds when the number of feature subsets is (3000, 4000). 
GINI is getting zero scores for (50, 250, 500, and 750) feature 
subsets and DMP for (100) feature subsets. Additionally, DMP 
received the lowest score for 100 feature subsets, while it 
achieved the highest score for 750 feature subsets. It maintained 
the same score for 50, 500, 2000, and 4000 feature subsets.

Following this, we examined the statistical significance 
of the proposed method’s performance improvements over 
existing FS techniques. We performed paired t-tests on 
classification accuracy scores across nine feature sizes, as 
shown in Table XII.

The proposed method demonstrated statistically significant 
improvements when compared to DPM (p = 0.0011), CHI2 
(p = 0.0002), CMFS (p = 0.0002), DFS (p = 0.0146), and 
DFSS (p = 0.0110), with all p-values being less than 0.05. 
However, the difference with GINI was not statistically 
significant (p = 0.0711). These results support the 
effectiveness of ECFAM in delivering consistent and superior 
performance.

In an attempt to discover the computational cost of 
ECFAM, we measured the time required to process the data. 
We employed an MNB classifier on the Reuters dataset as 
a baseline to measure the computational cost, as shown in 
Table XIII.

CHI2 consistently requires the most processing time across 
all feature counts, ranging from 0.13 s for 50 features to 0.26 
s for 4,000 features. In contrast, the other methods mainly 
stay below 0.05 s. On the other hand, ECFAM demonstrates 
excellent computational efficiency, requiring only 0.03 s for 
50 features and maintaining a runtime of just 0.04 s even 
with 4,000 features. This showcases remarkable scalability, 
as ECFAM is the only method that does not exceed 0.05 s 
at the highest feature count. This demonstrates ECFAM’s 
robustness in handling increased dimensionality. Overall, 
ECFAM is well-suited for applications requiring quick 
processing and stable accuracy with large feature sets, where 
memory constraints are less of a concern. Its ability to 
maintain performance while keeping processing time nearly 
constant is a key advantage for large-scale ML.

To evaluate ECFAM’s performance with state-of-the-art 
deep learning techniques, we used LSTM as a classifier and 
employed the same FS methods to compare with ECFAM. This 
approach enables us to determine how effectively ECFAM’s 
FS capabilities translate to modern deep learning architectures, 
which is essential for understanding its practical utility in 
contemporary ML applications. The implementation of LSTM 
provides a more rigorous testing ground for assessing the 
quality of the selected features, as deep learning models can 
capitalize on more complex feature interactions that simpler 
classifiers might overlook. Table XIV shows the results.

TABLE XIII
Time Consumption

No. features DPM CHI2 CMFS DFS GINI DFSS ECFAM
50 0.033 0.135 0.036 0.037 0.032 0.034 0.031
100 0.045 0.142 0.033 0.046 0.031 0.035 0.040
250 0.046 0.151 0.037 0.038 0.041 0.039 0.043
500 0.044 0.174 0.039 0.039 0.043 0.042 0.039
750 0.045 0.157 0.043 0.039 0.044 0.043 0.041
1000 0.048 0.159 0.045 0.046 0.045 0.045 0.042
2000 0.052 0.173 0.046 0.053 0.047 0.046 0.044
3000 0.054 0.208 0.048 0.055 0.048 0.052 0.047
4000 0.058 0.261 0.053 0.056 0.051 0.055 0.049
DPM: Discriminant projection method, CH12: Chi‑Square, CMFS: Comprehensively 
measure features selector, DFS: Discriminative features selector, DFSS: Discriminative 
features selection, ECFAM: Enhanced category‑feature association measure.

TABLE XIV
LSTM ‑Accuracy Score of 20 Newsgroup

No. features DPM CHI2 CMFS DFS GINI DFSS ECFAM
50 23.97 22.73 18.43 14.06 22.24 21.28 24.22
100 28.10 29.97 25.33 17.57 26.23 28.49 26.96
250 33.88 35.04 31.79 21.63 32.72 34.78 36.62
500 35.20 36.96 38.59 22.11 36.64 39.74 41.67
750 41.33 39.37 40.78 24.35 39.37 40.34 43.18
1000 44.46 41.27 47.72 30.50 43.04 46.42 49.18
2000 47.90 44.52 50.80 34.73 44.17 48.71 51.73
3000 51.30 48.47 54.68 39.69 47.79 54.84 53.77
4000 52.56 53.61 57.31 42.96 54.86 56.23 58.53
LSTM: Long short‑term memory, DPM: Discriminant projection method, 
CH12: Chi‑Square, CMFS: Comprehensively measure features selector, 
DFS: Discriminative features selector, DFSS: Discriminative features selection, 
ECFAM: Enhanced category‑feature association measure. 

Fig. 1. Number of times features selection methods succeeded in each table.
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ECFAM shows steady improvement as feature count 
increases, with particularly significant performance jumps 
between 50 and 500 features (24.22–41.67) and more 
gradual gains thereafter. This pattern indicates that ECFAM 
effectively captures important discriminative features 
early in the selection process while continuing to identify 
useful features at higher counts. The method’s single 
underperformance occurs at 3000 features, where DFSS 
marginally outperforms it (54.84 vs. 53.77), though ECFAM 
reclaims its leading position at 4000 features.

VII. Conclusion
This paper introduces ECFAM, a novel FS method, as a 
pioneering approach for ranking features in TC. It selects 
the best-ranked features based on their scores. Unlike 
conventional methods, ECFAM considers the relationships 
between terms across different categories rather than merely 
their presence or absence. In addition to ECFAM, we have 
conducted comparative analyses with six other FS techniques 
within this domain. Our investigation involved using two 
distinct datasets in conjunction with three classifiers. The first 
discovery underscores the pivotal role of terms in defining 
specific categories and their potential to distinguish between 
them effectively. Conversely, the second finding suggests 
that no single method can universally excel across all feature 
dimensions. Nevertheless, ECFAM has consistently surpassed 
other FS techniques, consistently achieving the highest scores 
across various datasets. Our results unequivocally establish 
ECFAM’s superiority, as it consistently outperforms all other 
FS methods and scenarios across most datasets.

VIII. Limitations and Future Work
While ECFAM demonstrates superior performance, certain 

limitations warrant consideration. The method’s effectiveness 
may be impacted by highly imbalanced datasets, and its 
computational efficiency could be challenged in extremely high-
dimensional feature spaces. In addition, the current formulation 
assumes term independence within categories, which may not 
fully capture linguistic dependencies in all languages. Future 
research directions include extending ECFAM’s framework for 
multi-label classification scenarios, optimizing its computational 
complexity for real-time applications, and validating its 
performance across diverse multilingual datasets. These 
enhancements would further strengthen ECFAM’s applicability 
while addressing current constraints.
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