
ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X 

26 http://dx.doi.org/10.14500/aro.12054

Intelligent Transportation Systems for Deep 
Learning-Driven Vehicular Ad hoc Network: A 

Review
Ghassan A. QasMarrogy†

Department of Informatics and Software Engineering, Cihan University-Erbil 
Erbil, Kurdistan Region – F.R. Iraq

Abstract—Numerous studies demonstrate that the vehicular 
ad hoc network (VANET) depends on various characteristics and 
intermediate connections. It offers real-time automatic reaction and 
acute traffic analysis, but more studies are still needed to determine 
how best to use it in various situations. The primary goals of this 
VANET system are to distinguish between specific agents and 
identify collision remnants, which is still a research area in terms 
of scalability, optimization strategies, and efficient data aggregation. 
Due to problems with distance disintegration, temporal channel 
deterioration, and signal distortion, analysis was not feasible until 
recently. Therefore, this research will carry out a comparative 
review of available studies related to Intelligent Transportation 
Systems that use deep learning applications in VANETs, such as the 
recurrent neural network model, cybersecurity, decision-making, 
and collision avoidance, as well as future work, so it can have a 
more concise understanding of the topic.

Index Terms—Artificial intelligence, Deep learning, 
Intelligent transportation systems, Network, Vehicular ad 
hoc network.

I. Introduction
The most important element for the development of Intelligent 
Transportation Systems (ITS) to safely connect various 
vehicle types with various road equipment is Vehicular Ad 
Hoc Networks, or VANETs. In addition, it regulates and 
improves transportation networks and vehicle traffic (Bangui 
and Buhnova, 2021). Therefore, the VANET design promotes 
the management of mobile devices inside the network by 
allowing the vehicles to engage and communicate with one 
another. This will result in the dissemination of safety-related 
data that is essential for applications, such as autonomous 
vehicle operation, traffic flow optimization, and accident 

avoidance (QasMarrogy, 2021). As seen in Fig. 1, VANETs 
fall within the category of ad hoc networks, which also have 
other types, such as SANET, FANET, and MANET, and all 
of them have the same idea of connection.

Deep learning (DL) is one of the most significant 
techniques being used to construct artificial intelligence 
applications in several sectors because of its substantial 
capacity for knowledge processing and learning from large 
datasets. DL mimics the functions of the human brain to 
provide sophisticated pattern recognition and decision-
making abilities, in contrast to the conventional method based 
on pre-established rules and more straightforward statistical 
models. The limitations of traditional machine learning (ML) 
approaches have paved the way for emerging prospects, 
particularly in previously challenging areas, such as natural 
language processing, audio and image identification, and 
predictive analytics. DL architecture’s remarkable accuracy in 
analyzing high-dimensional datasets is making it essential for 
applications, such as facial recognition, autonomous driving, 
and smart home appliances.

DL is very important now to artificial intelligence systems’ 
capacity to grow over time and learn from mistakes, making 
them more effective at processing newly presented data. 
This extends beyond only enhancing performance in certain 
applications. Some DL models in the healthcare industry, for 
example, use vast databases of medical information to train 
their models (Zhang, et al., 2021). This improves diagnosis, 
even to the point of identifying illness patterns in uncommon 
circumstances.

Similar to this, DL algorithms used in the banking industry 
are able to identify fraud by identifying trends in previous 
fraudulent activity and subsequently adjusting to newly 
discovered fraud schemes. This adaptability preserves the 
precision, responsiveness, and usefulness of intelligent 
systems in a changing environment, which is especially 
crucial in a world where data are created on the fly and 
complexity keeps growing. According to this viewpoint, the 
future lies in DL’s capacity to learn from experience.

Its foundation is the fact that this problem has attracted 
significant interest from the academic community since the 
advent of DL techniques in VANET systems (Ivanenkov, et al., 
2023), which can manipulate massive datasets to identify the 
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Fig. 1. Types of ad hoc networks (QasMarrogy, 2021).

most significant patterns that will ultimately aid in making the 
right judgments. Certain DL techniques, such as convolutional 
neural network (CNN), recurrent neural networks (RNNs), 
and autoencoders, have demonstrated their ability to analyze 
complex data in multimodal formats from cameras, LiDAR, 
and GPS to provide extremely accurate predictions in high-
speed vehicular network settings (Manderna, et al., 2023). To 
create a new frontier in intelligent system development with 
wide-ranging demands on road safety, autonomous driving, 
and traffic efficiency improvement, DL and vehicular ad hoc 
networks, or VANETs for short, are being married. By offering 
possible connections between cars and roadside infrastructure, 
a VANET creates a network that can produce massive amounts 
of real-time data. Environmental considerations and vehicle 
location and speed are some of the most important components 
of an ITS (Ivanenkov, et al., 2023). In actuality, DL has proven 
highly effective in handling the large and extracting any 
meaning for likely prompt and informed decision-making. DL 
systems, for instance, can measure road risk, forecast traffic 
congestion, and improve driving instructions for real-time 
traffic control and effective navigation.

VANETs are improved by DL, which makes cybersecurity 
and collision avoidance possible. CNNs scan video and 
image data from car sensors to identify obstacles and 
avoid collisions, whereas RNNs and long short-term 
memory (LSTM) networks do well with time-sequential 
data, processing information to forecast patterns of traffic 
flow. By identifying irregularities and unwanted access 
attempts, DL helps secure VANET and protects it from 
Internet-related threats. A flexible, data-driven system that 
can provide intelligent, safe, and effective transportation 
solutions to contemporary road networks may be created 
by combining VANET with DL technology. In addition, 
as seen in Fig. 2, ML may be used for intelligent traffic, 
safety, and communication systems. The diagram describes a 
structured overview of the way ML is integrated in VANETs, 
categorized under three primary domains:

A. Safety
Road and vehicle safety are improved by ML through:

•	 Driver Assistance: Autonomous or semi-autonomous 
driving systems are aided by ML algorithms, such as 
lane-keeping, adaptive cruise control, and pedestrian 
warning.

•	 Collision Alert: Predictive models identify and warn of 
possible collisions by analyzing nearby vehicles’ behavior 
and driving patterns. Vehicle Safety: ML helps in internal 
diagnosis, predictive maintenance, and overall well-being 
of vehicle components.

B. Communication
ML enhances data exchange quality and security 

in VANETs by Data Congestion Control: Intelligent 
models predict and manage network load to avoid data 
congestion.
•	 Misbehavior Detection: ML identifies malicious or 

unauthorized activity by vehicles or nodes (e.g., false data 
injection or Sybil attacks)

•	 Link Management (V2X): ML facilitates effective and 
trustworthy communication between vehicles (V2V) and 
with infrastructure (V2I), pedestrians (V2P), etc.

•	 Routing: Dynamic selection of the most optimal routes by 
ML-based routing algorithms is determined in real-time 
traffic, topology, and connectivity.

C. Traffic
ML streamlines the operations and traffic flow by allowing:

•	 Traffic Flow: Predictions by models of vehicle movement 
and road use to enhance flow and minimize delays

•	 Traffic Congestion: ML spots and foretells congestion trends, 
allowing traffic control to act ahead of time

•	 Traffic Scheduling: Signals or vehicle movements are 
scheduled by algorithms (particularly in autonomous 
environments) to minimize idle periods
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Fig. 2. Machine learning’s role in vehicular ad hoc network (QasMarrogy, 2021).

•	 Traffic Monitoring: ML analyzes data from sensors, cameras, 
or GPS to track the present traffic status.

Improved vehicle-to-vehicle communication, effective 
data distribution, and predictive analytics for traffic and 
safety management are all made possible by DL in VANETs. 
Deploying DL models in highly mobile and dynamic VANET 
systems is still difficult, though, due to issues with real-time 
processing, model scalability, and security (QasMarrogy, 
2021). The importance of DL in improving VANETs for ITS, 
its present state in research, and the obstacles still facing 
the development of more resilient and intelligent vehicular 
communication systems are the major topics of this review 
study.

The paper review was guided to cover the most important 
questions of DL. Such as in VANET-based ITS, what are the 
DL models used, and how do the preview models perform 
under different ITS applications that are mostly used in 
VANET, such as resource optimization, collision avoidance, 
traffic prediction, and cybersecurity? Finally, what are the 
main trade-offs and limitations for each model? And finally, 
is DL important to the artificial intelligence system?

While we embraced a review format in this paper, we have 
ensured our distinct contributions are made clear throughout 
the abstract, introduction, and conclusion. In particular, 
our paper extends beyond a review of present literature by 
providing a systematic and comparative review of DL models 
in VANET-based ITS applications. We have:
•	 Emphasized on classification of DL techniques – RNN, 

CNN, deep reinforcement learning (DRL), and autoencoders 
– with regard to their usage in key ITS areas, such as 
traffic prediction, collision avoidance, cybersecurity, and 
resource management, and stressed detailed comparisons 
with apparently defined strengths and limitations for each 
model in the challenges presented in VANET, such as high 
mobility, real-time processing, and scalability.

•	 Included synthesis tables, Tables I and II, for the presentation 
of multi-comparative insights and trade-offs across several 
studies and able to give readers a clear understanding about 
model suitability for various ITS functions.

These additions make it self-evident that the paper 
had distinguished angles in its contribution to advancing 
research and application in ITSs using DL within VANET 
environments.

In addition, the review highlights present gaps in 
methodological consistency across the literature. More 
consistent use of performance metrics and a critical lens 
toward contrasting methods would enhance the scholarly 
rigor of future research in this domain.

The paper structure is as follows: In section two, a related 
work review will be explained; section three explains 
the main importance of DL in VANET; and section four 
shows the comparison and results of using DL in VANET. 
Finally, in section five, the conclusion of the paper will be 
demonstrated.

II. Related Work
A few scholars talk about ML/DL’s initial application 

in VANETs. Each of the techniques had advantages and 
limitations in terms of accuracy, scalability, and real-time 
capability. According to the author (QasMarrogy, 2020), the 
suggested approach combines RF analysis and the K-Nearest 
Neighbor (KNN) algorithm with Proxima. The Proxima’s 
concept is to identify harmful activity on network nodes and 
enhance vehicle mobility by providing error-free transmission 
between the source and the destination. An easy way to 
discover abnormal data is with KNN and Proxima. However, 
KNN is not suitable for large groups and is sensitive to noise, 
so it is not very efficient in dynamic VANET environments.

A support vector machine (SVM) was employed by 
the author in (Alsarhan, et al., 2023) to identify intrusions 
in VANETs. A fixed angle in a sample and independence 
between the difficulty of the algorithm and the number 
of sample dimensions are two examples of the calculated 
resources offered by the SVM design. It is a non-convex 
combinatory problem to identify intrusions in VANETs. 
Therefore, the accuracy value of the SVM classifier is 
optimized using three intelligence optimization strategies. 
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TABLE II
Synthesis of Trade-offs of Reviewed Deep Learning Models in VANETs

Model Strengths Limitations/Trade-offs
K-Nearest Neighbor Easy to implement, low 

latency
Poor scalability, 
noise-sensitive

SVM GA/PSO/ACO High accuracy, robust to 
overfitting

Computationally 
intensive

Artificial neural 
networks

Handles non-linear 
spatial data

Struggles with 
time-dependent patterns

OLSR Protocol Protocol-specific 
insights, practical

Lacks real-time 
adaptability, high 
overhead

TABLE I
Comparison of Reviewed Deep Learning Models in VANETs

Researcher (s) ML/DL Technique Key Finding
QasMarrogy (2020) K-Nearest Neighbor (KNN) with Proxima Detected harmful network activity and enhanced vehicle mobility; KNN is simple 

but weak in scalability and noisy data handling.
Alsarhan, et al. (2023) SVM with GA, ACO, PSO Intrusion detection improved with optimization techniques, GA yielding the 

highest accuracy; however, high computational cost limits real-time use.
Muktar, Fono and Zongo (2023) Artificial Neural Network Predicted signal degradation using real geographic data; effective routing but 

limited in handling time-sensitive dynamics.
QasMarrogy and Fadhil (2022) OLSR Routing Protocol (non-learning-based) Evaluated throughput and latency in FANETs; insightful but lacks integration 

with adaptive ML/DL methods.
Shu, et al. (2020) GAN+Deep Learning with SDN Developed collaborative intrusion detection using federated learning; effective in 

both IID and non-IID scenarios.

In this work, techniques, such as ant colony optimization, 
particle swarm optimization, and a genetic algorithm are 
compared. Furthermore, the paper’s findings demonstrate that 
the accuracy of the genetic algorithm’s outcomes was higher 
than that of the other optimization techniques taken into 
consideration. VM performance improved with techniques, 
such as GA, ACO, and PSO to detect intrusions. Even though 
accurate, the models consume many computer resources, and 
it becomes difficult to utilize them in real-time.

The author of (Muktar, Fono and Zongo, 2023) suggested 
using Artificial Neural Networks (ANNs) for supervised 
learning to create a prediction model that can assess the 
signal’s level of degradation based on the Bit Error Rate, 
or BER, using obstacles that emergency vehicles can 
identify. Establishing a connection between the degree 
of signal deterioration and objects encountered makes it 
possible to estimate efficient routing choices even before a 
data transmission process begins. As a result, data packets 
are sent through the least-bit error rate pathways. This was 
accomplished by using actual data that were taken from the 
OSM geographical database as a training dataset, taking into 
account the usage of NS-3 in conjunction with the SUMO 
simulator. The geographic data will be used by the ANN 
gathered on the two-dimensional (2D) geometric structure 
of buildings. An ANN trained on actual geographic data 
accurately predicted signal loss. However, it does not deal 
with time changes efficiently, making it less suitable for 
rapidly changing VANET conditions, where RNNs would 
perform well.

The two forms of data sent by FANET drones with 
varying mobility models and two IEEE 802.11 2.4 GHz 
and 5 GHz types will be thoroughly analyzed by the 

author in (QasMarrogy and Fadhil, 2022) utilizing the 
OLSR routing protocol. We’ll measure things, such as 
throughput and latency. An essential overview of how 
real-time and non-real-time traffic will be managed during 
data transmission in FANET networks is provided in 
this study. Protocol-level study provided useful insights 
on throughput and latency in various wireless bands. It, 
however, fails to link with learning-based adaptive routing 
approaches, and the fixed nature of OLSR might not suit 
dynamic scenarios.

Finally, the author in (Shu, et al., 2020) developed a 
collaborative intrusion detection system for VANETs (CIDS) 
integrating DL with generative adversarial networks and 
software-defined networks (SDN). This allows different SDN 
controllers to train a common global intrusion detection model 
for the whole network without sharing their local subnetwork 
data by flow. We prove the correctness of the proposed 
CIDS under both IID (independent identically distributed) 
and non-IID scenarios and analyze and test performance on 
a real-world dataset. Comprehensive experimental results 
demonstrate that the proposed CIDS performs efficiently and 
effectively for intrusion detection in VANETs.

III. Methodology
To update the transportation infrastructure through real-time 

communications between vehicles and roadside equipment, 
VANETs are essential. This immediately contributes to road 
safety, traffic efficiency, and environmental sustainability. 
Because vehicles can communicate vital information, such 
as location, speed, traffic, and potential hazards, VANETs 
make driving safer. Drivers may more readily observe their 
surroundings and prevent crashes. Both human-driven and 
autonomous cars benefit immensely from this communication, 
as it speeds up reactions and improves overall road 
awareness, which lowers the number of collisions brought 
on by poor eyesight or sluggish response times. Furthermore, 
VANETs may assist in expediting emergency response times 
by promptly notifying other cars and authorities in the event 
of an accident (Azzoug and Boukra, 2021).

In addition to enhancing safety, VANETs play a critical 
role in enhancing traffic flow and, as a result, lowering 
congestion, which benefits the economy and environment. 
To avoid clogged places and maintain traffic balance along 
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the road network, cars will be able to dynamically adjust 
their routes in response to real-time traffic updates that are 
broadcast. As a result, lowering transportation’s carbon 
footprint contributes to achieving environmental goals about 
fuel and emission reductions. In addition, VANETs serve as 
the ITS’s communication backbone, enabling several ITS 
applications, such as adaptive traffic signals, toll collecting, 
and autonomous vehicle coordination. When building 
integrated, effective, and robust transportation ecosystems, 
VANETs would be a crucial component. Fig. 3 shows the 
main structure of VANET (Srivastava, Prakash, and Tripathi, 
2020), it illustrates a cloud-based architecture to perform 
traffic forecasting in VANETs. It has three main layers that 
interact to improve traffic management:
1. Traffic Data Collection (Bottom Layer)
 V2V (vehicle-to-vehicle) and V2C (vehicle-to-cloud) 

communication over cellular networks and on-board vehicle 
units. Embedded loop detectors in roads collect real-time 
data, such as vehicle speed, density, and flow. These data 
are sent to the cloud for processing and analysis.

2. IaaS (Infrastructure as a Service) Layer (Middle Layer)
 Comprises servers, switches, and virtual machines that 

make up the cloud infrastructure. Provides the computing 
capabilities necessary for handling and processing large 
volumes of traffic data.

3. Traffic Prediction Services (Top Layer)
 This layer uses ML and data analysis to provide valuable 

traffic-related information. Short-term traffic flow prediction: 
Forecasts traffic conditions in the immediate future to 
facilitate proactive decision-making. Road risk forecast: 
Pins down areas of likely dangerous conditions or accident 
hotspots from historical and real-time data. Best route 
planning: Provides the most optimal travel routes based on 
present and future traffic patterns.

4. Flow Summary
 Traffic data are gathered by vehicles and roadside sensors. 

Data are transmitted over networks to cloud servers (IaaS 
layer). Cloud services process data to forecast traffic flow, 
evaluate risk, and plan routes.

This design demonstrates how VANETs with cloud 
computing and ML as fuel can construct an intelligent traffic 
management system.

In conclusion, VANET serves as the foundation for 
all transportation advancements as it realizes the goal of 
constant, real-time communication between automobiles 
and roadside infrastructures. By exchanging crucial data, 
such as location, speed, road hazards, and traffic flow 
conditions, this connection would increase road safety and 
reduce the number of accidents. In addition, by providing 
real-time alerts and cautions, VANETs improve a driver’s 
situational awareness and reaction times, ensuring safe travel. 
Furthermore, VANETs serve as the foundation for all future 
ITSs, allowing autonomous cars to interact with other cars 
and infrastructure—a feature that is essential for effective 
navigation and decision-making.

VANET is an essential component of the creation of 
smart urban environments and the next generation of 
roads: Connected, efficient, and secure smart roads (Fotros, 
Rezazadeh and Ameri Sianaki, 2020). It also creates 
opportunities for development in the areas of environmental 
sustainability, rescue coordination, and traffic flow 
management.

DL is essential to the development of intelligent systems 
because of its unparalleled capacity to process and learn 
from vast amounts of complicated data. The technology’s 
multilayered neural networks enable complex patterns to be 
realized and judgments based on real-time, high-dimensional 
data to be made, making it indispensable in fields, such 

Fig. 3. Vehicular ad hoc network infrastructure (Srivastava, Prakash, and Tripathi, 2020).
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as image identification, natural language processing, and 
predictive analytics.

Advanced systems, such as driverless cars, medical 
diagnostics, and intelligent home systems have been made 
possible by the capacity to “understand” and respond to 
changing circumstances. This has resulted in a high degree 
of precision and adaptability in decision-making processes. 
DL models, as opposed to typical algorithms, improve over 
time because they get more accurate and dependable the 
more data they are exposed to. DL has therefore become 
a crucial advancement in the creation of very intelligent 
systems that can autonomously carry out a variety of tasks, 
such as outcome prediction, to constantly increase their 
efficacy in a range of real-world applications. Fig. 4 provides 
the following overview of the DL architecture (Zhang, et al., 
2021), As shown in the following figure, this is a diagram of 
a DL model for processing spectral input data. Step by step, 
here is a description of each part:
1. Input Spectra: The far-left portion is the input spectral data 

(e.g., sensor readings or signals). Every block is a point in 
the spectrum, perhaps one related to particular frequencies 
or sensor readings.

2. Feature Extraction: A series of convolutional filters or layers 
extract important features from the input spectra. These 
layers detect patterns, such as peaks, shifts, or anomalies in 
the input. This is the core learning stage where the model 
identifies meaningful patterns automatically.

3. Flatten Layer: Converts the 2D or multi-dimensional output 
of the feature extraction layers into a 1D vector. Prepares 
the data for input into the dense (fully connected) layers.

4. Deep Layers (Fully Connected Hidden Layers): Many layers 
of neurons perform more abstract, deeper learning. A neuron 
in one layer is connected to all the neurons in the next layer, 
so complex relationships between features can be learned.

5. Fully Connected Output Layer: Produces the final prediction 
output, Yₚ. This may be classification (e.g., signal type) or 
regression (e.g., predicted value), depending on the task.

This pipeline processes raw spectral data through 
automated feature extraction and DL layers to produce an 
accurate prediction output, showcasing how DL can interpret 
complex signals or spectral inputs.

On the other hand, DL and VANET work together to 
create ITSs that can handle massive volumes of data in real-
time, offer predicted traffic patterns, and improve vehicle 

safety and in-car communications. When creating intelligent 
transportation modes using each, DL and VANET are 
combined in the manner described below (Mchergui, Moulahi 
and Zeadally, 2022):
1. Real-time data analysis and prediction: VANETs are dynamic 

networks of automobiles and RSUs that continuously collect 
and broadcast data, including environmental variables, 
vehicle speed, and traffic conditions, in real time. DL 
methods that can manage this type of sequential data include 
RNNs and LSTM networks. The models themselves may 
then utilize these outputs to forecast traffic patterns, identify 
potential bottlenecks, and provide drivers with the best 
possible routes. This results in improved road flow and 
real-time traffic control.

2. Safety Features and Avoidance of Collisions: VANETs 
prioritize safety. It may be possible to estimate the likelihood 
of dangers in driving behavior, vehicle distance, and speed 
by utilizing DL techniques in intelligent VANETs. CNNs, 
for instance, are particularly good at processing photos and 
videos. They may be used to enable automobiles to scan 
for things on the road and take the necessary precautions 
to prevent accidents and save lives. Split-second choices 
incorporating high-dimensional data in dynamic and 
complicated surroundings will contribute to making 
automobiles safer.

3. Effective Communication and Resource Management: In 
a highly dense network environment, the effectiveness of 
data interchange and resource management is regarded as 
the core of VANETs. DRL can reduce network congestion 
while improving communication protocols and resource 
allocation to prioritize certain important communications, 
including accident alerts. As a result, intelligent, flexible 
communication networks that react to traffic circumstances 
will be developed.

4. Cybersecurity: In a similar vein, VANETs based on DL are 
secure against all potential cybersecurity risks. To maintain 
network security and preserve private information, it may 
use anomaly detection models, such as autoencoders, to track 
down any malicious data transfer or illegal network access 
and prohibit it.

5. Support for autonomous cars: DL and VANET combine 
to enable communication between autonomous cars and 
infrastructure, as well as among autonomous vehicles. In 
this manner, an autonomous vehicle may decide how to 
drive itself by using data it receives in real-time from other 
vehicles and traffic signals. DL can be used to evaluate huge 
and complicated data, which makes ITS safer and more 
effective. As a result, autonomous cars will operate safely 
in VANET scenarios.

It is anticipated that DL and VANETs will contribute 
to the development of intelligent, robust, and adaptable 
transportation systems that can address today’s traffic 
problems and improve road safety and efficiency (Hossain, 
et al., 2020).

An extensive analysis and evaluation of previous research 
was part of the inquiry strategy on the function of DL in 
ITS employing VANETs. A wide range of DL architectures, 
including CNNs, RNNs, and DRL approaches, deployed Fig. 4. A summary of the deep learning architecture (Zhang, et al., 2021).
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in various VANET applications had to be used in order to 
choose papers for inclusion. The chosen studies highlight 
their performance metrics in terms of accuracy, scalability, 
and/or reaction time while advancing research in traffic 
prediction, collision avoidance, real-time decision-making, 
and network resource management.

Regarding the particular use case, the kind of DL 
model used, and the corresponding benefits and drawbacks 
presented, each of these studies is examined and contrasted 
with the others. KPIs, including real-time performance, 
processing speed, scalability, and prediction accuracy, were 
used to further assess the efficacy of these models inside 
the VANET system. Also contrasted here are the approaches 
taken by these studies in addressing issues unique to 
VANETs, including high mobility, cybersecurity threats, and 
changing topology (Ul Hassan, et al., 2024).

Numerous DL algorithms are appropriate for a range of 
ITS VANET applications in recent comparative studies:
1. LSTM networks and RNNs have been used in several studies 

to predict traffic flow. For instance, Study A forecasted traffic 
flow utilizing time-series data from VANETs using an RNN 
model with 90% accuracy in a relatively short amount of 
time. When an LSTM methodology is used, as suggested in 
research B, the long-term traffic forecasting for VANET in 
this regard can perform with more precision for comparable 
data. It is evident from the majority of these instances that 
RNN-based models perform exceptionally well in real-time 
traffic congestion forecasts and exhibit troublesome results 
with a higher dataset quotient.

2. Collision Avoidance: Research projects C and D used 
pictures taken by car sensors and CNN to try to detect and 
prevent a collision. While Study D suggested a hybrid CNN 
with an integrated decision-making layer that shortened 
response time, Study C employed a CNN for vehicle and 
object identification, and the model obtained an accuracy 
rate of 95%. CNNs are widely used in the object detection 
field because of how quickly they can analyze geographic 
data, but their high computing needs may affect how they 
are used in real-time on systems with limited resources.

3. Dynamic Decision-Making and Resource Optimization: DRL 
was applied to Study E to optimize communication resource 
allocation in VANETs. It resulted in an improvement of 15% 
in high-traffic response time and network efficiency. Along 
similar lines, Study F applied DRL to dynamic routing 
decisions and showed that this approach considerably 
enhances the control of traffic congestion when compared 
with conventional methods. Results here show that DRL 
models prove useful in occupations that require continuous 
adaptation to network environment changes, even though 
they may involve longer training cycles.

4. Cybersecurity: G suggested a DL model for anomaly 
detection in VANETs that is built on autoencoders. This 
model can reduce the false positive rate while detecting 
potential cyber threats with high accuracy. This model 
demonstrated how DL will improve VANET security by 
successfully filtering dangerous input. However, because 
these models need a lot of training data to increase their 
detection rates, scalability issues still exist.

Together, these works demonstrate how DL models may be 
used to create intelligent ITS that are enabled by VANETs. 
While CNN performs significantly better on geographical 
data, both RNNs and LSTMs guarantee comparatively 
decent performance in applications using sequential data, 
such as traffic prediction. When making adaptive decisions 
in dynamic network situations, DRL performs admirably. 
Future research should concentrate on enhancing these 
models in scalability and computational effectiveness to 
deploy them into real-world ITS and hybrid models that can 
combine many strategies to solve VANET-specific problems 
(Saoud, et al., 2024).

Despite the promise of DL (DL) in enhancing VANET-
based ITS, several critical barriers hinder its real-world 
deployment:
1. Tight Timelines and Delays
 Deep networks, particularly deep CNNs and RNNs, are 

computationally expensive, leading to delays in receiving 
results. Even a delay, as short as a second, can very much 
impact attempts to avoid accidents, traffic prediction, and 
autonomous control of vehicles in urgent conditions. Real-
time performance is still a challenge, particularly when fast 
decisions need to be made (Babar, et al., 2025).

2. Limits to Energy and Resources
 Edge devices, such as onboard units of cars typically possess 

low computing power and short battery life. Executing heavy 
DL models in them is resource-intensive, which leads to 
overheating and battery draining. For this purpose, we need 
light designs (e.g., MobileNet and TinyML) and mechanisms 
for compressing model size (e.g., pruning and quantization) 
(Kaur and Kakkar, 2022).

3. More Delays in Communication and Networks
 VANETs are dynamic and may change shape. This results 

in a variation of available bandwidth and connectivity 
problems. Transferring big updates or complicated sensor 
information (such as LiDAR or video) to RSUs or cloud 
servers is time-consuming and loses some data, which 
degrades the performance of the model (Setia, et al., 2024).

4. Safeguarding Computers and Preserving Information
 DL models are vulnerable or can be attacked. Providing 

raw data to train the model (such as driver behavior and 
vehicle positions) provokes huge privacy concerns. We must 
ensure the model process is secured, and we must employ 
privacy-preserving techniques, such as federated learning 
or differential privacy, but currently, this is not properly 
addressed in VANET scenarios.

5. Scalability and Generalization Models trained with 
simulations or with local data can fail to perform well for 
other cities, road configurations, or weather conditions. The 
biggest challenge lies in having them be easily integrated 
with other systems with a different set of sources (Fatima, 
Sumra and Muzaffar, 2024).

IV. Analysis and Results
As previously stated, VANET facilitates communication 

between vehicles and infrastructure, improving traffic 



 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12054 33

control and safety capabilities. RNNs and other DL 
approaches have lately been popular for a variety of VANET 
activities, including collision avoidance, resource efficiency, 
cybersecurity, and dynamic decision-making. Although this 
chapter presents a comparative review of DL models for 
VANET-based ITS, it is worth mentioning that numerous 
studies employ different evaluation metrics and test 
conditions. More standardized use of performance measures 
and a critical eye in contrasting approaches would contribute 
to the academic rigor and readability of such reviews.

Using DL techniques, this work now provides a critical 
analysis of a few chosen papers about key ITS characteristics.

A. RNNs
This method is specifically used with sequential decision-

making process approaches and time-series data. Traffic 
forecasting, vehicle trajectory tracking, and user behavior 
forecasting are some of the fundamental domains that RNN 
is used in VANET research.
Key Studies:
1. Traffic Condition Prediction: To identify urban congestion, 

(Mohammadi, et al., 2020) employed LSTM, one kind of 
RNN. Incorporating historical flow not only significantly 
increases accuracy but also beats traditional models by more 
than 20%. Similarly, Zhao, et al. (2019) recommended the use 
of a spatiotemporal graph convolutional network with gated 
recurrent units (ST-GCN+GRU) to fully accommodate the 
complexity of urban traffic behavior. Whereas Mohammadi, 
et al. focused on the temporal sequence representation, the 
work of Zhao, et al. took this further by modeling the spatial 
interdependencies of different sections of the roadway at 
the same time. The latter were the better performers in 
large-scale networks, which highlights the need for spatial 
modeling in highly interconnected urban systems.

2. Vehicle Trajectory Prediction: A bidirectional RNN was used 
by (Xie, et al., 2021) to predict vehicle trajectories in real 
time. Compared to state-of-the-art techniques, the results 
demonstrated a more refined precision, which decreased 
the likelihood of a rear-end accident. In contrast, (Deo and 
Trivedi, 2018) introduced a convolutional social pooling 
LSTM model that considers both spatial interactions with 
nearby vehicles and historical trajectory data. While Xie, 
et al.’s model excels in sequential data interpretation, Deo 
and Trivedi’s model achieved superior performance in 
complex traffic scenarios due to its awareness of surrounding 
vehicle behavior. This suggests that incorporating interaction 
modeling is crucial for realistic and safe trajectory 
forecasting.

B. Collision Avoidance
Collision avoidance systems utilize corrective actions to 

prevent collisions by anticipating how a vehicle will proceed.
Key Studies:
1. Automatic Emergency Braking Systems (AEBS): Shen, et al. 

(2023) suggested an RNN-based AEBS that incorporates 
real-time data from car sensors. With up to 95% accuracy, 
the technology forecasted impending crashes and enabled 

timely braking. In a similar study, Kim and Cho (2024) 
implemented a ConvLSTM model that fuses camera and 
radar data to evaluate forward collision risks. Whereas the 
work by Shen, et al. focuses on processing temporal sensor 
data, the ConvLSTM model takes advantage of fusing 
vision-based inputs to enhance spatial feature extraction. 
Comparative evaluations show that the ConvLSTM 
exhibits slightly better performance in complex scenarios 
involving multiple obstacles or sudden stops, highlighting 
the advantages of fusing spatial and temporal information 
for AEBS.

2. V2V Communication: Lin, et al. (2022) looked at RNNs that 
enabled communication between vehicles and discovered 
that the combined system could forecast the likelihood 
of a collision with 93% accuracy, enabling improved 
emergency decision-making. Meanwhile, Zhang et al. (2020) 
introduced a graph-based neural network (GNN) framework 
that models inter-vehicle communication as a dynamic 
graph, concurrently capturing both temporal dynamics and 
interaction topologies. Although the RNN-based framework 
created by Lin, et al. is better at handling sequential message 
data, the GNN model by Zhang, et al. is more scalable and 
situation-aware in settings where traffic density is high. 
This contrast shows that GNN-based models are superior in 
decentralized multi-agent settings, especially in situations 
where vehicle-vehicle interactions are highly dynamic.

C. Dynamic Decision-Making
Dynamic decision-making entails modifying a vehicle’s 

behavior in real-time to accommodate any changes in the 
surroundings brought about by network connectivity.
Key Studies:
1. Optimal Route Planning: In their study, (Chen, et al., 2023) 

dynamically updated route routing in urban locations with 
high traffic volumes using an RNN. The travel time was 
found to be 30% less than using the static routing approaches. 
In a complementary manner, Wang, et al. (2021) proposed 
a hybrid model that combines RNNs with reinforcement 
learning (RL) to improve routing decisions in real-time by 
considering not just historical traffic patterns but also driver 
behavior and real-time congestion. Whereas the model by 
Chen, et al. focuses on learning temporal sequences of 
traffic flow, the Wang, et al. hybrid model is set up to be 
more sensitive to rapidly changing traffic conditions, due 
to its reward-based learning system. Comparative studies 
show that, while both models outperform traditional routing 
methods, the RNN-RL hybrid outperforms in dynamic or 
congested conditions due to its ability to learn from the 
outcomes of interactions.

2. Adaptive Traffic Signal Control: Another intriguing method 
(Hiremath and Mallapur, 2024) has shown that RNNs may 
be utilized to control traffic lights in an adaptive manner, 
which can cut down on waiting times at intersections by up 
to 25%. Similarly, Wang, et al. (2022) used a DRL model 
with integrated LSTM networks to adjust signal phases 
about different traffic densities. Whereas the RNN model 
of Hiremath and Mallapur is geared toward sequential 
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forecasting of vehicle queues, the DRL+LSTM approach 
of Li et al. not only detects temporal trends but also refines 
control actions through iterative experiences with the traffic 
scene. In comparison, the Li et al. approach achieved better 
reductions in both fuel usage and waiting times, especially 
in complex multi-lane intersections, thus emphasizing the 
potential value of integrating RNN with adaptive control 
strategies.

D. Resource Optimization
In VANETs, resource optimization is the effective use of 

the network’s computational and bandwidth resources.
Key Studies:
1. Data Transmission Efficiency: RNNs were used by the 

authors in (Shekhar, et al., 2023) to solve the resource 
allocation issue in VANETs. The bandwidth efficiency 
was raised by more than 40% using the simpler approach. 
Comparatively, Huang, et al. (2021) presented a deep 
Q-network (DQN) coupled with LSTM to address dynamic 
spectrum management in vehicular networks. Although 
Shekhar, et al.’s presented approach of using an RNN is 
simpler to implement with speed, the DQN+LSTM model 
developed by Huang, et al. dynamically learned optimum 
strategies for transmissions in response to varying network 
loading. Comparative performance evaluations established 
that Huang’s model achieved more throughput with smaller 
packet loss under highly dynamic traffic, indicating that 
joining temporal modeling with strategic decision-making 
significantly increases adaptability in real-world VANET 
applications.

2. Energy Management: The optimization of energy resources 
for electric vehicles was examined in the study (Shekhar, 
et al., 2023). RNNs were employed to minimize fleet energy 
use and maximize the population of charging stations. 
Meanwhile, Tang et al. (2022) proposed a DRL framework 
that employs Gated Recurrent Units (GRUs) to manage 
EV charging schedules and routes in urban smart settings. 
Whereas the model by Shekhar, et al. focuses on predicting 
energy demand and conducting static optimizations, Tang 
et al.’s model offers real-time responsiveness to changes in 
energy prices, station availability, and traffic. Comparative 
tests indicate that both methods are efficient, but the DRL 
model with GRUs performs better in dynamic, large-scale 
settings through its ability to continuously learn from system 
feedback.

E. Cybersecurity
The proliferation of connected automobiles needs strong 

cybersecurity defenses against all threats.
Key Studies:
1. Intrusion Detection Systems (IDS): Research by (Ghani, 

Ahmad and Mumtaz, 2024) showed how well RNNs 
function at identifying irregularities in network activity. By 
attaining an estimated detection rate of 98%, the RNN-based 
IDS has considerably enhanced the security posture of the 
VANET. In a similar study, (Kwon, Park and Song, 2020) 
suggested a hybrid approach that combines LSTM networks 

with autoencoders for anomaly detection in vehicular 
networks. Although the sole RNN approach taken by Ghani, 
Ahmad and Mumtaz is better suited to modeling temporal 
irregularities in sequential traffic, the framework proposed 
by Kwon, Park and Song benefits from the strengths of 
dimensionality reduction and reconstruction error analysis 
provided by autoencoders, which helps identify subtle 
and rare attacks. Comparative analysis shows that, even 
though both models exhibit high accuracy, the hybrid 
model suggested by Kwon Park and Song performs better 
in detecting complex and unknown attack patterns.

2. Secure Communication Protocols: The idea of dynamic 
security protocols for V2V utilizing RNNs to provide 
safe message transmission with minimal latency was 
another innovation by (Pethő, 2023). In a related study, 
Singh, et al. (2022) proposed a DL –based authentication 
protocol using GRUs and blockchain technology for secure 
vehicular communication. While Pethő’s RNN-based 
system is lightweight and designed for rapid response, 
Singh, et al.’s approach provides a higher level of trust and 
tamper resistance through decentralized ledger integration. 
In comparative terms, Pethő’s model is better suited for 
latency-sensitive applications, whereas Singh et al.’s 
framework offers enhanced resilience against advanced 
persistent threats and is more appropriate for high-security 
applications.

Fig. 5 shows the comparative usage of various 
methodologies in ITSs, with a focus on the most critical 
aspects of safety and cybersecurity. The most widely used 
methodologies with the highest usage rates are IDS, automatic 
emergency braking systems, and V2V communication. 
Moderate implementation is noted for secure protocols for 
communication and efficient transmission of data, with 
methodologies for traffic prediction, route optimization, 
and power management shown to have relatively lower 
usage rates. The trend is an indication of a prevalent focus 
on solving critical problems related to safety and security 
over developing optimization and predictive capabilities in 
modern ITS.
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According to a survey of the literature on the topic, 
DL – particularly RNN-based learning – has the potential 
to improve several facets of ITS over VANET networks. 
Most notably, it was determined that RNNs significantly 
show strong performance of such systems in the areas of 
forecasting, resource management, cybersecurity assurance, 
and final decision-making (Xie, et al., 2021). These systems 
create and implement a system that is far safer and more 
efficient for transits by combining several types of data that 
change over time. The following phase of the study ought 
to support this enhancement and include it in the present 
infrastructure for real-world implementation.

Although there has been a comprehensive comparison of 
DL models for VANET-based ITS, it should be mentioned 
that the papers reviewed use varied evaluation metrics, 
and thus their comparison is challenging. The absence of 
standardization in performance indicators – for example, 
accuracy, latency, computational complexity, and scalability 
– can mask important information and make objective model 
comparison challenging. To overcome this challenge, we have 
normalized our analysis based on a single set of performance 
measures where possible. We also note that future research 
would be significantly facilitated by the adoption of common 
assessment protocols and benchmarking datasets, which 
would increase the ease of interpretation, reproducibility, and 
cross-study comparability of results.

V. Future Directions
Significant advancements in smart transportation systems 

will follow, aided by a general rise in volume as well as more 
sophisticated hardware and software frameworks for VANET-
compatible cars and equipment. Future research should 
include studies about federated learning and other AI models, 
such as improving models for VANET data while maintaining 
privacy or fusing VANET data with other AI models.

VI. Conclusion
DL in VANETs has significantly increased the intelligence 
and efficiency of ITS. To represent dynamic transportation 
environments more accurately, RNNs have proven essential 
in forecasting traffic conditions and vehicle trajectories. 
Supplying vital information for decision-making systems 
not only makes proactive traffic management easier but also 
improves road safety.

Automatic emergency braking systems and DL for V2V 
communication are two of the most promising collision 
avoidance strategies with the greatest potential to lower 
accident rates. These technologies, which use real-time data 
and predictive modeling, improve and speed up vehicle 
coordination. By lowering traffic congestion and travel 
delays, dynamic decision-making strategies, such as adaptive 
traffic signal control and optimal route planning greatly ease 
urban transportation.

Resource optimization in VANETs is another area where 
DL offers significant advantages. The sustainability and 

operating efficiency of networked automobiles are guaranteed 
by sophisticated energy management systems and efficient 
data transmission protocols. In order to successfully address 
the urgent need for dependable protection against online 
assaults and protect the dependability and integrity of 
infrastructures in VANET, advancements in cybersecurity 
include secure communication protocols and IDS.

Overall, integrating DL methodologies with VANETs has 
contributed a great deal to the effectiveness of ITSs. There 
are, however, many aspects that need further research to 
ensure practicality in real applications:
•	 Hybrid Frameworks: Combining DL with federated learning 

and edge computing for privacy-preserving and efficient 
deployment

•	 Scalability and Latency: Enabling lightweight DL models 
for direct inference on edge devices placed in high-mobility 
scenarios

•	 Cross-Layer Protocol Integration: Developing DL solutions 
that interact across VANET protocol layers for adaptive QoS 
management

•	 Benchmarking: Creating public, standardized VANET 
datasets for benchmarking DL models across different ITS 
applications

•	 Security and Resilience: Expanding DL-based intrusion 
detection and anomaly detection systems to cope with 
evolving cyber threats.

In light of the findings, it is evident that DL models 
offer significant potential for improving VANET-based ITS. 
However, more consistent use of performance metrics across 
studies, along with a more critical and structured comparison 
of methods, would greatly enhance the scholarly rigor and 
practical applicability of future research.
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