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Abstract—Deepfake videos have grown to be a big concern 
in the modern digital media landscape as they cause difficulties 
undermining the legitimacy of channels of information and 
communication. Humans often find it challenging to tell the 
difference between a fake and a genuine video due to the increasing 
realism of facial deepfakes. Identification of these misleading 
materials is the first step in preventing deepfakes from spreading 
through social media. This work introduces Spatio-temporal 
Intelligent Deepfake Detector (STIDD), a deep learning system 
including enhanced spatial and temporal modeling techniques. 
By means of a pre-trained EfficientNetV2-B0 model, the proposed 
framework efficiently extracts spatial characteristics from 
each frame, subsequently, and Bidirectional Long Short-Term 
Memory layers help to capture temporal relationships from video 
sequences. We evaluate STIDD on the FaceForensics++ (FF++) 
dataset encompassing all five manipulation techniques (DeepFakes, 
FaceSwap, Face2Face, FaceShifter, and NeuralTextures). The 
experimental results reveal that STIDD achieved precision, recall, 
and F1-scores all higher than 0.99 and a final test accuracy of 
99.51% on the combined FF++ test set. The results demonstrate 
that the integration of sophisticated spatial extraction and strong 
temporal modeling allows STIDD to achieve high detection 
performance while maintaining computing efficiency at just 0.39 
Giga Floating-Point Operations (GFLOPs) per inference.

Index Terms—Deep learning, Deepfake detection, 
EfficientNet, Spatio-temporal modeling

I. Introduction
In recent years, the digital media landscape has shifted 
dramatically. Advances in artificial intelligence (AI) enable 
the manipulation of photos and videos at an unprecedented 
scale, resulting in the emergence of fabricated content 
such as Deepfakes. Deepfake technology uses advanced 
methods to modify existing media or create completely 

synthetic content, increasingly obscuring the boundary 
between genuine and altered media. The dual functionality 
of Deepfakes, serving both advantageous and potentially 
detrimental purposes, poses a significant challenge for many 
businesses and communities (Korshunov and Marcel, 2022; 
Heidari et al., 2024).

Advances in machine learning, namely with Generative 
Adversarial Networks (GANs), correlate with the emergence of 
deepfake technology. The ability of these networks to produce 
artificial media that is highly realistic was first used for its artistic 
and entertainment usages (Kaur, et al., 2024). However, abuse 
is unavoidable. Nowadays, deepfakes are frequently employed 
in identity theft, misinformation, and other malicious activities, 
pushing society into a space where digital authenticity appears 
to be becoming more and more insecure (Shahzad, et al., 2022).

Neural networks such as GANs employ a dual‐network 
framework in which a generator learns to create synthetic 
facial images and a discriminator learns to distinguish them 
from real images. This adversarial training paradigm yields 
highly realistic outputs that underpin applications such as 
face swapping and facial reenactment with photorealistic 
fidelity (Liu et al., 2021). These realistic, face-swapped 
deepfakes are used in a variety of contexts to fabricate fake 
terrorist events, inspire political fear, and enable extortion 
attempts.

Using a person’s voice and video without permission, 
deepfake technology may create a variety of films, including 
humorous or pornographic ones (Day, 2019). The size, scope, 
and accessibility of deepfakes make them dangerous since 
they enable anybody with a single computer to produce 
fake movies that seem authentic. Making fake pornographic 
movies of celebrities, disseminating misleading information, 
acting as politicians, and committing financial fraud are only 
a few of the several uses for deepfakes (Pawelec and Pawelec 
Mariapawelec, 2022).

In addition to undermining individual privacy, deepfakes 
significantly affect the credibility of media, which in turn 
diminishes public trust and potentially threatens political 
stability (Jameel, Kadhem, and Abbas, 2022; Mubarak, 
et al., 2023). People have to face an unsettling truth: imagine 
living in a world where you cannot believe anything you 
come across or hear. Therefore, developing reliable and 
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efficient detection systems are essential. These facts make it 
not only an academic effort but also a critical social need to 
design lightweight, efficient deep learning models capable of 
working in various scenarios.

Although deepfake detection systems have developed 
rapidly, real-world applications sometimes run against 
problems with current methods, especially in situations 
limited in resources. Most current models either lack precise 
enough identification of deepfakes or have performance 
problems that cause delays in detection (Gupta, et al., 
2023). This makes integrating deepfake detection methods 
challenging, particularly in applications where dependability 
and speed are critical. An effective detection method 
combining great accuracy and efficacy is required to ensure 
the successful eradication of deepfake concerns.

Given these difficulties, the goal of this research is to 
advance the area of deepfake detection by focusing on the 
development of an efficient model that is capable of precise 
deepfake detection to increase confidence in the information 
shared on different digital platforms by closing the gap 
between accurate deepfake detection and the limitations 
present in resource-constrained contexts using transfer 
learning approaches and optimizing for computing efficiency.

II. Related Work
One of the typical characteristics that help one to recognize 

someone is their face. Therefore, the rapid advancement of 
face synthesis technology poses a significant threat to national 
security. The fast development of convolutional neural networks 
(CNNs), GANs, and their alternatives has made it possible 
to generate hyper-realistic images, movies, and audio signals 
that are much more difficult to distinguish from genuine ones 
(Alom, et al., 2019; Hong, et al., 2019; Kaur, et al., 2024).

Reducing social risks are imperative. Researchers employ 
advanced algorithms to distinguish genuine motion movies 
from their manipulated counterparts. Most studies employ 
convolutional neural networks combined with other techniques 
to identify deepfakes. Alhaji, Celik, and Goel (2024) employed 
a deep learning architecture guided by ant colony optimization 
(ACO) and particle swarm optimization (PSO) to select 
salient attributes, yielding enhanced detection accuracy. It is 
worth noting that the integration of vivid temporal patterns 
and subtle spatial features, which were extracted from video 
frames through the ACO–PSO pipeline, contributed to a 
classifier capable of discerning genuine from manipulated 
content. On the other hand, Al-Adwan, et al. (2024) explore 
hyperparameter tuning through particle swarm optimization and 
reveal that adaptive parameter search often speeds convergence 
without degrading feature integrity. More precisely, in search 
of deepfake material, the proposed approach employs a hybrid 
EfficientNet-Gated Recurrent Unit (GRU) network.

Alanazi, Ushaw and Morgan (2023) investigate the role of 
specific facial regions in deepfake detection by systematically 
removing certain facial areas during model training and 
analyzing the resulting impact on performance. This approach 
offers valuable insights into the discriminative power of 
individual facial features, contributing to the refinement of 

face removal strategies and supporting continued progress in 
deepfake detection research.

Research led by Jung, Kim, and Kim (2020) focused on 
natural eye-blinking as a crucial indicator for identifying 
DeepFake videos, using an algorithm named Deep Vision. The 
approach was used for eight videos, effectively identifying 
deepfake material in seven cases, because of the predictable 
patterns associated with eye-blinking, a spontaneous and 
voluntary movement. Furthering the discussion (Luo, et al., 
2024), consider different neural network designs to improve 
closed-eye detection and dynamic blinking patterns for signs 
of manipulation to identify fake facial videos generated by 
deep neural networks, with eye-blinking detection as the 
primary differentiator.

Ibnouzaher and Moumkine (2024) introduce a multi-model 
strategy that extracts features separately from XceptionNet, 
ResNet18, and EfficientNet-B5 and then refines them within 
a transformer-based architecture. It is crucial to highlight that 
this ensemble often yields more nuanced discrimination of 
manipulated frames. When assessed on the FaceForensics++ 
(FF++) and Deepfake Detection Challenge (DFDC) datasets, 
the ensemble method appears to leverage complementary 
convolutional strengths and to mitigate overfitting.

However, the complexity of the feature selection procedure 
and using multi-models may provide a computational 
efficiency challenge for the studies mentioned earlier, 
making them less appropriate for reliable deepfake detection 
in resource-constrained contexts. Mitra, et al. (2022) 
addressed this gap by proposing a lightweight deepfake 
detection approach for Internet of Things (IoT) contexts. 
Their method uses machine learning and texture analysis 
to recognize GAN-generated deepfake images at the edge, 
and they presented a detection API to facilitate real-world 
deployment. Similarly, Sridevi et al. (2022) propose an IoT-
based application for detecting deepfakes, emphasizing facial 
motion through developing and utilizing a lightweight deep 
learning technique on IoT systems.

Furthermore, Xia, et al. (2022) proposed a deepfake 
video detection system based on MesoNet, including a 
preprocessing module. To enhance the differentiation among 
multi-color channels, the preprocessing module is first 
configured to process the cropped facial images. Qadir, 
et al. (2024) propose a hybrid model that takes input from 
sequential targeted frames, thereafter processing these 
frames through the ResNet-Swish-BiLSTM, an enhanced 
convolutional Bi-LSTM-based residual network for training 
and classification objectives. To assess the robustness of the 
proposed methodology, they used the DFDC and the FF++.

Despite those studies contributing to the improvement 
of accuracy and efficiency in deepfake detection, current 
approaches face significant challenges, particularly in resource-
limited environments, since most current models either lack the 
required accuracy for deepfake detection or have performance 
limits that limit timely identification. Different from previous 
research projects, this work offers a system that maintains both 
accuracy and efficiency for Deepfake detection.
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III. Methodology
This study proposes a hybrid approach called Spatio-

temporal Intelligent Deepfake Detector (STIDD) to detect 
deepfakes. A thoughtful methodological approach was 
employed to develop and train the proposed STIDD, including 
the data collection and preprocessing, data augmentation, 
model architecture and design, training process, and model 
evaluation.

A. Hardware and Software Setup
The experimental hardware and software setup used for 

STIDD is demonstrated in Table I., This setup provided 
sufficient computational power and efficient storage for quick 
data retrieval to handle extensive video files and intensive 
deep learning tasks. The software stack included Python, 
TensorFlow, TensorFlow Lite, and Keras, offering a solid 
foundation for the development, training, and deployment of 
the deep learning model.

B. Data Acquisition and Preprocessing
The processes of data acquisition and preprocessing 

are essential for establishing a strong foundation in the 
development of an effective deepfake detection model. Thus, 
this phase focuses on the collection of high quality, diverse 
video samples and the conversion of raw video data into 
organized inputs that encapsulate crucial spatial and temporal 
details.
Data collection

The dataset has been sourced from the well-known 
FF++ benchmark (Rossler, et al., 2019) to improve the 
model’s efficacy for accurate deepfake detection. The FF++ 
dataset was created by a collaboration of experts from the 
Technical University of Munich, University of Erlangen-
Nuremberg, and the Federico II University of Naples 
to serve as a publicly available benchmark for the study 
of face forgery identification. The collection includes a 
thousand real-world videos from authentic settings such 
as news interviews and manipulated using five different 
manipulation techniques (Deepfakes, FaceShift, FaceSwap, 
Face2Face, and Neural Textures). FF++ was created to help 
with deepfake detection research and create algorithms 
able to precisely identify altered videos, establishing it as 
an acceptable benchmark in its field (Alanazi, Ushaw and 
Morgan, 2023).

Frame extraction and sequence formation
This approach generates individual frames by first 

processing the video data using the OpenCV library from a 
mix of real and fake MP4 videos. To reduce computational 
load and limit redundancy we select only key frames, 
specifically every tenth frame from each video. Following 
this, pairs of consecutive frames are formed using a sliding-
window technique, as illustrated in Fig. 1. This approach 
ensures the preservation of temporal dynamics found in video 
data, apart from ensuring that every sample retains enough 
contextual information for the next operations.
Data splitting

Following the sequence generation, the dataset is randomly 
shuffled and split into training, validation, and test sets with 
ratios of 70% for training, 15% for validation, and 15% for 
test sets using a split strategy that maintains the ratio of real 
to fake sequences across all subsets, so guaranteeing balanced 
and objective training and evaluation.

C. Data Augmentation
Augmentation is done once video frames have been 

extracted. Zoom, brightness change, vertical flip, and 
horizontal flip are among the range of augmentation 
methods that improve the model’s generalization and 
robustness. To accelerate the processing of massive video 
files, these augmentations are carried out concurrently 
under multi-threaded processes. As such, the system 
produces five variants of every extracted frame in addition 
to the original one. Frames must be resized suitably 
to convert video data into a format fit for deep learning 
models; hence, the extracted frames from the video data 
are resized to the model input size (112 × 112). Algorithm 
1 shows the pseudocode for the augmentation algorithm 
followed in this study.

E. Model Architecture and Design
Effective hybrid model architecture is proposed for 

reliable and efficient deepfake detection: The STIDD, which 
is a lightweight yet highly accurate solution for detecting 
deepfake videos. The architecture consists of three primary 
blocks that effectively capture spatial and temporal features 
through a two-stage process, with the final classification 
component, as illustrated in Fig. 2. The network comprises 
roughly 7.6 million parameters, with about 7.54 million of 
these are trainable. These design choices enable the model 
to identify deepfakes with high accuracy while remaining 
computationally efficient.
Block 1: Spatial feature extraction

The first block focuses on extracting spatial features from 
each frame using an EfficientNetV2-B0 model, pre-trained on 
ImageNet. Wrapping this network within a TimeDistributed 
layer enables independent processing of every frame in 
the sequence, enabling the extraction of complex facial 
features, textures, and subtle artifacts indicating possible 
manipulation. Following the spatial feature map extraction, 
each map has been reduced into a lower-dimensional vector 
using a TimeDistributed GlobalAveragePooling2D layer, as 

TABLE I
Hardware and Software Environment

Component Specification
Operating System Windows 11 Pro
GPU NVIDIA RTX 2080ti (11GB vRAM)
RAM 16GB
Storage 256GB SSD (for fast access) and 1TB HDD (for archive)
Software stack Python, TensorFlow, TensorFlow Lite, Keras
Dataset FaceForesensess++
Evaluation metrics Accuracy, Loss, Precision (Pr), Recall (Re), F1 score, 

Confusion Matrix
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ALGORITHM 1
AugmentFrame: Augment a Single Frame

1: procedure AugmentFrame (frame, category, frameIndex, 
zoomFactor, brightnessFactor, targetSize)

2: ▷ Concurrent Augmentation of the input frame
3: parallel begin
4: ▷ 1. Base Augmentation: Resize to target size
5: baseFrame←Resize (frame, targetSize)
6: SaveImage (baseFrame, BuildPath (outputBaseDir, ”base”, 

category, frameIndex))
7: ▷ 2. Zoom Augmentation
8: newWidth←frame.width×zoomFactor
9: newHeight←frame.height×zoomFactor
10: zoomedFrame←Resize (frame, (newWidth, newHeight))
11: startX←max (0, (zoomedFrame.width−frame.width)/2)
12: startY←max (0, (zoomedFrame.height−frame.height)/2)
13: croppedFrame←Crop (zoomedFrame, startX, startY, frame.width, 

frame.height)
14: zoomFrame←Resize (croppedFrame, targetSize)
15: SaveImage (zoomFrame, BuildPath (outputBaseDir, ”zoom”, 

category, frameIndex))
16: ▷ 3. Brightness Augmentation
17: brightFrame←ApplyForEachPixel (frame, 

pixel→brightnessFactor×pixel)
18: brightFrame←Resize (brightFrame, targetSize)
19: SaveImage (brightFrame, BuildPath (outputBaseDir, ”brightness”, 

category, frameIndex))
20: ▷ 4. Horizontal Flip Augmentation
21: hFlipFrame←ApplyForEachPixel (frame, (x, y) → GetPixel 

(frame, (frame.width−1 − x, y)))
22: hFlipFrame←Resize (hFlipFrame, targetSize)
23: SaveImage (hFlipFrame, BuildPath (outputBaseDir, ”h-flip”, 

category, frameIndex))
24: ▷ 5. Vertical Flip Augmentation
25: vFlipFrame←ApplyForEachPixel (frame, (x, y) → GetPixel 

(frame, (x, frame.height−1 − y)))
26: vFlipFrame←Resize (vFlipFrame, targetSize)
27: SaveImage (vFlipFrame, BuildPath (outputBaseDir, “v flip”, 

category, frameIndex))
28: parallel end
29: end procedure

illustrated in Fig. 3. This pooling procedure reduces overall 
dimensionality while maintaining important information 
required for effective modeling and helps prevent overfitting 
by lowering the number of parameters sent to the subsequent 
layers.
Block 2: Temporal modeling

Temporal modeling focuses on identification of sequential 
patterns across frames, which is essential for detecting 
inconsistencies that arise over time. After the extraction of 
spatial features, three successive Bi-LSTM layers analyze the 
pooled feature vectors derived from Block 1. The first Bi-
LSTM layer has 128 units and employs a dropout rate of 0.3, 
maintaining temporal dependencies throughout the sequence. 
The subsequent Bi-LSTM layer, including 64 units and same 
dropout rate, enhances these temporal features. Finally, a third 
Bi-LSTM layer containing 32 units aggregates the temporal 
information into a compact representation, as illustrated in 
Fig. 3. By modeling how features evolve across frames, this 
block learns dynamic signs of forgery that a single frame 
cannot reveal.
Block 3: Dense layers and output

The dense layers integrate spatial and temporal abstractions 
into higher-level representations for the final decision. 
After the Bi-LSTM layers, the network applies a fully 
connected layer with 512 neurons and a ReLU activation to 
learn complex interactions suggestive of deepfake artifacts. 
A dropout layer with rate 0.4 follows further reducing 
overfitting. The final output is produced by a single neuron 
with a sigmoid activation, yielding a probability that 
indicates whether the input video is authentic or manipulated, 
as illustrated in Fig. 2.

Equation (1) is the mathematical definition of the sigmoid 
activation function.

( ) 1
1 −σ =
+ xx

e
 (1)

Fig. 1. Frame Sequence Generation Process using Sliding Window Approach, with n representing the number of frames in a video.
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Fig. 2. Spatio-temporal intelligent deepfake detector model architecture.

Fig. 3. STIDD block 1 layers.

F. Training method
Meticulous design of training processes is essential for 

a model to capture significant features and then generalize 
to new, unseen data. In this work, we employ a custom 
data pipeline alongside meticulous hyperparameter tuning, 
aiming to boost the model’s learning capacity and improve 
convergence reliability. Training was carried out using 
a batch size of 64, selected to optimize computational 
efficiency while ensuring convergence stability. We used the 
Adam optimizer, which adapts learning rates dynamically 
and handles sparse gradients effectively, with an initial 
learning rate of 0.0001 and minimum learning rate of 1 × 
10‐‐. Binary cross-entropy served as the loss function, which 
is the negative average of the log of corrected predicted 
probabilities, aligning with the binary classification objective 
of distinguishing between genuine and altered videos. The 
binary cross-entropy loss utilized in the training process is 
mathematically defined as (2):

·
( )

·

1

1 log 1 log 1
=

    
= − + − −    

    
∑

N

i i i i
i

L y y y y
N  

(2)

where yi represents the actual label and yi is the expressed 
probability for the i-th sample.

Training proceeded for up to 20 epochs, during which we 
monitored validation loss to prevent overfitting. Specifically, 
we implemented an early stopping criterion that halted 
training if the validation loss did not improve for five 
consecutive epochs.

G. Assessment Metrics
True Positive (TP), True Negative (TN), False Positive 

(FP), and False Negative (FN) are the numbers of real video 
sequences correctly detected as real video sequences, fake 
video sequences correctly detected as fake video sequences, 
fake video sequences detected as real video sequences, and 
true video sequences detected as false video sequences, 
respectively. The binary cross-entropy loss function is used 
to quantify the error between the predicted probabilities and 
the actual binary labels, calculated using equation (2)

Equation (3) measures model accuracy as the percentage 
of accurate predictions.

+
=

+ + +
TP TNAccuracy

TP TN FP FN  (3)

Precision (Pr) is the ability to properly foresee an event 
or process result. It is usually the proportion of model or 
algorithm predictions that are right, calculated using (4).
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=
+

TPPrecision
TP FP  (4)

Recall (Re) in machine learning is the capacity of a model 
to accurately identify all instances of a class in a dataset. It 
is usually calculated as a ratio of TP predictions (properly 
recognized class instances) to the dataset’s total class 
instances, calculated using (5).

=
+
TPRecall

TP FN  (5)

The F1 score measures machine learning model 
performance. Take the harmonic mean of accuracy and recall. 
Higher F1 scores imply greater model performance, with 1 
being optimum, calculated using (6).

1 2 ×
= ×

+
Precision RecallF Score
Precision Recall  (6)

IV. Experiments And Results
This section showcases the carried-out tests to assess the 

performance and efficiency of the STIDD model, addresses 
the training results and evaluation criteria, the capabilities of 
the model, and a comparative study with other contemporary 
architectures. The goal is to show that the suggested method 
is highly accurate while keeping minimal computational cost, 
thereby fitting for efficient deepfake detection.

A. Training Results and Evaluation
The model was trained on sequences of 2 frames produced 

by a sliding window approach with a stride of 1 frame during 
training. Using the Adam optimizer with a learning rate of 
0.0001 and a batch size of 64 the model training executed 
over the 20 epochs. The training logs demonstrate quite 
continuous improvement throughout the course of the 20 
epochs, as illustrated in Fig. 4.

For instance, as demonstrated from Table II in Epoch 1, 
the training loss was 0.4124 with 79.7% accuracy, while 
the validation loss dropped to 0.2653, yielding 88.43% 
validation accuracy. By Epoch 5, the training loss decreased 
to 0.1213 (95.15% accuracy) and validation loss fell to 

0.1125 (95.57% accuracy). Progress continued steadily: 
at Epoch 10 the model achieved 98.97% training accuracy 
(loss 0.0275) and 98.82% validation accuracy (loss 0.0333). 
By Epoch 15, training accuracy reached 99.55% (loss 
0.0118) and validation accuracy was 99.37% (loss 0.0209). 
The highest validation accuracy occurred at Epoch 20, 
with 99.52% accuracy (validation loss 0.0193) and 99.79% 
training accuracy (loss 0.0056). Although minor fluctuations 
appeared in the later epochs, the parameters corresponding 
to the lowest validation loss (Epoch 20) were retained for 
testing, ensuring optimal generalization.

The evaluation on the test set yielded a loss of 0.0202 
and accuracy of 99.51%, demonstrating the effectiveness 
of our spatio-temporal design across all five FF++ subsets. 
The detailed classification report from Table III shows 
precision, recall, and F1-score all at approximately 0.99 for 
both real and manipulated classes, indicating balanced and 
robust performance. These exceptional findings validate that 
the integration of transfer learning, robust spatial feature 
extraction, excellent temporal modeling, and extensive data 
augmentation constitutes a high-performance detection system.

B. Ablation Experiment
To assess the contributions of temporal modeling and data 

augmentation, we evaluated STIDD against two variants of 
the EfficientNetV2-B0 backbone trained on the same dataset. 
The first variant omits augmentations, while the second 
applies our full augmentation pipeline. The backbone variants 
exhibited clear signs of overfitting: validation accuracy 
fluctuated dramatically across epochs and never approached 
the performance seen on the training set, as illustrated in 
Fig. 5. By contrast, STIDD with its Bi-LSTM layer avoids 
overfitting and maintains strong generalization.

As shown in Table IV, although both EfficientNetV2-B0 
variants achieve only 73.45% (no augmentation) and 78.61% 
(with augmentation) test accuracy, whereas STIDD reaches 
99.51%. These results confirm that the Bi-LSTM temporal 
fusion in STIDD not only enhances accuracy but also 

TABLE II
Selected Training Metrics Across Epochs

Epoch Training 
loss

Training accuracy 
(%)

Validation 
loss

Validation accuracy 
(%)

1 0.4124 79.7 0.2653 88.43
5 0.1213 95.15 0.1125 95.57
10 0.0275 98.97 0.0333 98.82
15 0.0118 99.55 0.0209 99.37
20 0.0056 99.79 0.0193 99.52

Fig. 4. Spatio-temporal intelligent deepfake detector training 
performance over 20 epochs.

TABLE III
STIDD Classification Report (Full FF++Test Set)

Class Precision Recall F1-score
Real 0.99 1.0 0.99
Fake 1.0 0.99 0.99
Accuracy 0.99
Macro average 0.99 0.99 0.99
Weighted average 0.99 0.99 0.99
STIDD: Spatio-temporal intelligent deepfake detector
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TABLE V
Comparison of STIDD with other SOTA Models (Same Device and 

Dataset)

Model Parameters 
(M)

Accuracy 
(%)

GFLOPs Inference time 
(ms)

STIDD (ours) 7.6 99.51 0.392 39
EfficientNetV2-B0 7.1 78.61 0.72 45
EfficientNetV2-S 21.5 89.22 8.40 134
MobileNetV3-Large 5.4 71.13 0.22 31
STIDD: Spatio-temporal intelligent deepfake detector

Fig. 5. Training and validation accuracy for EfficientNetV2-B0 baselines.

TABLE IV
Ablation Comparison of STIDD: Impact of Temporal Modeling and 

Augmentation

Model Parameters 
(M)

Accuracy 
(%)

GFLOPs

STIDD (with Augmentation) 7.6 99.51 0.392
EfficientNetV2-B0 (no augmentation) 7.1 73.45 0.728
EfficientNetV2-B0 (with augmentation) 7.1 78.61 0.728
STIDD: Spatio-temporal intelligent deepfake detector

TABLE VI
Comparison of Recent Deepfake Detection Methods on the 

FaceForensics++

Model Parameters 
(M)

Accuracy 
(%)

GFLOPs

STIDD (ours) 7.6 99.51 0.392
CNNs-Ensemble (Alrajeh and 
Al-Samawi, 2025)

25.0 95.53 5.0

ViT_CNNs-Ensemble (Alrajeh and 
Al-Samawi, 2025)

99.7 97.25 20.8

SCViTDW (Li, Zhou and Zhao, 2024) 89.0 99.23 5.9
TALL-Swin (Xu, et al., 2023) 86.0 98.65 47.5
ISTVT (Zhao, et al., 2023) N/A 99.00 455.8
DepthFake (Maiano, et al., 2023) N/A 93.00 9.218
DeepFakeNet (Gong, et al., 2021) 10.87 96.69 2.05
STIDD: Spatio-temporal intelligent deepfake detector

mitigates overfitting, and that the model’s lower FLOPs stem 
from its smaller input resolution.

C. Comparative Analysis
The performance and efficiency of STIDD were 

benchmarked against three lightweight architectures trained 
and evaluated under identical conditions (same hardware, 
dataset splits, and preprocessing). Table IV summarizes 
each model’s parameter count, test accuracy on full FF++, 
computational cost (GFLOPs), and inference time on a single 

Intel Core Ultra 3 CPU.
As shown in Table V, STIDD attains the highest accuracy 

(99.51%) with only 7.6 M parameters. Its 0.392 GFLOPs 
footprint and 39 ms inference time on the Core Ultra 3 CPU 
demonstrate that the spatio-temporal design is not only more 
accurate than EfficientNetV2-B0 (78.61% at 0.72 GFLOPs) 
and MobileNetV3-Large (71.13% at 0.22 GFLOPs) but also 
highly efficient compared to EfficientNetV2-S (89.22% at 
8.40 GFLOPs, 134 ms).

To contextualize STIDD within the broader literature, we 
compared it to several recent deepfake detection methods 
that report full FF++ metrics. Table V lists each method’s 
published parameter count, test accuracy on FF++, and 
GFLOPs. Where a paper did not explicitly state one of these 
values, “N/A” is shown.

As shown in Table VI, STIDD achieves the highest 
accuracy (99.51%) with only 0.392 GFLOPs, making it both 
the most accurate and the most efficient among the compared 
methods. For example, SCViTDW attains 99.23% accuracy 
but requires 89 M parameters and 5.9 GFLOPs, while 
TALL-Swin reaches 98.65% with 86 M parameters and 47.5 
GFLOPs. Other models, such as DeepFakeNet (96.69%, 2.05 
GFLOPs) and DepthFake (93.00%, 9.218 GFLOPs) trade 
efficiency for lower accuracy.

V. Challenges and Limitations
While STIDD demonstrates strong performance on the 

FF++ dataset, its evaluation remains limited to this single 
synthetic benchmark. Its generalizability across different 
benchmarks such as Celeb-DF or DFDC has yet to be 
established, and cross-dataset validation is necessary to assess 
robustness against unseen manipulation methods. In addition, 
although STIDD integrates spatial and temporal features 
efficiently, further reductions in parameter count could 
enhance adaptability for extremely constrained environments.

VI. Conclusion
This study introduces an efficient spatio-temporal deep 

learning model for deepfake detection, achieving 99.51% 
accuracy on the full FF++ dataset (all five subsets). The 
proposed framework combines spatial feature extraction 
through a pre-trained EfficientNetV2-B0 backbone with 
temporal modeling through Bi-LSTM layers. A detailed 
classification report demonstrates that precision, recall, and 
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F1-score are all approximately 0.99, confirming that STIDD 
effectively distinguishes genuine from manipulated videos. 
By using just 7.6 M parameters and 0.39 GFLOPs, STIDD 
maintains computational efficiency without compromising 
accuracy. Compared to recent methods that often require tens 
of millions of parameters or dozens of GFLOPs, our approach 
strikes a practical balance between performance and resource 
usage. Future work will explore additional architectural 
refinements and efficient inference strategies, as well as broader 
evaluations on other datasets to enhance robustness and 
generalizability in the face of evolving deepfake techniques.
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