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Abstract — Contactless payment cards are vulnerable to fraud 
when lost or stolen, as they rely solely on possession rather than 
identity verification. Existing biometric solutions cannot address 
the constraints of smart cards: Limited processing power, limited 
memory, and low-resolution capacitive sensors. This paper presents 
a hybrid fingerprint authentication system combining Cross-
Number minutiae extraction with speeded-up robust features 
(SURF). The proposed mixed-processing strategy extracts minutiae 
from enhanced images for structural matching while processing 
SURF from original images for noise robustness. Template-based 
storage reduces memory requirements while preventing fingerprint 
reconstruction. Evaluation on FVC2000-DB2 and FVC2002-
DB3 shows the hybrid method achieves 70% accuracy with false 
acceptance rate 0.40, false rejection rate 0.22, and 3-s processing 
time, meeting ISO/IEC 14443 standards. Compatible with standard 
500 dpi capacitive sensors, the system balances fraud protection 
with user convenience for contactless transactions, demonstrating 
that biometric authentication can be effectively deployed on 
resource-constrained smart cards.

Index Terms—Biometric authentication, Capacitive 
fingerprint sensors, Contactless payment, Fingerprint 
recognition, SURF features.

I. Introduction
With the advancement of digital payment technologies and 
increasing demand for secure digital transactions, biometric 
authentication has become a vital component of financial 
security systems. Biometric authentication provides reliable 
identity verification through unique physical traits that cannot 
be forgotten, stolen, or easily compromised, unlike PINs or 
passwords (Estrela et al., 2021; Nilsson, 2021).

Contactless payment systems have revolutionized 
the financial sector in recent years by facilitating swift 
transactions through Radio Frequency Identification (RFID) 
technology (Mogaji and Nguyen, 2024). These systems 

retain traditional banking card functions while removing 
the need for physical contact, PINs, or signatures for low-
value transactions, making them an essential part of modern 
banking infrastructure. However, the same features that make 
contactless cards convenient also pose risks and opportunities 
for fraud if cards are lost or stolen. Therefore, protecting 
contactless cards against fraud remains crucial.

Integrating biometric technologies into contactless 
payment systems offers a promising solution to these security 
concerns (Magdum, Sivaraman and Honnavalli, 2021). 
Fingerprint recognition is the most well-established method 
due to its unique patterns, making it highly suitable for 
personal identification.

Nonetheless, existing solutions struggle with noisy, low-
resolution capacitive sensor images (Mohamed Abdul Cader 
et al., 2023), rely on minutiae-based features that fail with 
partial fingerprints (Hendre et al., 2022), and exceed the 
computational constraints of smart cards (Nedjah et al., 2017). 
This paper addresses these gaps through three contributions. 
First, a cross-number (CN)-based minutiae extraction 
method combined with speeded-up robust features (SURF) 
is developed to handle low-quality, partial prints. Second, 
a template-based security architecture is implemented that 
reduces storage requirements while preventing fingerprint 
reconstruction. Third, on-card feasibility is demonstrated with 
an ISO/IEC 14443-compliant Java Card prototype. Finally, a 
comprehensive evaluation has been presented on FVC2000-
DB2 and FVC2002-DB3 datasets, achieving 70% accuracy 
with a false acceptance rate (FAR) of 0.40 on 500 dpi 
capacitive sensors without compromising user convenience.

II. Related Works
The field of fingerprint recognition has made significant 

progress over the past decade, with researchers developing 
various methods to address challenges in accuracy, 
robustness, and computational efficiency. This section 
reviews existing approaches, organized by their primary 
feature-extraction techniques, and highlights the gaps this 
paper aims to address.

A. Minutiae-Based Fingerprint Recognition
Traditional fingerprint recognition systems depend on 

minutiae points, where ridges end or bifurcate. Bojjagani 
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et al. (2023) achieved 92% accuracy with high-quality 
images, but performance declined to 67% on noisy datasets 
(FVC2002 DB3), highlighting the sensitivity of minutiae-
only methods to image quality. The limitation of insufficient 
minutiae in low-quality or partial prints is well documented 
(Bakheet et al., 2022; Suwarno and Santosa, 2019; Hendre 
et al., 2022), emphasising the need for additional features 
beyond minutiae. Lee et al. (2017) combined minutiae with 
correlation techniques, reducing the false rejection rate (FRR) 
to 1.63%. However, the system remained vulnerable to 
impostor matches when ridge patterns contained insufficient 
minutiae, a common issue in small capacitive sensors.

B. Hybrid Approaches: Combining Minutiae with Additional 
Features

Recognising the limitations of focusing solely on minutiae, 
researchers developed hybrid methods that combine multiple 
features. Mathur et al. (2016) integrated global and minutiae 
features using convolutional neural networks, resulting in an 
equal error rate (EER) of 1.87%. Still, they required high-
resolution optical sensors (1000 dpi), which are unsuitable 
for contactless cards. Zhang, Xin and Feng (2019) introduced 
Distinctive Ridge Point features alongside minutiae triangles, 
achieving 80% accuracy; however, their method remained 
sensitive to preprocessing because it still relied on minutiae. 
Castillo-Rosado and Hernández-Palancar (2019) fused 
minutiae with Ridge Shape Features, reducing EER through 
score fusion, but extracting RSF from low-resolution images 
(below 500 dpi) proved difficult for cost-effective capacitive 
sensors used in smart cards.

C. Non-Minutiae Feature Extraction Methods
Non-minutiae approaches provide robustness in poor-

quality conditions. Bae et al. (2018) combined orientation, 
binary gradient patterns, and Gabor HoG descriptors, 
achieving an EER of 0.54–0.66% on the MOLF database; 
however, their performance deteriorated with severely 
distorted images. While Alshehri et al. (2018) utilized ridge 
features (length, count, frequency, and distance) to achieve 
an EER of 0.82% on complete fingerprints, they struggled 
with partial prints, which are common in contactless cards. 
Moreover, Liao and Chiu (2016) combined minutiae with 
ridge counts and global distribution features to achieve 
97.05% accuracy; however, noise and missing minutiae 
significantly reduced the effectiveness of this approach.

D. Contactless Card Security and Biometric Integration
Research on biometric integration for contactless 

banking cards is still limited. Al-Maliki and Al-Assam 
(2022) developed tokenization techniques to enhance EMV 
contactless card security, with a focus on cryptographic 
enhancements rather than biometric authentication. 
Magdum et al. (2021) suggested using wearable devices 
with fingerprint authentication for contactless transactions; 
however, these solutions required external hardware instead 
of card-embedded solutions and did not address ISO/IEC 
14443 compliance or smart card memory limits.

E. Research Gaps and Limitations
The literature identifies ongoing gaps hindering practical 

fingerprint recognition on contactless cards. High-accuracy 
solutions (Mathur et al., 2016; Castillo-Rosado and 
Hernández-Palancar, 2019) depend on high-resolution optical 
sensors (≥500–1000 dpi), but contactless cards only support 
lower-resolution, noisier capacitive sensors. Hybrid methods 
that extract features via minutiae (Zhang, Xin and Feng, 
2019; Alshehri et al., 2018) are fragile, as small sensors 
producing poor-quality images may miss minutiae, leading 
to downstream failures. Many approaches focus on accuracy 
without considering smart-card limitations; extensive pre-
processing or ample template storage exceed available 
computing power and memory. In addition, alignment 
with banking standards (ISO/IEC 14443, EMV) is often 
overlooked, diminishing real-world practicality. Most studies 
lack statistical validation metrics (e.g., confidence intervals, 
ROC curves), limiting the reliability assessment. Presentation 
attack detection (PAD) and template security mechanisms 
remain underexplored in contactless card contexts.

Table I summarizes the key characteristics, methodologies, 
and limitations of the reviewed approaches.

III. Methods
In biometric transactions, fingerprints must be verified and 

authenticated through recognition and matching. Fingerprint 
recognition compares prints to confirm identity (Dong 
et al., 2022). A verification test involves two prints to verify 
identity, whereas an identification test matches a print against 
a database of many to find a match. In a typical biometric 
system, automatic authentication usually involves two stages: 
Enrolment and verification. The biometric authentication 
system used in this study is described in detail in Ibrahim 
and Al-Khalil (2023).

A. Fingerprint Recognition

Fingerprint enhancement
Fingerprint enhancement aims to improve image quality 

with minimal information loss, typically by leveraging 
statistical patterns within fingerprints. Fig.  1 illustrates 
the pre-processing pipeline that transforms raw fingerprint 
images into enhanced binary representations suitable for 
feature extraction (Qi et al., 2022).

Image normalization applies mean-variance adjustment to 
reduce grey-level variations across the fingerprint image while 
preserving ridge-valley structures, ensuring consistent image 
quality under different capture conditions, with desired mean 
and variance values generally set to 100 (Wani et al., 2019). 
Segmentation isolates the region of interest with fingerprint 
ridges from the background using a variance-based method. 
This method divides the normalized image into 16 × 16-pixel 
blocks, and blocks with variance exceeding a threshold 
(Tseg = 100) are marked as the foreground fingerprint area 
(Chen et al., 2023). Ridge orientation estimation is essential 
for enhancing images in the spatial and frequency domains, 
employing gradient-based calculations within overlapping 
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TABLE I
Summary of Fingerprint Recognition Approaches

Study Sensor Type Features Used Dataset EER/Accuracy Key Limitations
Bojjagani et al. (2023) Not specified Minutiae+Neural Networks FVC2002 DB3 67% (noisy data) Degrades significantly with noise
Mathur et al. (2016) Optical (1000 dpi) Minutiae+Global+CNN Custom dataset 1.87% EER Requires high‑end optical sensors
Zhang, Xin and Feng (2019) Optical Minutiae+DRP NIST datasets 21% EER Sensitive to preprocessing errors
Castillo‑Rosado and 
Hernández‑Palancar (2019)

Optical Minutiae+RSF FVC2000/2004 1.2% EER Fails with low‑resolution images

Lee et al. (2017) Capacitive (508 dpi) Minutiae+Segmentation In‑house 1.63% FRR Vulnerable with insufficient minutiae
Bae et al. (2018) Optical/Capacitive Ridge orientation+patterns MOLF 0.54‑0.66% EER Poor performance with distortions
Alshehri et al. (2018) Optical/Capacitive Minutiae+Ridge features FVC2002 0.82% EER Struggles with partial prints
Liao and Chiu (2016) Optical Minutiae+Ridge counts FVC2000 97.05% accuracy Noise reduces effectiveness

16 × 16 windows using Sobel operators to determine local 
orientation angles that guide Gabor filtering (Gupta et al., 
2020). Gabor filter enhancement employs two-dimensional 
filters tuned to local ridge orientations (f = 1/8, σx = σy = 4) to 
enhance ridge-valley structures while reducing noise, treating 
grey levels as sine waves aligned with local ridge orientation 
(Ding and Nan, 2023). Finally, binarization converts the 
enhanced 8-bit grayscale image into a 1-bit binary format 
using locally adaptive thresholding, calculated as the mean 
intensity within 16 × 16 neighborhoods, resulting in a clean 
binary ridge pattern with only zero-  and one-pixel values, 
suitable for later minutiae extraction (Wang et al., 2020).
Feature extraction

Fingerprint matching relies heavily on structural features, 
which determine whether two prints are identical. These 
structures include ridges, core, delta, and valleys (Fig. 2).

Another key fingerprint feature in matching is the minutiae 
points where ridges end or split. Found in every fingerprint, 
minutiae vary in shape and are identified by their location, 
type, and direction of movement (Dong et al., 2022).

This paper focuses on minutiae and SURF feature 
extraction. SURF is implemented for its invariance to 
scaling and geometric variation, which can prove challenging 
when minutiae matching is hindered by poor image quality 
or distortions (Galbally et al., 2020). SURF was selected 
for its computational efficiency and rotation-  and scale-
invariance, which are suitable for capacitive sensors (Bakheet 
et al., 2022), unlike computationally intensive deep learning 
alternatives.
Minutiae feature extraction
•	 Thinning process: The binarized fingerprint image undergoes 

morphological thinning with the Zhang-Suen algorithm to 
create single-pixel-wide ridge skeletons (Keerthana and 
Devi, 2024). This iterative process removes pixels from ridge 
edges while maintaining connectivity and the geometric 
structure.

•	 Minutiae extraction: Minutiae points are identified using the 
CN algorithm, which analyses 8-connected neighborhoods 
around each ridge pixel, as shown in Fig. 3.

CN is the difference between every two adjacent pixels, 
summed and multiplied by half (1).

CN P P
i

i i= −( )
=

+∑0 5

1

8

1
. � (1)

Where Pi represents the binary value of the i-th neighbor 
in clockwise order.
•	 False minutiae removal: Spurious minutiae caused by image 

noise are filtered using geometric constraints:
•	 Minimum distance between minutiae: 10 pixels
•	 Ridge endings near image borders (within 20 pixels) 

are removed
•	 Minutiae pairs with a distance <8 pixels are merged.

•	 Minutiae representation: Each valid minutiae point is 
represented as a feature vector: Mi = (xi, yi, θi, typei)

Fig. 2. Fundamental structural features in fingerprint biometrics.

Fig. 1. Fingerprint preprocessing pipeline for image quality enhancement.
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Where (xi, yi) indicates location, θi represents orientation, 
and typei denotes ending (1) or bifurcation (2)
SURF feature extraction

SURF keypoints were directly extracted from the original 
images (Fig.  4) due to their scale-  and rotation-invariance, 
noise tolerance, and computational efficiency, which are 
suitable for capacitive sensors (Bakheet et al., 2022).

B. Feature Matching and Similarity Computation

Minutiae-based techniques
This method identifies individuals using minutiae data, 

aiming to collect as many points as possible to enhance 
matching and overall accuracy (Ibrahim and Al-Khalil, 2023). 
The minutiae-based method is an effective way to recognize 
fingerprints (Bakheet et al., 2022). Minutiae matching uses 
a point pattern-matching approach with the fast library for 
approximate nearest neighbors (FLANN). For two minutiae 
sets Mtemplate and Mquery, similarity (Simminutiae) is computed 
based on spatial and angular correspondence:
Simminutiae = (Nmatched/max(Nmatched, Nquery)) × Wspatial × Wangular� (2)

Where:
•	 Nmatched is the number of successful paired minutiae;
•	 Wspatial is the spatial proximity weight (distance tolerance: 

20 pixels)
•	 Wangular is the angular similarity weight (orientation tolerance: 

30°

As this paper builds on the work of Huang et al. (2021), 
FLANN was designed and implemented following the same 
approach (Fig. 5).

Non-minutiae-based technique (SURF)
The non-minutiae method SURF is a pattern (or ridge-

feature) matching technique (Yu et al., 2024). Pattern 
matching on poor-quality images focuses on ridge flows 
rather than specific points and compares them to templates 
stored in a database. The downside is that these templates 
occupy a significant amount of space (Yu et al., 2024).

SURF features are matched using FLANN-based k-nearest 
neighbor search with k = 2. The Lowe’s ratio test filters 
reliable matches (Fig. 5):

Matchvalid = distance (best) < 0.7 × distance (second best)� (3)

C. Proposed Matching Model
This paper aims to develop a matching scheme that 

enhances contactless card security by incorporating 
fingerprint identification. Feature matching was integrated 
and verified on a virtual contactless card. Verification pairs 
were processed in parallel, combining minutiae and SURF 
matching scores (Fig. 6).

Fusion weights (Wminutiae = 0.6, WSURF = 0.4) were determined 
through grid search on training data (60% of FVC2002-DB3). 
ROC curve analysis (Fig.  7) identified the ERR at threshold 
0.48, where FAR = FRR ≈ 0.30. The operational threshold was 
set to 0.5 to prioritize user convenience (lower FRR = 0.22) 
while maintaining acceptable security (FAR = 0.40) for low-
to-medium value contactless transactions.

The score calculation phase is followed by max-min 
normalization in Equation (4) (Zhang and Yang, 2023) to 
normalize the scores to the range (0, 1).

Fig. 3. Cross number method for minutiae point detection.

Fig. 4. SURF extraction process for texture-based fingerprint matching.
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The normalized score is then combined using (5) 
(Akintunde et al., 2025) to generate the final similarity score:

 
1

n
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Finally, the combined score is compared with the decision-
making threshold (Fig.  6). If the score surpasses the 
threshold, the individual is authorized; otherwise, they are 
deemed an imposter.

D. Contactless Card
Customers can purchase items or pay for services using 

RFID technology (ISO/IEC 14443 standards), which is a 
highly secure payment method (Shepherd and Markantonakis, 
2024). Communication between card readers and smart cards 
occurs through application protocol data units (APDUs), 
enabling transaction processing and biometric verification. 
The APDU command primarily flows from the reader to the 
card and includes the required 5-byte header. Meanwhile, the 
smart card is in passive mode and merely recognizes APDU 
commands.

Fig. 5. FLANN-based feature matching for similarity score computation.

Fig. 6. Hybrid authentication architecture with score-level fusion.

Fig. 7. ROC curve analysis for FVC2002-DB3 Validation Set. Scenario 4 
(Hybrid Mixed, blue) achieves the highest area under the curve  

(AUC = 0.78), significantly outperforming Scenario 5 (Hybrid Uniform, 
orange, AUC = 0.59) and Scenario 1 (Minutiae Only, red, AUC = 0.50). 

The X mark indicates the EER point at threshold = 0.48, where FAR 
and FRR are balanced. The authentication threshold was set to 0.5 

for implementation efficiency. The grey diagonal represents a random 
classifier baseline (AUC = 0.50).



ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X�

36� http://dx.doi.org/10.14500/aro.12311

E. Java Card
Java Card is widely used in SIM cards and EMV bank 

cards as a smart card platform that runs applets identified by a 
unique Application Identifier (AID) (Al-Maliki and Al-Assam, 
2022). Its object-oriented design facilitates easier development, 
testing, and debugging of smart card applications. This 
paper utilized Java Card for its secure, flexible, and practical 
environment for virtual implementation and testing.

The template-based storage architecture provides 
security by storing only extracted feature vectors (minutiae 
coordinates and SURF descriptors) rather than complete 
fingerprint images, preventing reconstruction. Template 
matching operates entirely within the Java Card’s secure 
element, ensuring raw biometric data never leaves protected 
memory. However, the implementation lacks PAD, leaving 
it vulnerable to sophisticated spoofing attempts using high-
quality fingerprint replicas. Future work should integrate 
lightweight liveness-detection methods, such as perspiration 
analysis or pulse detection, that have been demonstrated on 
capacitive sensors with minimal computational overhead.

Algorithm 1 presents the pseudocode of the hybrid 
fingerprint authentication of the proposed model:

IV. Experiments
The system presented in this paper comprises three applications 

(Fig.  8). The first is a virtual reader, which is used to activate 
the card and communicate with a virtual card using the APDU 
protocol. Second, the application (applet) is a virtual contactless 
card. The third one is the proposed algorithm for fingerprint 
recognition, similarity calculation, and decision authority.

The card’s powered-up command APDU is sent via this 
port to select applets of AID when a command APDU is sent. 
Subsequently, it sends another command APDU containing 
the required funds for the transaction to the debit function.

Fingerprint recognition begins by selecting and matching 
a fingerprint pair from the applet. If the similarity score 
surpasses the threshold, an APDU command is sent to 
process the transaction. Otherwise, the user has three 
attempts to retry. After three failures, the system prompts for 
a PIN. A correct PIN triggers the APDU to the virtual card; if 
incorrect, the card is blocked, as shown in Fig. 9.

All experiments were conducted on a standardized 
computing setup featuring an Intel Core i7-10700K processor 
(3.80 GHz), 32 GB DDR4 RAM, 1 TB NVMe SSD, and 
Windows 10 Pro. The software environment included NetBeans 
IDE 12.6, Java Card 3.0.4 SDK, OpenCV 4.5.3, and jCardSim 
3.0.5 for virtual card simulation. Performance measurements 
employed System.nanoTime() for execution timing, Java 
VisualVM for memory monitoring, and a customized APDU 
testing framework for transaction simulation.

A. Experimental Scenarios
Five scenarios were developed to check and validate the 

proposed matching model. Capacitive sensor images and a 
low number of minutiae are tested in a set of scenarios.
First scenario: Minutiae feature extraction

Scenario 1 utilizes only minutiae features from enhanced, 
thinned images. Enrolment stores minutiae vectors, whilst 
verification compares new extractions against stored 
templates (Fig. 10).
Second scenario: SURF feature extraction

In this scenario, SURF features were utilized without 
image enhancement. During enrolment, keypoint 
descriptors were extracted and stored as a template array; at 
verification, features were re-extracted and matched to the 
template, with similarity scores confirming the claimant’s 
identity (Fig. 11).
Third scenario: SURF feature extraction with enhanced image

In scenario 3, fingerprint recognition utilizes SURF with 
image enhancement (Fig.  12). During enrollment, descriptors 
from the enhanced original image are stored as a template 
vector; during verification, descriptors from the enhanced live 
image are matched to this template to authorize the cardholder.
Fourth scenario: Minutiae – SURF extractions

Scenario 4 tests the best-performing approach: combining 
two types of fingerprint features through parallel processing 
(Fig.  13). The system processes each fingerprint image 
along two separate paths. The first path handles structural 

Fig. 8. Three-component system architecture for contactless card authentication.

Algorithm 1: Hybrid Fingerprint Authentication.
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Fig. 9. Complete transaction workflow with biometric authentication and fallback mechanisms.

features that enhance image quality, thin ridges to single-
pixel width, and then extracts minutiae points (ridge endings 
and splits). The second path handles texture features. The 
system extracts SURF keypoints directly from the original, 
unenhanced image. This mixed-processing strategy exploits 
complementary strengths: minutiae provide precise structural 
matching, while SURF offers robustness when image quality 
degrades. Both processes create separate templates during 
enrolment. In verification, the parallel extraction and matching 
processes generate individual similarity scores, which are then 
combined to make the final authentication decision.
Fifth scenario: Minutiae – SURF extractions

Scenario 5 assesses hybrid performance using consistent 
pre-processing for both feature types, as illustrated in 
Fig.  14. A  unified enhancement pipeline processes input 
images, with the minutiae branch applying thinning and 
extraction to the enhanced image, while the SURF branch 
extracts features from the same enhanced source (pre-
binarization). Both templates are derived from the same 
enhanced images. During verification, the same unified 
pre-processing occurs, followed by parallel extraction 
and score fusion. Unlike Scenario 4, both features rely on 

enhanced rather than mixed processing. The hypothesis 
proposes that uniform processing offers consistency but 
may reduce SURF performance by removing texture 
information.

The proposed method is evaluated across five scenarios, 
with NetBeans used to measure matching and transaction 
times. The accuracy performance is assessed based on:
●	 EER;
●	 FAR;
●	 FRR; and
●	 Matching time.

FAR and FRR are key metrics in biometric security, 
reflecting the trade-off between system security and user 
convenience (Ayeswarya and Singh, 2024). Calculations 
are presented in Ibrahim and Al-Khalil (2023). A  threshold 
of 0.5 is used across all scenarios, where fingerprints 
with 50% or more similarity are considered from the 
cardholder. This threshold was set slightly above the 
EER threshold (0.48) to prioritize user convenience while 
maintaining acceptable security for contactless transactions 
(Andress, 2011).



ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X�

38� http://dx.doi.org/10.14500/aro.12311

V. Results and Discussion
Two well-known fingerprint datasets were used for 

evaluation. FVC2000-DB2 includes 800 images (100 users, 
8 impressions each) captured with a low-cost optical sensor 
at 256 × 364 pixels (500 dpi), stored as 8-bit grayscale 
TIFF files under moderate noise. FVC2002-DB3 features 
800 images (100 users, 8 impressions each) collected using 

a capacitive sensor (Precise Biometrics TouchChip) at 300 
× 300 pixels (500 dpi) in 8-bit grayscale TIFF format. Both 
datasets feature high noise levels, variable image quality, and 
partial fingerprint impressions.

Table II presents authentication accuracy results across 
both datasets and all experimental scenarios. Performance 
assessment reveals significant differences across feature 
extraction methods and datasets, providing insights into 
optimal configuration choices for practical deployment.

As shown in Table II and Fig.  7, all single-feature 
approaches (minutiae-only and SURF-only) achieved 
identical poor performance (50% accuracy) across both 
datasets, indicating a fundamental inadequacy for practical 
authentication applications. Statistical analysis using paired 
t-tests confirmed that the performance difference between 
single-feature and hybrid methods is highly significant 
(p < 0.001), validating the superiority of the fusion 
approach.

Scenario 1 demonstrated severe limitations when applied 
to capacitive sensor data. With FRR = 1.00, the system 
rejected all legitimate users, indicating that insufficient 
minutiae were extracted from noisy, low-resolution images. 
The complete absence of false acceptances (FAR = 0.00) 
was due to the system’s failure to match any fingerprint 
pairs, rather than indicating strong security performance. 
This performance degradation is consistent with previous 
findings that minutiae-based methods struggle with low-
quality images from capacitive sensors (Mohamed Abdul 
Cader et al., 2023).

Fig. 11. Scenario 2: SURF-only authentication on original images.

Fig. 10. Scenario 1: Minutiae-only authentication baseline.

Fig. 12. Scenario 3: SURF authentication with image enhancement.
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In scenarios 2 and 3, SURF features, whether extracted 
from original or enhanced images, consistently performed 
poorly. SURF keypoints alone lack sufficient discriminative 

power for fingerprint authentication at 500 dpi resolution, 
especially given the high noise levels typical of capacitive 
sensors. Moreover, enhancing the images in scenario 3 did 

Fig. 13. Scenario 4: Hybrid authentication with optimized mixed processing (Best Performance).

Fig. 14. Scenario 5: Hybrid authentication with uniform pre-processing.
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TABLE II
Authentication Performance Across Five Scenarios on FVC2000‑DB2 and FVC2002‑DB3 Datasets

Dataset Scenario Feature Approach Accuracy (%) FAR FRR Statistical Significance
FVC 
2000‑DB2

1 Minutiae Only 50.0±2.8 0.00 1.00 Baseline
2 SURF Original 50.0±2.5 0.00 1.00 p=0.94 versus S1
3 SURF Enhanced 50.0±2.6 0.00 1.00 p=0.91 versus S1
4 Hybrid Mixed 60.0±3.1 0.40 0.41 p<0.001 versus S1‑3
5 Hybrid Uniform 57.0±3.4 0.41 0.43 p<0.001 versus S1‑3

FVC 
2002‑DB3

1 Minutiae Only 50.0±2.6 0.00 1.00 Baseline
2 SURF Original 50.0±2.4 0.00 1.00 p=0.96 versus S1
3 SURF Enhanced 50.0±2.7 0.00 1.00 p=0.89 versus S1
4 Hybrid Mixed 70.0±2.3 0.40 0.22 p<0.001 versus S1‑3
5 Hybrid Uniform 54.0±3.8 0.46 0.46 p<0.01 versus S1‑3

Values represent mean±standard deviation from 5‑fold cross‑validation. Scenario 4 (Hybrid Mixed) significantly outperforms single‑feature approaches (p<0.001, paired t‑test).  
S: Scenario. Bold vaalues

TABLE III
Computational Efficiency Analysis of the Proposed System

Process Time 
(seconds)

Performance requirement

Create One Template 
(Enrollment)

1–2 Acceptable (one‑time operation)

1:1 Matching (Authentication) 2 Good (within banking standards)
Complete Transaction 3 Excellent (faster than PIN entry)

not improve SURF performance. The enhancement removes 
texture information critical to SURF descriptors, confirming 
that SURF performs optimally on original images (Bakheet 
et al., 2022).

Scenario 4 achieves the best performance, with accuracy 
rates of 60% (±3.1%) and 70% (±2.3%) for FVC2000-
DB2 and FVC2002-DB3, respectively. The superior 
performance results from complementary feature fusion: 
when minutiae extraction fails due to poor ridge quality, 
SURF features maintain matching ability, and vice versa, 
demonstrating genuine feature interaction rather than mere 
redundancy.

Scenario 5 achieved accuracies of 57.0% (±3.4%) and 
54.0% (±3.8%) on the two datasets. Applying enhancement 
to both feature types appears counterproductive. While 
pre-processing improves images for minutiae extraction, it 
compromises texture patterns on which SURF relies, leading 
to suboptimal performance compared to Scenario 4’s mixed-
processing approach.

Processing time is crucial for contactless transactions 
(Table III). Template creation requires 1–2 s during 
enrolment, which is acceptable for a one-time setup.  1:1 
matching completes in 2 s, with parallel processing of 
minutiae and SURF branches contributing to efficiency. 
Complete transactions require 3 s, demonstrating practical 
viability for contactless banking applications.

The proposed model is compared to those in the literature. 
The achieved accuracy (60–70%) falls significantly short 
of that of state-of-the-art methods, which typically report 
accuracies over 95%. However, a direct comparison requires 
careful consideration of experimental conditions and 
deployment constraints.

Table IV provides a detailed comparison of the proposed 
model with existing fingerprint authentication approaches. 
The achieved accuracy (60–70%) falls short of that of 
state-of-the-art methods (95–99%), but a direct comparison 
requires context. High-accuracy systems employ 1000 dpi 
optical sensors in controlled environments; the proposed 
method targets 500 dpi capacitive sensors in realistic 
noise conditions. Mathur et al. (2016) require high-end 
hardware unsuitable for cards; Bae et al. (2018)’s three-
feature approach would exceed smart card computational 

budgets. The template-based storage in the proposed system 
reduces memory requirements, enabling feasible on-card 
deployment.

Methods by Castillo-Rosado and Hernández-Palancar 
(2019), Alshehri et al. (2018), and Liao and Chiu (2016) rely 
heavily on minutiae-based features, achieving high accuracy 
under optimal conditions but struggling when there are 
insufficient or unclear minutiae points. The proposed hybrid 
approach offers resilience through SURF features that remain 
reliable even when minutiae extraction fails, making it more 
suitable for real-world deployment.

Table V shows that the hybrid approach surpasses the 
methods of Bojjagani et al. (2023) and Shepherd and 
Markantonakis (2024) on FVC2002-DB3, even though this 
study uses the same dataset. Their minutiae-only techniques 
perform poorly in noisy conditions, whereas the proposed 
combined-feature strategy remains robust across varying 
image qualities.

Furthermore, the template-based storage offers significant 
advantages over image-comparison methods, such as those 
presented by Liao and Chiu (2016). Pre-computed templates 
eliminate real-time preprocessing overhead, accelerate 
matching, and enhance security by preventing fingerprint 
reconstruction. Additionally, the proposed fully automated 
process avoids the expert intervention required by Zhang, 
Xin and Feng (2019), ensuring a seamless user experience.

Finally, this evaluation was carried out in simulated 
environments, and real-world performance may differ due 
to terminal malfunctions, card damage, or power limitations. 
Ongoing benchmarking and system optimization remain vital 
for maintaining competitive performance in practical banking 
applications.
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TABLE V
Performance Comparison on FVC2002‑Db3 Capacitive Sensor Dataset

References FRR FAR Accuracy (%)
(Bojjagani et al., 2023) 0.33 0.33 67
(Shepherd and Markantonakis, 2024) 0.7375 0.0 64
Proposed method 0.22 0.4 70

VI. Conclusion and Future Work
This paper introduces a hybrid fingerprint authentication 
system that combines minutiae and SURF features, achieving 
70% accuracy (±2.3%), FAR of 0.40, FRR of 0.22, and 
a processing time of 3 s on 500 dpi capacitive sensors. 
It demonstrates practical feasibility within smart card 
constraints. Template-based storage prevents reconstruction 
while supporting ISO/IEC 14443-compliant deployment. 
Statistical validation (p < 0.001  vs. single-feature methods) 
confirms a significant improvement in performance.

While accuracy (~70%) is lower than laboratory systems 
using 1000 dpi optical sensors (95–99%), the method 
addresses unique contactless card constraints: limited 
processing power, restricted memory, low-resolution sensors, 
and real-time requirements. The system balances security 
with deployment feasibility, providing fraud protection that 
exceeds that of current PIN-less contactless systems while 
maintaining convenience. However, for higher-security 
applications requiring accuracy above 90%, this method 
should be combined with additional authentication factors.

Limitations include a relatively high FAR (0.40), suitable 
for low-to-medium-value transactions, and the absence of 
PAD, leaving it vulnerable to sophisticated spoofing.

Future research should prioritize: (1) Lightweight deep 
learning integration; (2) multimodal biometric integration 
combining fingerprint with finger vein or behavioral 
biometrics; (3) comprehensive field testing; (4) advanced 
template protection through homomorphic encryption; and 
(5) integrating PAD.

This work demonstrates that hybrid fingerprint 
authentication can be effectively integrated into contactless 
cards within practical constraints, establishing a foundation 
for next-generation secure payment technologies.
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