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Abstract — Contactless payment cards are vulnerable to fraud
when lost or stolen, as they rely solely on possession rather than
identity verification. Existing biometric solutions cannot address
the constraints of smart cards: Limited processing power, limited
memory, and low-resolution capacitive sensors. This paper presents
a hybrid fingerprint authentication system combining Cross-
Number minutiae extraction with speeded-up robust features
(SURF). The proposed mixed-processing strategy extracts minutiae
from enhanced images for structural matching while processing
SURF from original images for noise robustness. Template-based
storage reduces memory requirements while preventing fingerprint
reconstruction. Evaluation on FVC2000-DB2 and FVC2002-
DB3 shows the hybrid method achieves 70% accuracy with false
acceptance rate 0.40, false rejection rate 0.22, and 3-s processing
time, meeting ISO/IEC 14443 standards. Compatible with standard
500 dpi capacitive sensors, the system balances fraud protection
with user convenience for contactless transactions, demonstrating
that biometric authentication can be effectively deployed on
resource-constrained smart cards.

Index Terms—Biometric authentication, Capacitive
fingerprint sensors, Contactless payment, Fingerprint
recognition, SURF features.

1. INTRODUCTION

With the advancement of digital payment technologies and
increasing demand for secure digital transactions, biometric
authentication has become a vital component of financial
security systems. Biometric authentication provides reliable
identity verification through unique physical traits that cannot
be forgotten, stolen, or easily compromised, unlike PINs or
passwords (Estrela et al., 2021; Nilsson, 2021).

Contactless payment systems have revolutionized
the financial sector in recent years by facilitating swift
transactions through Radio Frequency Identification (RFID)
technology (Mogaji and Nguyen, 2024). These systems
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retain traditional banking card functions while removing
the need for physical contact, PINs, or signatures for low-
value transactions, making them an essential part of modern
banking infrastructure. However, the same features that make
contactless cards convenient also pose risks and opportunities
for fraud if cards are lost or stolen. Therefore, protecting
contactless cards against fraud remains crucial.

Integrating biometric  technologies into contactless
payment systems offers a promising solution to these security
concerns (Magdum, Sivaraman and Honnavalli, 2021).
Fingerprint recognition is the most well-established method
due to its unique patterns, making it highly suitable for
personal identification.

Nonetheless, existing solutions struggle with noisy, low-
resolution capacitive sensor images (Mohamed Abdul Cader
et al., 2023), rely on minutiae-based features that fail with
partial fingerprints (Hendre et al., 2022), and exceed the
computational constraints of smart cards (Nedjah et al., 2017).
This paper addresses these gaps through three contributions.
First, a cross-number (CN)-based minutiac extraction
method combined with speeded-up robust features (SURF)
is developed to handle low-quality, partial prints. Second,
a template-based security architecture is implemented that
reduces storage requirements while preventing fingerprint
reconstruction. Third, on-card feasibility is demonstrated with
an ISO/IEC 14443-compliant Java Card prototype. Finally, a
comprehensive evaluation has been presented on FVC2000-
DB2 and FVC2002-DB3 datasets, achieving 70% accuracy
with a false acceptance rate (FAR) of 0.40 on 500 dpi
capacitive sensors without compromising user convenience.

II. RELATED WORKS

The field of fingerprint recognition has made significant
progress over the past decade, with researchers developing
various methods to address challenges in accuracy,
robustness, and computational efficiency. This section
reviews existing approaches, organized by their primary
feature-extraction techniques, and highlights the gaps this
paper aims to address.

A. Minutiae-Based Fingerprint Recognition

Traditional fingerprint recognition systems depend on
minutiae points, where ridges end or bifurcate. Bojjagani
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et al. (2023) achieved 92% accuracy with high-quality
images, but performance declined to 67% on noisy datasets
(FVC2002 DB3), highlighting the sensitivity of minutiae-
only methods to image quality. The limitation of insufficient
minutiae in low-quality or partial prints is well documented
(Bakheet et al., 2022; Suwarno and Santosa, 2019; Hendre
et al.,, 2022), emphasising the need for additional features
beyond minutiae. Lee et al. (2017) combined minutiae with
correlation techniques, reducing the false rejection rate (FRR)
to 1.63%. However, the system remained vulnerable to
impostor matches when ridge patterns contained insufficient
minutiae, a common issue in small capacitive sensors.

B. Hybrid Approaches: Combining Minutiae with Additional
Features

Recognising the limitations of focusing solely on minutiae,
researchers developed hybrid methods that combine multiple
features. Mathur et al. (2016) integrated global and minutiae
features using convolutional neural networks, resulting in an
equal error rate (EER) of 1.87%. Still, they required high-
resolution optical sensors (1000 dpi), which are unsuitable
for contactless cards. Zhang, Xin and Feng (2019) introduced
Distinctive Ridge Point features alongside minutiae triangles,
achieving 80% accuracy; however, their method remained
sensitive to preprocessing because it still relied on minutiae.
Castillo-Rosado and Hernandez-Palancar (2019) fused
minutiae with Ridge Shape Features, reducing EER through
score fusion, but extracting RSF from low-resolution images
(below 500 dpi) proved difficult for cost-effective capacitive
sensors used in smart cards.

C. Non-Minutiae Feature Extraction Methods

Non-minutiae approaches provide robustness in poor-
quality conditions. Bae et al. (2018) combined orientation,
binary gradient patterns, and Gabor HoG descriptors,
achieving an EER of 0.54-0.66% on the MOLF database;
however, their performance deteriorated with severely
distorted images. While Alshehri et al. (2018) utilized ridge
features (length, count, frequency, and distance) to achieve
an EER of 0.82% on complete fingerprints, they struggled
with partial prints, which are common in contactless cards.
Moreover, Liao and Chiu (2016) combined minutiae with
ridge counts and global distribution features to achieve
97.05% accuracy; however, noise and missing minutiae
significantly reduced the effectiveness of this approach.

D. Contactless Card Security and Biometric Integration

Research on Dbiometric integration for contactless
banking cards is still limited. Al-Maliki and Al-Assam
(2022) developed tokenization techniques to enhance EMV
contactless card security, with a focus on cryptographic
enhancements rather than biometric  authentication.
Magdum et al. (2021) suggested using wearable devices
with fingerprint authentication for contactless transactions;
however, these solutions required external hardware instead
of card-embedded solutions and did not address ISO/IEC
14443 compliance or smart card memory limits.
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E. Research Gaps and Limitations

The literature identifies ongoing gaps hindering practical
fingerprint recognition on contactless cards. High-accuracy
solutions (Mathur et al., 2016; Castillo-Rosado and
Hernandez-Palancar, 2019) depend on high-resolution optical
sensors (=500-1000 dpi), but contactless cards only support
lower-resolution, noisier capacitive sensors. Hybrid methods
that extract features via minutiae (Zhang, Xin and Feng,
2019; Alshehri et al.,, 2018) are fragile, as small sensors
producing poor-quality images may miss minutiae, leading
to downstream failures. Many approaches focus on accuracy
without considering smart-card limitations; extensive pre-
processing or ample template storage exceed available
computing power and memory. In addition, alignment
with banking standards (ISO/IEC 14443, EMV) is often
overlooked, diminishing real-world practicality. Most studies
lack statistical validation metrics (e.g., confidence intervals,
ROC curves), limiting the reliability assessment. Presentation
attack detection (PAD) and template security mechanisms
remain underexplored in contactless card contexts.

Table I summarizes the key characteristics, methodologies,
and limitations of the reviewed approaches.

III. METHODS

In biometric transactions, fingerprints must be verified and
authenticated through recognition and matching. Fingerprint
recognition compares prints to confirm identity (Dong
et al., 2022). A verification test involves two prints to verify
identity, whereas an identification test matches a print against
a database of many to find a match. In a typical biometric
system, automatic authentication usually involves two stages:
Enrolment and verification. The biometric authentication
system used in this study is described in detail in Ibrahim
and Al-Khalil (2023).

A. Fingerprint Recognition

Fingerprint enhancement

Fingerprint enhancement aims to improve image quality
with minimal information loss, typically by leveraging
statistical patterns within fingerprints. Fig. 1 illustrates
the pre-processing pipeline that transforms raw fingerprint
images into enhanced binary representations suitable for
feature extraction (Qi et al., 2022).

Image normalization applies mean-variance adjustment to
reduce grey-level variations across the fingerprint image while
preserving ridge-valley structures, ensuring consistent image
quality under different capture conditions, with desired mean
and variance values generally set to 100 (Wani et al., 2019).
Segmentation isolates the region of interest with fingerprint
ridges from the background using a variance-based method.
This method divides the normalized image into 16 x 16-pixel
blocks, and blocks with variance exceeding a threshold
(T,, = 100) are marked as the foreground fingerprint area
(Chen et al., 2023). Ridge orientation estimation is essential
for enhancing images in the spatial and frequency domains,
employing gradient-based calculations within overlapping
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TABLE I
SUMMARY OF FINGERPRINT RECOGNITION APPROACHES

Study Sensor Type Features Used Dataset EER/Accuracy Key Limitations
Bojjagani et al. (2023) Not specified Minutiae+Neural Networks FVC2002 DB3  67% (noisy data) Degrades significantly with noise
Mathur et al. (2016) Optical (1000 dpi) Minutiae+Global+CNN Custom dataset 1.87% EER Requires high-end optical sensors
Zhang, Xin and Feng (2019) Optical Minutiae+DRP NIST datasets ~ 21% EER Sensitive to preprocessing errors
Castillo-Rosado and Optical Minutiae+RSF FVvC2000/2004 1.2% EER Fails with low-resolution images
Hernéndez-Palancar (2019)
Lee et al. (2017) Capacitive (508 dpi) Minutiaet+Segmentation In-house 1.63% FRR Vulnerable with insufficient minutiae
Bae et al. (2018) Optical/Capacitive ~ Ridge orientation+patterns MOLF 0.54-0.66% EER  Poor performance with distortions
Alshehri et al. (2018) Optical/Capacitive Minutiae+Ridge features FVC2002 0.82% EER Struggles with partial prints
Liao and Chiu (2016) Optical Minutiae+Ridge counts FVC2000 97.05% accuracy Noise reduces effectiveness
Fingerprint Image
Image Image Ridge Local Ridge : e
Normalization SegmentationH Orientation Frequency Gabor Filter Binarization
\ A / \ /
¥

Enhanced Image

Fig. 1. Fingerprint preprocessing pipeline for image quality enhancement.

16 x 16 windows using Sobel operators to determine local
orientation angles that guide Gabor filtering (Gupta et al.,
2020). Gabor filter enhancement employs two-dimensional
filters tuned to local ridge orientations (f= 1/8, ox = 6y = 4) to
enhance ridge-valley structures while reducing noise, treating
grey levels as sine waves aligned with local ridge orientation
(Ding and Nan, 2023). Finally, binarization converts the
enhanced 8-bit grayscale image into a 1-bit binary format
using locally adaptive thresholding, calculated as the mean
intensity within 16 x 16 neighborhoods, resulting in a clean
binary ridge pattern with only zero- and one-pixel values,
suitable for later minutiae extraction (Wang et al., 2020).

Feature extraction

Fingerprint matching relies heavily on structural features,
which determine whether two prints are identical. These
structures include ridges, core, delta, and valleys (Fig. 2).

Another key fingerprint feature in matching is the minutiae
points where ridges end or split. Found in every fingerprint,
minutiae vary in shape and are identified by their location,
type, and direction of movement (Dong et al., 2022).

This paper focuses on minutiae and SURF feature
extraction. SURF is implemented for its invariance to
scaling and geometric variation, which can prove challenging
when minutiae matching is hindered by poor image quality
or distortions (Galbally et al., 2020). SURF was selected
for its computational efficiency and rotation- and scale-
invariance, which are suitable for capacitive sensors (Bakheet
et al., 2022), unlike computationally intensive deep learning
alternatives.

Minutiae feature extraction

e  Thinning process: The binarized fingerprint image undergoes
morphological thinning with the Zhang-Suen algorithm to
create single-pixel-wide ridge skeletons (Keerthana and
Devi, 2024). This iterative process removes pixels from ridge
edges while maintaining connectivity and the geometric
structure.

Fig. 2. Fundamental structural features in fingerprint biometrics.

e Minutiae extraction: Minutiae points are identified using the
CN algorithm, which analyses 8-connected neighborhoods
around each ridge pixel, as shown in Fig. 3.

CN is the difference between every two adjacent pixels,
summed and multiplied by half (1).

CN=0-5_§(B—BH) (1)

Where P, represents the binary value of the i-th neighbor
in clockwise order.
e False minutiae removal: Spurious minutiae caused by image
noise are filtered using geometric constraints:
e  Minimum distance between minutiae: 10 pixels
e Ridge endings near image borders (within 20 pixels)
are removed
e  Minutiae pairs with a distance <8 pixels are merged.
e Minutiae representation: Each valid minutiae point is
represented as a feature vector: M. = (x,, y,, 0, type))
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Where (x,, y,) indicates location, 6, represents orientation,
and type, denotes ending (1) or bifurcation (2)
SURF feature extraction

SURF keypoints were directly extracted from the original
images (Fig. 4) due to their scale- and rotation-invariance,
noise tolerance, and computational efficiency, which are
suitable for capacitive sensors (Bakheet et al., 2022).

B. Feature Matching and Similarity Computation

Minutiae-based techniques

This method identifies individuals using minutiac data,
aiming to collect as many points as possible to enhance
matching and overall accuracy (Ibrahim and Al-Khalil, 2023).
The minutiae-based method is an effective way to recognize
fingerprints (Bakheet et al,, 2022). Minutiae matching uses
a point pattern-matching approach with the fast library for
approximate nearest neighbors (FLANN). For two minutiae
sets M e and M, . similarity (Sim_. . ) is computed

based on spatial and angular correspondence:
Sim . =(N, . Jmax(N, x W xw.  (2)
minutiae matche angular

matched’ Nquery)) spatial

Where:
® N, a8 the number of successful paired minutiae;
o W is the spatial proximity weight (distance tolerance:

spat{al
20 pixels)
* W is the angular similarity weight (orientation tolerance:

30°

As this paper builds on the work of Huang et al. (2021),
FLANN was designed and implemented following the same
approach (Fig. 5).
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Non-minutiae-based technique (SURF)

The non-minutiac method SURF is a pattern (or ridge-
feature) matching technique (Yu et al, 2024). Pattern
matching on poor-quality images focuses on ridge flows
rather than specific points and compares them to templates
stored in a database. The downside is that these templates
occupy a significant amount of space (Yu et al., 2024).

SUREF features are matched using FLANN-based k-nearest
neighbor search with k = 2. The Lowe’s ratio test filters
reliable matches (Fig. 5):

Match ., = distance (best) < 0.7 x distance (second best)  (3)

C. Proposed Matching Model

This paper aims to develop a matching scheme that
enhances contactless card security by incorporating
fingerprint identification. Feature matching was integrated
and verified on a virtual contactless card. Verification pairs
were processed in parallel, combining minutiac and SURF
matching scores (Fig. 6).

Fusion weights (W . . '=0.6, W ,. = 0.4) were determined
through grid search on training data (60% of FVC2002-DB3).
ROC curve analysis (Fig. 7) identified the ERR at threshold
0.48, where FAR = FRR = 0.30. The operational threshold was
set to 0.5 to prioritize user convenience (lower FRR = 0.22)
while maintaining acceptable security (FAR = 0.40) for low-
to-medium value contactless transactions.

The score calculation phase is followed by max-min
normalization in Equation (4) (Zhang and Yang, 2023) to
normalize the scores to the range (0, 1).

p

Minutiae Points

Enhanced Image H Thinning H Minutiae Extraction H CreateVectorof

Fig. 3. Cross number method for minutiae point detection.

J/ 1- Interest Point Detection

2- Descriptor Computation

| —

3- Feature Vector Normalisation

Fig. 4. SURF extraction process for texture-based fingerprint matching.
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Fig. 5. FLANN-based feature matching for similarity score computation.
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Fig. 6. Hybrid authentication architecture with score-level fusion.
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Fig. 7. ROC curve analysis for FVC2002-DB3 Validation Set. Scenario 4
(Hybrid Mixed, blue) achieves the highest area under the curve
(AUC = 0.78), significantly outperforming Scenario 5 (Hybrid Uniform,
orange, AUC = 0.59) and Scenario 1 (Minutiae Only, red, AUC = 0.50).
The X mark indicates the EER point at threshold = 0.48, where FAR
and FRR are balanced. The authentication threshold was set to 0.5
for implementation efficiency. The grey diagonal represents a random
classifier baseline (AUC = 0.50).

. Si=S
S == Tmin
l Smwc - Smin (4)

The normalized score is then combined using (5)
(Akintunde et al., 2025) to generate the final similarity score:

Weighted,, = ZWiSi (%)
i=1

Finally, the combined score is compared with the decision-
making threshold (Fig. 6). If the score surpasses the
threshold, the individual is authorized; otherwise, they are
deemed an imposter.

D. Contactless Card

Customers can purchase items or pay for services using
RFID technology (ISO/IEC 14443 standards), which is a
highly secure payment method (Shepherd and Markantonakis,
2024). Communication between card readers and smart cards
occurs through application protocol data units (APDUs),
enabling transaction processing and biometric verification.
The APDU command primarily flows from the reader to the
card and includes the required 5-byte header. Meanwhile, the
smart card is in passive mode and merely recognizes APDU
commands.
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E. Java Card

Java Card is widely used in SIM cards and EMV bank
cards as a smart card platform that runs applets identified by a
unique Application Identifier (AID) (Al-Maliki and Al-Assam,
2022). Its object-oriented design facilitates easier development,
testing, and debugging of smart card applications. This
paper utilized Java Card for its secure, flexible, and practical
environment for virtual implementation and testing.

The template-based storage architecture provides
security by storing only extracted feature vectors (minutiae
coordinates and SURF descriptors) rather than complete
fingerprint images, preventing reconstruction. Template
matching operates entirely within the Java Card’s secure
element, ensuring raw biometric data never leaves protected
memory. However, the implementation lacks PAD, leaving
it vulnerable to sophisticated spoofing attempts using high-
quality fingerprint replicas. Future work should integrate
lightweight liveness-detection methods, such as perspiration
analysis or pulse detection, that have been demonstrated on
capacitive sensors with minimal computational overhead.

Algorithm 1 presents the pseudocode of the hybrid
fingerprint authentication of the proposed model:

IV. EXPERIMENTS

The system presented in this paper comprises three applications
(Fig. 8). The first is a virtual reader, which is used to activate
the card and communicate with a virtual card using the APDU
protocol. Second, the application (applet) is a virtual contactless
card. The third one is the proposed algorithm for fingerprint
recognition, similarity calculation, and decision authority.

Algorithm 1: Hybrid Fingerprint Authentication
Input: Query fingerprint image I_query, Stored templates T minutiae, T_SURF
Output: Authentication decision (Accept/Reject

: // Parallel Feature Extraction

: Branch 1 (Minutiae):
I_enhanced ~ Enhance (I_gquery
I_thinned « ZhangSuen(I_enhanced)

1

2

3 // Fig. 1 pipeline
4:

5: M_query ~ ExtractMinutiae(I_thinned

6

5

8

9

// CN algorithm, Eg. 1
M _query - FilterFalseMinutiae (M _query

: Branch 2 (SURF):

: S_query ~ ExtractSURF(I_query) // Original image, Fig. 4
10:
11: // Parallel Matching

12: Sim_minutiae ~ FLANN Match(M_query, T_minutiae) // Eq. 2

13: Sim SURF . FLANN Match(S_query, T_SURF) // Eq. 3

14:

15: // Score Normalization and Fusion

16: Sim_minutiae_norm « MinMaxNorm(Sim_minutiae) // Eq. 4

17: Sim_SURF_norm — MinMaxNorm(Sim_SURF) // Eq. 4

18: Sim _final — 0.6 x Sim minutiae_norm + 0.4 x Sim SURF_norm // Eq. 5
19:

20: // Decision

21: if Sim_final 2 0.5 then

22: return Accept
23: else

24: return Reject
25: end if

Algorithm 1: Hybrid Fingerprint Authentication.
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The card’s powered-up command APDU is sent via this
port to select applets of AID when a command APDU is sent.
Subsequently, it sends another command APDU containing
the required funds for the transaction to the debit function.

Fingerprint recognition begins by selecting and matching
a fingerprint pair from the applet. If the similarity score
surpasses the threshold, an APDU command is sent to
process the transaction. Otherwise, the user has three
attempts to retry. After three failures, the system prompts for
a PIN. A correct PIN triggers the APDU to the virtual card; if
incorrect, the card is blocked, as shown in Fig. 9.

All experiments were conducted on a standardized
computing setup featuring an Intel Core i7-10700K processor
(3.80 GHz), 32 GB DDR4 RAM, 1 TB NVMe SSD, and
Windows 10 Pro. The software environment included NetBeans
IDE 12.6, Java Card 3.0.4 SDK, OpenCV 4.5.3, and jCardSim
3.0.5 for virtual card simulation. Performance measurements
employed System.nanoTime() for execution timing, Java
VisualVM for memory monitoring, and a customized APDU
testing framework for transaction simulation.

A. Experimental Scenarios

Five scenarios were developed to check and validate the
proposed matching model. Capacitive sensor images and a
low number of minutiae are tested in a set of scenarios.

First scenario: Minutiae feature extraction

Scenario 1 utilizes only minutiae features from enhanced,
thinned images. Enrolment stores minutiae vectors, whilst
verification compares new extractions against stored
templates (Fig. 10).

Second scenario: SURF feature extraction

In this scenario, SURF features were utilized without
image enhancement. During enrolment, keypoint
descriptors were extracted and stored as a template array; at
verification, features were re-extracted and matched to the
template, with similarity scores confirming the claimant’s
identity (Fig. 11).
Third scenario: SURF feature extraction with enhanced image

In scenario 3, fingerprint recognition utilizes SURF with
image enhancement (Fig. 12). During enrollment, descriptors
from the enhanced original image are stored as a template
vector; during verification, descriptors from the enhanced live
image are matched to this template to authorize the cardholder.

Fourth scenario: Minutiae — SURF extractions

Scenario 4 tests the best-performing approach: combining
two types of fingerprint features through parallel processing
(Fig. 13). The system processes each fingerprint image
along two separate paths. The first path handles structural

(e (e
Command APDU Check the Fingerprint
Card _— Contactless —_—t Fingerprint
Reader Respond APDU Card Access or Refuse Algorithm
N > : - 4 : N 4

Fig. 8. Three-component system architecture for contactless card authentication.
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Establish Communication and Send APDU Command

I

E

Reader [« — G ard b
Send APDU Respond
Fingerprint :
> Algorithm and |« Select Applet
Debit APDU
No
score of both Send debit |
algorithm >
Threshold AFL
Yes
Yes
Enter PIN
Number

Block Card

Fig. 9. Complete transaction workflow with biometric authentication and fallback mechanisms.

features that enhance image quality, thin ridges to single-
pixel width, and then extracts minutiae points (ridge endings
and splits). The second path handles texture features. The
system extracts SURF keypoints directly from the original,
unenhanced image. This mixed-processing strategy exploits
complementary strengths: minutiae provide precise structural
matching, while SURF offers robustness when image quality
degrades. Both processes create separate templates during
enrolment. In verification, the parallel extraction and matching
processes generate individual similarity scores, which are then
combined to make the final authentication decision.

Fifth scenario: Minutiae — SURF extractions

Scenario 5 assesses hybrid performance using consistent
pre-processing for both feature types, as illustrated in
Fig. 14. A unified enhancement pipeline processes input
images, with the minutiae branch applying thinning and
extraction to the enhanced image, while the SURF branch
extracts features from the same enhanced source (pre-
binarization). Both templates are derived from the same
enhanced images. During verification, the same unified
pre-processing occurs, followed by parallel extraction
and score fusion. Unlike Scenario 4, both features rely on

enhanced rather than mixed processing. The hypothesis
proposes that uniform processing offers consistency but
may reduce SURF performance by removing texture
information.

The proposed method is evaluated across five scenarios,
with NetBeans used to measure matching and transaction
times. The accuracy performance is assessed based on:

e EER;

e FAR;

e FRR;and

e Matching time.

FAR and FRR are key metrics in biometric security,
reflecting the trade-off between system security and user
convenience (Ayeswarya and Singh, 2024). Calculations
are presented in Ibrahim and Al-Khalil (2023). A threshold
of 0.5 is used across all scenarios, where fingerprints
with 50% or more similarity are considered from the
cardholder. This threshold was set slightly above the
EER threshold (0.48) to prioritize user convenience while
maintaining acceptable security for contactless transactions
(Andress, 2011).
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Minutiae
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Enrollment

Extract
Minutiae
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Fig. 10. Scenario 1: Minutiae-only authentication baseline.

Verefication

New
Captured
Image

Extract
SURF
Features

Enrollment

Extract
SURF
Features

Similarity
Score
Checking

Fig. 11. Scenario 2: SURF-only authentication on original images.

V. RESULTS AND DISCUSSION

Two well-known fingerprint datasets were used for
evaluation. FVC2000-DB2 includes 800 images (100 users,
8 impressions each) captured with a low-cost optical sensor
at 256 x 364 pixels (500 dpi), stored as 8-bit grayscale
TIFF files under moderate noise. FVC2002-DB3 features
800 images (100 users, 8 impressions each) collected using

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X
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Fig. 12. Scenario 3: SURF authentication with image enhancement.

a capacitive sensor (Precise Biometrics TouchChip) at 300
x 300 pixels (500 dpi) in 8-bit grayscale TIFF format. Both
datasets feature high noise levels, variable image quality, and
partial fingerprint impressions.

Table II presents authentication accuracy results across
both datasets and all experimental scenarios. Performance
assessment reveals significant differences across feature
extraction methods and datasets, providing insights into
optimal configuration choices for practical deployment.

As shown in Table II and Fig. 7, all single-feature
approaches (minutiae-only and SURF-only) achieved
identical poor performance (50% accuracy) across both
datasets, indicating a fundamental inadequacy for practical
authentication applications. Statistical analysis using paired
t-tests confirmed that the performance difference between
single-feature and hybrid methods is highly significant
(p < 0.001), validating the superiority of the fusion
approach.

Scenario 1 demonstrated severe limitations when applied
to capacitive sensor data. With FRR = 1.00, the system
rejected all legitimate users, indicating that insufficient
minutiae were extracted from noisy, low-resolution images.
The complete absence of false acceptances (FAR = 0.00)
was due to the system’s failure to match any fingerprint
pairs, rather than indicating strong security performance.
This performance degradation is consistent with previous
findings that minutiae-based methods struggle with low-
quality images from capacitive sensors (Mohamed Abdul
Cader et al., 2023).
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New
Captured
Image

Enhance
Image

Thinn
Enhanced
Image

Extract
Minutiae
Features

Similarity
Score of
Minutiae
Features

Verification

Extract
SURF
Features

Similarity
Score of

Enroliment

Extract
SURF
Features

Enhance
Image

Thinn
Enhanced

SURF
Features

Fusion score

Extract
Minutiae
Features
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In scenarios 2 and 3, SURF features, whether extracted
from original or enhanced images, consistently performed
poorly. SURF keypoints alone lack sufficient discriminative

power for fingerprint authentication at 500 dpi resolution,
especially given the high noise levels typical of capacitive
sensors. Moreover, enhancing the images in scenario 3 did
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TABLE II
AUTHENTICATION PERFORMANCE A CROSS FIVE SCENARIOS ON FVC2000-DB2 AND FVC2002-DB3 DATASETS

Dataset Scenario Feature Approach Accuracy (%) FAR FRR Statistical Significance
FVC 1 Minutiae Only 50.0+2.8 0.00 1.00 Baseline
2000-DB2 2 SURF Original 50.0+2.5 0.00 1.00 p=0.94 versus S1

3 SURF Enhanced 50.0+2.6 0.00 1.00 p=0.91 versus S1

4 Hybrid Mixed 60.0+3.1 0.40 0.41 p<0.001 versus S1-3

5 Hybrid Uniform 57.0£3.4 0.41 0.43 p<0.001 versus S1-3
FvC 1 Minutiae Only 50.0+2.6 0.00 1.00 Baseline
2002-DB3 2 SURF Original 50.0+2.4 0.00 1.00 p=0.96 versus S1

3 SURF Enhanced 50.0+2.7 0.00 1.00 p=0.89 versus S1

4 Hybrid Mixed 70.0+2.3 0.40 0.22 p<0.001 versus S1-3

5 Hybrid Uniform 54.0£3.8 0.46 0.46 p<0.01 versus S1-3

Values represent mean+standard deviation from 5-fold cross-validation. Scenario 4 (Hybrid Mixed) significantly outperforms single-feature approaches (p<0.001, paired t-test).

S: Scenario. Bold vaalues

not improve SURF performance. The enhancement removes
texture information critical to SURF descriptors, confirming
that SURF performs optimally on original images (Bakheet
et al., 2022).

Scenario 4 achieves the best performance, with accuracy
rates of 60% (£3.1%) and 70% (£2.3%) for FVC2000-
DB2 and FVC2002-DB3, respectively. The superior
performance results from complementary feature fusion:
when minutiae extraction fails due to poor ridge quality,
SURF features maintain matching ability, and vice versa,
demonstrating genuine feature interaction rather than mere
redundancy.

Scenario 5 achieved accuracies of 57.0% (£3.4%) and
54.0% (£3.8%) on the two datasets. Applying enhancement
to both feature types appears counterproductive. While
pre-processing improves images for minutiac extraction, it
compromises texture patterns on which SURF relies, leading
to suboptimal performance compared to Scenario 4’s mixed-
processing approach.

Processing time is crucial for contactless transactions
(Table III). Template creation requires 1-2 s during
enrolment, which is acceptable for a one-time setup. 1:1
matching completes in 2 s, with parallel processing of
minutiae and SURF branches contributing to -efficiency.
Complete transactions require 3 s, demonstrating practical
viability for contactless banking applications.

The proposed model is compared to those in the literature.
The achieved accuracy (60-70%) falls significantly short
of that of state-of-the-art methods, which typically report
accuracies over 95%. However, a direct comparison requires
careful consideration of experimental conditions and
deployment constraints.

Table IV provides a detailed comparison of the proposed
model with existing fingerprint authentication approaches.
The achieved accuracy (60-70%) falls short of that of
state-of-the-art methods (95-99%), but a direct comparison
requires context. High-accuracy systems employ 1000 dpi
optical sensors in controlled environments; the proposed
method targets 500 dpi capacitive sensors in realistic
noise conditions. Mathur et al. (2016) require high-end
hardware unsuitable for cards; Bae et al. (2018)’s three-
feature approach would exceed smart card computational
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TABLE IIT
COMPUTATIONAL EFFICIENCY ANALYSIS OF THE PROPOSED SYSTEM

Process Time Performance requirement
(seconds)

Create One Template 12 Acceptable (one-time operation)

(Enrollment)

1:1 Matching (Authentication) 2 Good (within banking standards)

Complete Transaction 3 Excellent (faster than PIN entry)

budgets. The template-based storage in the proposed system
reduces memory requirements, enabling feasible on-card
deployment.

Methods by Castillo-Rosado and Hernandez-Palancar
(2019), Alshehri et al. (2018), and Liao and Chiu (2016) rely
heavily on minutiae-based features, achieving high accuracy
under optimal conditions but struggling when there are
insufficient or unclear minutiae points. The proposed hybrid
approach offers resilience through SURF features that remain
reliable even when minutiae extraction fails, making it more
suitable for real-world deployment.

Table V shows that the hybrid approach surpasses the
methods of Bojjagani et al. (2023) and Shepherd and
Markantonakis (2024) on FVC2002-DB3, even though this
study uses the same dataset. Their minutiac-only techniques
perform poorly in noisy conditions, whereas the proposed
combined-feature strategy remains robust across varying
image qualities.

Furthermore, the template-based storage offers significant
advantages over image-comparison methods, such as those
presented by Liao and Chiu (2016). Pre-computed templates
eliminate real-time preprocessing overhead, accelerate
matching, and enhance security by preventing fingerprint
reconstruction. Additionally, the proposed fully automated
process avoids the expert intervention required by Zhang,
Xin and Feng (2019), ensuring a seamless user experience.

Finally, this evaluation was carried out in simulated
environments, and real-world performance may differ due
to terminal malfunctions, card damage, or power limitations.
Ongoing benchmarking and system optimization remain vital
for maintaining competitive performance in practical banking
applications.
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TABLE IV
COMPARATIVE ANALYSIS OF FINGERPRINT AUTHENTICATION METHODS FOR SMART CARD DEPLOYMENT
References Sensor type Resolution Dataset Equal Error Accuracy Deployment
(dpi) Rate % % Constraints
(Mathur et al., 2016) Custom-built 1000 In-house dataset 1.87 98.1 High-end hardware
optical required
(Castillo-Rosado and Optical >500 FVC200, FVC2004, and 1.2 98.8 Processing intensive
Hernandez-Palancar, 2019) BERC databases
(Bae et al., 2018) Optical Not MOLF, Finger-pass 0.54-0.60 99.4 Three-feature
Capacitive specified complexity
(Alshehri et al., 2018) Optical Not FVvC2002 0.82 99.2 Ridge dependency
Capacitive specified
(Liao and Chiu, 2016) Optical Not FVC 2000 DBI, another 2 97.1 Image-to-image
specified is the FPC comparison
Suggested method Capacitive 500 FVC2002 DB3 30 70 ISO/IEC 14443
compliant
TABLE V REFERENCES
PERFORMANCE COMPARISON ON FVC2002-DB3 CAPACITIVE SENSOR DATASET . . .
Akintunde, O.A., Adetunji, A.B., Fenwa, O.D., Oguntoye, J.P., Olayiwola, D.S.,
References FRR FAR Accuracy (%) and Adeleke, A.J., 2025. Comparative analysis of score level fusion techniques
(Bojjagani et al., 2023) 0.33 0.33 67 in multi-biometric system. Journal of Engineering and Technology, 19(1),
(Shepherd and Markantonakis, 2024) ~ 0.7375 0.0 64 pp.128-141.
Proposed method 0.22 0.4 70

VI. CONCLUSION AND FUTURE WORK

This paper introduces a hybrid fingerprint authentication
system that combines minutiae and SURF features, achieving
70% accuracy (£2.3%), FAR of 0.40, FRR of 0.22, and
a processing time of 3 s on 500 dpi capacitive sensors.
It demonstrates practical feasibility within smart card
constraints. Template-based storage prevents reconstruction
while supporting ISO/IEC 14443-compliant deployment.
Statistical validation (p < 0.001 vs. single-feature methods)
confirms a significant improvement in performance.

While accuracy (~70%) is lower than laboratory systems
using 1000 dpi optical sensors (95-99%), the method
addresses unique contactless card constraints: limited
processing power, restricted memory, low-resolution sensors,
and real-time requirements. The system balances security
with deployment feasibility, providing fraud protection that
exceeds that of current PIN-less contactless systems while
maintaining convenience. However, for higher-security
applications requiring accuracy above 90%, this method
should be combined with additional authentication factors.

Limitations include a relatively high FAR (0.40), suitable
for low-to-medium-value transactions, and the absence of
PAD, leaving it vulnerable to sophisticated spoofing.

Future research should prioritize: (1) Lightweight deep
learning integration; (2) multimodal biometric integration
combining fingerprint with finger vein or behavioral
biometrics; (3) comprehensive field testing; (4) advanced
template protection through homomorphic encryption; and
(5) integrating PAD.

This work demonstrates that hybrid fingerprint
authentication can be effectively integrated into contactless
cards within practical constraints, establishing a foundation
for next-generation secure payment technologies.
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