
� ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12344� 75

Evaluating Large Language Models for Arduino
Code Generation

Sardar K. Jabrw and Qusay I. Sarhan†

Department of Computer Science, College of Science, University of Duhok,
Duhok, Kurdistan Region – F.R. Iraq

Abstract—Large language models (LLMs), also known as
generative AI, have transformed code generation by translating
natural language prompts into executable code. Yet, their capabilities
in generating code for resource-constrained devices such as Arduino,
which are used in the Internet of Things and embedded systems,
remained underexplored. This study evaluates six state-of-the-art
LLMs for generating correct, efficient, and high-quality Arduino
code. The evaluation was performed across five dimensions, namely
functional correctness, runtime efficiency, memory usage, code
quality, similarity to human-written code, and multi-round error
correction. The results reveal that ChatGPT-4o achieves the highest
zero-shot functional correctness and aligns closely with human
code in readability and similarity. On the other hand, Gemini 2.0
Flash generates faster-executing code but at the cost of higher code
complexity and lower similarity. DeepSeek-V3 balances correctness
with superior flash memory optimization, whereas Claude 3.5
Sonnet struggles with prompt adherence. Finally, multi-round error
correction improves correctness across all six models. Overall, the
findings underscore that none of the evaluated LLMs consistently
outperforms all evaluation criteria. Hence, model choice must align
with project priorities; as shown, ChatGPT-4o excels in functional
correctness, whereas Gemini 2.0 excels in execution time, and
DeepSeek-V3 in memory efficiency. This study provides a systematic
evaluation of code generated with LLMs for Arduino, which, to
the best of our knowledge, has not been previously studied across
multiple models and performance metrics, thereby establishing a
foundation for future research and contributing to enhancing the
trustworthiness and effectiveness of LLM-generated code.

Index Terms—Large language models, Arduino, Code
generation, Internet of Things, Code performance.

I. Introduction
Large language models (LLMs) have rapidly advanced the
field of code generation by enabling the automatic translation
of natural language prompts into syntactically correct and
executable code (Jiang, et al., 2024). These models have
shown considerable promise in supporting developers with

code generation (Koubaa, et al., 2023) (Sharma, 2024),
documentation (Coello, Alimam and Kouatly, 2024) (Hou,
et al., 2024), debugging (Nazir and Wang, 2023), and code
translation (Rai, et al., 2024). While LLMs have shown
promising results in general-purpose programming languages,
their effectiveness in generating code for resource-constrained
devices such as Arduino remains underexplored.

Arduino is a cheap, low-power, and small-sized computing
device (Nayyar and Puri, 2016). It has been used for over
a decade in a wide range of systems and applications such
as Internet of Things (IoT), robotics, smart homes, and real-
time control, including monitoring systems (Kim, Choi and
Suh, 2020). Arduino is currently one of the most popular
development platforms for prototyping and implementing
IoT systems due to its simplicity, flexibility, affordability, and
large community support (Yusro, Guntoro and Rikawarastuti,
2021). However, these devices have limited computing
power and resources. Therefore, it is essential to program
them efficiently when developing time-critical applications
where every microsecond matters. In addition, efficient
programming helps reduce energy consumption, which is an
essential factor for battery-powered systems used primarily
in IoT and wireless sensor networks. Moreover, optimized
code allows developers to integrate more features and
functionalities without exceeding the device’s constraints.

To better understand the capabilities and limitations
of LLMs for code generation, the study evaluates and
investigates their capabilities in generating correct, efficient,
and high-quality Arduino code. To this end, we evaluate
six state-of-the-art models: ChatGPT-4o, Gemini 2 Flash,
DeepSeek-V3, Claude 3.5 Sonnet, GitHub Copilot, and
LLaMA-3 using 31 subject programs of Arduino coding tasks
covering various aspects of coding capabilities, including
data types, functions, structures, loops, arrays, and more,
with a focus on code performance. We structure our analysis
around five Research Questions (RQs), explained in Section
III, that target the performance of the selected LLMs in terms
of Overall Correctness, Code Performance, Multi-round
Error Correction, Code Complexity, and Code Similarity.
Our evaluation follows recent recommendations for multi-
metric machine learning assessment (Abdullah, et al., 2025),
considering correctness, performance, and complexity.

The results of the study reveal that ChatGPT‑4o and
DeepSeek‑V3 offer a strong balance of correctness,

ARO-The Scientific Journal of Koya University
Vol. XIV, No. 1 (2026), Article ID: ARO.12344. 11 pages
DOI: 10.14500/aro.12344
Received: 11 June 2025; Accepted: 16 November 2025
Regular research paper; Published: 05 February 2026
†Corresponding author’s e-mail: qusay.sarhan@uod.ac
Copyright © 2026 Sardar K. Jabrw and Qusay I. Sarhan. This is
an open access article distributed under the Creative Commons
Attribution License (CC BY-NC-SA 4.0).

https://orcid.org/0009-0006-0411-789X
https://orcid.org/0000-0001-8708-0063

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X�

76� http://dx.doi.org/10.14500/aro.12344

maintainability, and adaptability to iterative refinement,
whereas Gemini 2.0 Flash stands out in raw performance
but at the cost of code readability and alignment with
human coding conventions. In contrast, LLMs such as
Claude 3.5 Sonnet demonstrate the importance of precise
prompt interpretation, and GitHub Copilot, which has been
trained on a large corpus of code, highlights that code-focused
models do not guarantee superior output. The findings
indicate that none of the evaluated LLMs outperform all
evaluation criteria; consequently, trade‑offs among functional
correctness, performance, and code maintainability must be
balanced. The findings inform several real-world applications.
Specifically, automated code generation for resource-
constrained devices such as Arduino is highly relevant to IoT,
enabling rapid prototyping and robotics development, smart
home automation, and industrial control through efficient
and reliable integration of sensors and actuators. Moreover,
the results guide developers in selecting models that balance
code quality and development time, while highlighting
limitations that inform future improvements to enhance the
trustworthiness and effectiveness of LLM-generated code.
The key contributions of this paper are outlined as follows:
•	 A quantitative evaluation of the capabilities of six

leading LLMs in generating Arduino code. To the best
of our knowledge, it is the first study to evaluate LLMs’
performance in generating correct, efficient, and quality
code for Arduino across multiple models and performance
metrics.

•	 The study introduces subject programs consisting of 31
optimized Arduino programs, covering various tasks to
evaluate LLMs across various coding dimensions such as
data types, functions, structures, loops, and arrays, focusing
on code performance. The subject programs are publicly
available on GitHub1.

•	 It also contributes to advancing the potential knowledge and
understanding capabilities of LLMs in improving automated
code generation, with a particular focus on Arduino code
generation, and establishing a foundation for future research
in this swiftly developing field.

The organization of this paper is structured as follows:
Section II presents an overview of the key related works.
Section III describes the research methodology. Section IV
presents the study’s results and findings. Section V provides
a discussion across different directions. Finally, the study’s
conclusions are provided in Section VI.

II. Related Works
This section briefly reviews the most relevant literature

publications on the topic, and Table I summarizes them.
The authors (Petrovic, Konicanin and Suljovic, 2023)
explored the application of ChatGPT in embedded systems
by integrating it with the Arduino platform. They conducted
two case studies: They first used ChatGPT to perform

1	 https://github.com/LLMsRes-ch/arduino-subject-programs/

classification tasks on sensor data collected through
Arduino, and they secondly employed ChatGPT to generate
template code for typical Arduino use cases automatically.
The study highlighted ChatGPT’s potential to accelerate
development, though limitations in context retention and
code correctness were noted. However, their work is limited
to a single model (ChatGPT) and a small number of case
studies, lacking the systematic, multi-model, and multi-
metric comparative analysis required to understand the
broader landscape of LLM capabilities for this domain.
The authors (Su, et al., 2023) proposed a comprehensive
evaluation framework to evaluate the code generation
capabilities of LLMs, focusing on six dimensions: validity,
correctness, complexity, reliability, security, and readability.
They introduced the LLMC dataset, consisting of 45 Python-
based coding problems, and applied it to four LLMs.
Similarly, authors (Bucaioni, et al., 2024) conducted an
empirical study to evaluate ChatGPT’s capability in solving
general programming problems using C++ and Java. They
created a dataset covering various categories and difficulty
levels, and through a structured experimental setup, they
evaluated the correctness, runtime efficiency, and memory
usage of ChatGPT-generated solutions, comparing them to
those produced by human programmers. Moreover, authors
(Miah and Zhu, 2024) evaluated ChatGPT’s effectiveness
as an R code generation tool using a user-centric approach.
They evaluated code quality (accuracy, readability, and
conciseness) and user experience. ChatGPT showed strong
performance in generating accurate and readable code
with clear explanations, but scored lower on conciseness.
In a more recent study, authors (Palla and Slaby, 2025)
conducted a comparative study evaluating LLMs for Python
code generation. Their framework evaluated models such
as OpenAI’s GPT series, Google’s Gemini, Meta’s LLaMA,
and Anthropic’s Claude across 10 programming tasks of
varying complexity, with evaluation criteria including syntax
correctness, accuracy, reliability across multiple iterations,
response time, cost, and exception handling. While these
studies provide valuable methodologies for evaluating code
quality, their focus on general-purpose languages such as
Python, Java, and R means their findings are not directly
transferable to the unique constraints of resource-constrained
IoT devices, where memory usage and execution speed are
critical. The authors (Kok, Demirci and Ozdemir, 2024)
examined the integration of IoT and LLMs, outlining key
applications in smart homes, healthcare, transportation,
manufacturing, and environmental monitoring. They
highlighted how LLMs enhance IoT systems through natural
language interfaces and improved decision-making. The
paper also addressed challenges such as resource limitations,
latency, and privacy concerns, and suggested edge-cloud
collaboration and model optimization as potential solutions.
However, their work remains conceptual, outlining challenges
like resource limitations without offering an empirical
evaluation of code generation for resource-constrained IoT
devices. The authors (DeLorenzo, Gohil and Rajendran,
2024) proposed CreativEval, a framework for assessing the
creativity of LLM-generated HDL (Hardware Description

� ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12344� 77

Language) code, focusing on novelty and functionality. They
evaluated solutions across diverse hardware design tasks
and benchmarked responses from multiple LLMs, including
ChatGPT and Code Llama. Their work demonstrates
potential but is limited to only two LLMs, GPT-3 and GPT-4.
Similarly, authors (Paul, Zhu and Bayley, 2024) introduced
ScenEval, a benchmark tailored for scenario-based evaluation
of the generated code. ChatGPT was evaluated on the
benchmark using a range of metrics, including functional
correctness, cyclomatic complexity, cognitive complexity,
and the average number of attempts. However, their
evaluation is also limited to a single LLM and focuses on
general-purpose Java programming. Consequently, it lacks
systematic, multi-model comparative analysis and does not
address critical performance constraints – such as execution
time. Recently, authors (Shuvo, et al., 2025) conducted
an empirical study evaluating ChatGPT’s code generation
performance using several datasets. Their analysis revealed
that ChatGPT achieved high accuracy on concise problem
descriptions, whereas performance dropped significantly

on narrative-driven problems, highlighting challenges in
problem recognition and strategic planning under extended
contexts. They further explored multiple programming
languages (Python and C++), iterative prompting, and
targeted feedback loops, demonstrating limited improvements
in accuracy and efficiency through error-driven refinement.
Despite these contributions, their work remains limited to a
single LLM (ChatGPT-4) and focused primarily on accuracy
and runtime performance. Broader aspects such as memory
consumption and systematic multi-model comparisons
remain unaddressed. Beyond code generation, recent research
has explored enhancing LLMs for specialized tasks through
improved prompting. For instance, authors (Liu, et al.,
2024) conducted an empirical study on guiding ChatGPT
for improved code generation using prompt engineering
techniques. They evaluated ChatGPT’s performance on two
tasks – text-to-code and code-to-code generation – using the
widely adopted CodeXGlue benchmark. Their methodology
applied chain-of-thought (CoT) prompting and multi-step
optimizations, exploring factors such as prompt specificity,

TABLE I
Summary of Related Works on Large Language Models (LLMs) for Code Generation

Paper Target languages Models evaluated Datasets used Prompting types Metrics/Methods used
(Mirjalili, et al.,
2025)

N/A LLaMA‑7B with custom
adapters+MRP layers

GSM8K, MMLU,
ScienceQA,
Alpaca‑52K,
HotpotQA,
LVLM‑eHub

Meta‑Reasoning Prompting
(MRP).

Accuracy, Params, Training time,
Strategy Switch Rate, BLEU@4,
CIDEr

(Kok, Demirci and
Ozdemir, 2024)

N/A GPT, LLaMA, Claude,
Gemini, Mistral, BERT
(reviewed).

N/A (Literature
Review)

Survey of prompting
strategies.

Accuracy, latency, memory, power
(reviewed).

(Su, et al., 2023) Python ChatGPT, Claude, Spark,
Bing AI

LLMC Dataset (45
tasks).

Manual Standard/
Template‑Based Prompting.

Validity, Correctness (pass rate),
Complexity, Reliability/Security,
Readability

(Shuvo, et al., 2025) C++, Python ChatGPT (GPT‑4). LeetCode (102
tasks), Codeforces
(150 tasks)

Few‑Shot+Iterative/
Multi‑Round Prompting.

Accepted, Wrong Answer, Time
Limit Exceeded, Runtime Error,
Memory Limit Exceeded, Compile
Error.

(Palla and Slaby,
2025)

Python GPT series, Gemini series,
LLaMA 3, Claude 3 series

10 custom coding
tasks of varying
complexity.

Standard/Template‑based
Prompting.

Syntax, Completeness, Response
Time, Accuracy, Reliability,
Exception‑handling, Cost, Efficiency

(Bucaioni, et al.,
2024)

C++, Java ChatGPT (GPT‑4). LeetCode (240 tasks) Efficiency/Conciseness
Prompts.

Correctness, Runtime Efficiency,
Memory Usage

(Liu, et al., 2024) Java, C# ChatGPT (GPT‑3.5‑Turbo). CodeXGlue Structured
CoT+Template‑Based
Prompting

BLEU, CodeBLEU

(Petrovic, Konicanin
and Suljovic, 2023)

Arduino ChatGPT (GPT‑4). Two Arduino case
studies.

In‑Context/Zero‑Shot
Prompting.

Prediction time, Context size,
Accuracy, Code gen time, Compile
errors

(Paul, Zhu and
Bayley, 2024)

Java ChatGPT. ScenEval dataset Zero‑Shot Prompting. Pass@1, Avg Pass, Complexity
(cyclomatic, cognitive, LOC)

(Miah and Zhu,
2024)

R ChatGPT. R programming tasks
(351).

Iterative/Multi‑Round
User‑Centric Prompting.

Usability attributes (Acc,
Completeness, Conciseness,
Readability, etc.), Attempts,
Completion time

(DeLorenzo, Gohil
and Rajendran, 2024)

Verilog GPT‑3.5, GPT‑4,
CodeLlama, VeriGen

HDLBits Structured/
Creativity‑Oriented
Prompting

Fluency, Flexibility, Originality,
Elaboration, Functionality, GNN4IP
similarity

This Work Arduino ChatGPT‑4o, Gemini 2.0
Flash, DeepSeek‑V3,
Claude 3.5 Sonnet, GitHub
Copilot, LLaMA‑3

31
performance‑focused
Arduino programs.

Zero‑Shot/Role‑Based
Prompting.

Syntactic and Functional correctness,
Execution time, SRAM, Flash
Memory, Multi‑round Error
Correction, Cyclomatic Complexity,
NCLOC, CodeBLEU.

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X�

78� http://dx.doi.org/10.14500/aro.12344

conciseness, session settings, and generation randomness.
Similarly, authors (Mirjalili, et al., 2025) integrated meta-
reasoning prompting with adapter methods to boost the
efficiency and task-adaptive reasoning of models such as
LLaMA in multi-modal contexts. Their work underscores the
importance of sophisticated prompt design and model fine-
tuning for specialized domains, a consideration that aligns
with the challenges of generating efficient code for resource-
constrained environments.

While previous studies have investigated LLMs for
general-purpose programming or domain-specific code
generation (e.g., Python), and some have explored basic
integrations with Arduino, none have systematically
evaluated LLMs for Arduino code generation. Unlike prior
research, which focused on single models, limited task types,
or a narrow set of metrics, our work provides a comparative
analysis of six state-of-the-art LLMs across 31 performance-
focused Arduino coding tasks. Beyond functional correctness,
we measure execution time, memory usage, code complexity,
and code similarity to reference code. Our findings reveal
each model’s trade‑offs between speed, efficiency, and
maintainability, contributing to improvements in the
reliability and efficiency of LLMs for code generation in
resource-constrained applications.

III. Methodology
The methodology employed in this study consists of seven

steps: identifying research questions, preparing the subject
programs, selecting LLMs, defining evaluation metrics,
prompting the models to generate codes, testing codes,
and analyzing the results to evaluate LLMs’ capabilities in
generating correct, efficient, and high-quality Arduino codes,
with each step described in detail in the following sections.

A. RQs
Several RQs have been identified and addressed in this study,

each focusing on a specific aspect of the topic as follows.
•	 RQ1 (Overall Correctness): Is the code generated by LLMs

syntactically and functionally correct?
•	 RQ2 (Code Performance): How efficient is the generated

code in terms of runtime and memory usage?
•	 RQ3 (Multi-round Error Correction): Can iterative

prompting improve the correctness of initially incorrect
code?

•	 RQ4 (Code Complexity): Does the generated code reflect
the same level of complexity as code written by human
developers?

•	 RQ5 (Code Similarity): How similar is the generated code
to the original developer-implemented code?

B. Subject Program Preparation
The subject programs, consisting of 31 optimized Arduino

programs, were constructed using coding examples from the
official Arduino reference website2 to cover all programming

2	 https://www.arduino.cc/reference/en/

constructions. The subject programs cover a wide range
of Arduino fundamentals, instructions, and tasks, where
for each program task, the authors prepared two reference
solutions to reflect real-world developer variation and to
ensure we explored the best possible approaches, as it was
not always clear which coding strategy would perform better.
Some programs were more efficient in terms of memory
usage, whereas others offered lower execution times. The
reference solutions were developed with a strong emphasis
on performance, and manual optimization was applied to
ensure they were efficient, reliable, and of high quality, with
each code task accompanied by a specific zero-shot prompt
(Li, et al., 2024) (directly ask the model to perform a task
without providing any examples) each clearly defines the role
and expertise level, specifies the board, states the task (code
question), and requests optimized code for best performance.
The prompt is structured as follows:
	 “You are an experienced software developer. Write an

optimized Arduino Uno Rev3 code that [code question].
Only write the code and ensure it’s optimized for best
performance.”

An example prompt and the code generated by ChatGPT
are shown in Fig. 1.

C. LLMs Selection
LLMs are trained on existing datasets, and in the simplest

terms, they are a black box that solves the problem of
predicting the next word in a sequence. To evaluate their
capabilities and limitations in code generation, we selected
six of the most well-known models available: ChatGPT-4o3
by OpenAI, Gemini 2.0 Flash4 by Google, DeepSeek-V35 by
DeepSeek, Claude 3.5 Sonnet6 by Anthropic, GitHub Copilot7

(powered by ChatGPT-4o) by OpenAI in collaboration with
GitHub, and LLaMA-38 by Meta. Each of these models is
developed and maintained by a leading tech company, ensuring
a diverse representation of current advancements in LLMs.

D. Evaluation Metrics
Our research follows a quantitative approach, and to

ensure the accuracy and reliability of our results, we selected
a set of well-known evaluation metrics, including Cyclomatic
Complexity (Ebert, et al., 2016) and CodeBLEU (Ren, et al.,
2020). In addition, we introduce new metrics used for the first
time in this context, including SRAM (Static Random Access
Memory) usage and Flash memory usage. These metrics are
chosen carefully to match each RQ and to provide a clear
understanding of the performance and effectiveness of our
methods.

To answer RQ1 (Overall Correctness), we evaluate
both syntactic and functional correctness (Moradi Dakhel,

3	 https://chatgpt.com/
4	 https://gemini.google.com/
5	 https://www.deepseek.com/
6	 https://claude.ai/
7	 https://github.com/copilot
8	 https://www.meta.ai/

� ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12344� 79

et al., 2023) of the generated codes. Syntactic correctness
is verified using the Arduino compiler to detect syntax
mistakes, undeclared variables, missing semicolons, etc.,
while functional correctness is evaluated by executing the
generated code and comparing its outputs with expected
results. If the initial attempt generated correct code, it was
marked successful; otherwise, it was marked failed.

To answer RQ2 (Code Performance), we compare the
performance of the generated code with our reference code.
The performance of each code was measured in terms of
execution time/runtime (Niu, et al., 2024) (the amount of
time required to execute the code), flash memory usage
(the space required to store the sketch that executes the
code), and SRAM (Static Random Access Memory) usage
(the space required for the sketch that executes the code to
create and manipulate variables when it runs). The Arduino
IDE was used to measure the amount of SRAM and flash
memory usage, whereas execution time was measured in
microseconds. Furthermore, each experiment was repeated
for two runs: the first run (automatically triggered through the
Arduino IDE upload process) was treated as a warm-up and
discarded to reduce measurement noise, whereas the second
run was obtained by manually pressing the board’s reset
button and used as the recorded measurement. Furthermore,
input/output operations (e.g., Serial.print()) were isolated
from timing to ensure that only the core computation was
measured. The execution time measurement was determined
using the pseudo-code shown below. The pseudo-code was
added to all codes before execution to obtain execution
time, Flash memory, and SRAM. Any code that executes
faster, uses less flash memory, and consumes less SRAM is
considered the best and outperforms the others. However,
not all codes perform well in all metrics. Therefore, we have
compared each metric individually.

Execution time measurement pseudo-code:
•	 Begin
•	 Get start time
•	 Execute the code
•	 Get end time
•	 Elapsed time = (end time - start time)
•	 End

To answer RQ3 (Multi-round Error Correction), we
instruct the models to regenerate code that did not pass the
overall correctness in RQ1. We aimed to complete each
task in as few attempts as possible. If the code generated by
LLM is incorrect, the second attempt is made using compiler
error feedback or author feedback. In case the output is
incorrect, the process continues until either the number of
attempts reaches the maximum of five or a correct solution
is obtained. Therefore, it leads to the #attempt metric (Miah
and Zhu, 2024), which represents the number of times the
user prompted LLMs to generate a correct solution.

To answer RQ4 (Code Complexity), we compare the
complexity of the generated code to the reference code.
Code complexity is a critical factor that significantly
affects readability, maintainability, and overall code quality
(Tashtoush, et al., 2023). Highly complex code can be
harder to understand (readability) and maintain. Hence,
code quality cannot be assessed solely on correctness (RQ1)
or performance (RQ2); it requires an understanding of the
structural complexity and adherence to established standards
(Clark, et al., 2024). For this RQ, we used the following
metrics:
•	 Cyclomatic Complexity (CC) (Ebert, et al., 2016): It

measures the number of linearly independent paths in a
program, which directly correlates with the number of
decision points in the code. In addition, lower cyclomatic

Fig. 1. Example of prompt and code solution generated by ChatGPT.

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X�

80� http://dx.doi.org/10.14500/aro.12344

complexity is generally considered a sign of higher code
quality, which is calculated using Equation 1.

M = E − N + 2P� (1)

Where:
•	 M is the CC of a program or function.
•	 E is the number of edges.
•	 N is the number of nodes.
•	 P is the number of connected components or exit points.

•	 Non-Comment Lines of Code (NCLOC) (Beurer-Kellner,
Vechev and Fischer, 2023): It measures the number of
executable lines in a code, excluding comments and empty
lines, which is often used to estimate development effort,
cost, and productivity. Therefore, it supports defect analysis
and maintainability assessment (Nuñez-Varela, et al., 2017).
Furthermore, functions with higher NCLOC are typically
more complex and harder to maintain, whereas shorter
functions improve readability and ease of testing.

It is worth mentioning that both CC and NCLOC metrics
were computed using the Lizard tool provided by (Yin, 2024).

To answer RQ5 (Code Similarity), we compare the
generated code to our reference code to derive additional
information about the difference between the two codes by
employing the CodeBLEU (Bilingual Evaluation Understudy)
score (Ren, et al., 2020). CodeBLEU is a composite metric
with the scores being the weighted average of 4 different
sub-metrics treating code differently: n-gram matching
(BLEU), syntax match, data flow match, and semantic match
(Evtikhiev, et al., 2023). In addition, it is a widely adopted
similarity metric, and it can be calculated using Equation 2.

CodeBLEU = α⋅BLEU + β⋅Syntax Match + γ⋅Data Flow
Match + δ⋅Semantic Match� (2)

Where:
•	 BLEU: measures n-gram overlap between generated and

reference code.
•	 Syntax Match: compares abstract syntax trees (AST).
•	 Data Flow Match: evaluates the consistency of variable

usage and dependencies.
•	 Semantic Match: assesses code structure and functionality.

The weights α, β, γ, and δ are tunable hyperparameters,
allowing flexibility based on the importance of each
component in a specific context.

A value of 0 in CodeBLEU indicates no similarity between
the generated and reference code, whereas a value closer to 1
indicates a high degree of similarity. We compute this metric
using the tool provided by CodeXGLUE (Lu, et al., 2021).

E. Prompting, Testing, and Analyzing
Fig. 2 shows an overview of our evaluation procedure.

Our experiments begin by retrieving a prompt (code
question) from our subject programs and passing it to the
models to generate an initial code solution. Using the same
Arduino hardware and Arduino IDE software with its default

configurations and settings, the solution is assessed for overall
correctness, including syntactic and functional correctness.
If the solution fails the correctness check, the model is re-
prompted using feedback—compiler feedback in the case of
syntactic errors or author feedback in the case of functional
errors. This process is repeated up to five times if the model
continues to generate incorrect solutions. If a solution passes
the overall correctness check, then analyze it in terms of
code performance and complexity using the Arduino device.
Otherwise, it is only evaluated for code similarity and multi-
round error correction. The same Arduino device, which is
the original Arduino Uno Rev3 and the most commonly used
device, has been employed in all tests to ensure consistent
hardware specifications9, with the Arduino IDE configured as
specified in Table II. All code generation experiments were
conducted during April 2025 using the default configuration
settings (e.g., temperature) of each model.

IV. Experimental Results
This section presents and discusses the experimental

results of this study, where each RQ is summarized with a
short title and discussed in its respective subsection based on
the study’s findings.

A. Overall Correctness (RQ1)
We evaluate the syntactic and functional correctness

success rate of all generated codes in the first iteration (zero-
shot ability). As shown in Fig. 3, we found an impressive
performance by ChatGPT-4o, achieving a remarkable
96.8% correctness rate on first-iteration solutions. Similarly,
DeepSeek-V3 follows with a strong performance of 90.3%,
whereas GitHub Copilot attains 87.1%. Furthermore, Gemini
2.0 Flash and LLaMA-3 both achieve 80.6%. On the other
hand, Claude 3.5 Sonnet shows the lowest performance
among the evaluated models, with a correctness rate of
67.7%. When looking at the errors in the generated codes,
most were functional errors (logical errors), either incorrect
outputs or included unnecessary infinite loops, indicating
that models are very effective in generating syntactically
correct code and rarely make syntax errors.

B. Code Performance (RQ2)
In this RQ, we aim to investigate how the performance of

code generated by LLMs compares to our reference code.
Performance is a crucial factor in systems with limited
resources, such as Arduino devices, which are constrained
by limited resources and computing capabilities. Hence, we
evaluate and compare the generated and reference code based
on three key performance metrics: execution time, flash memory
usage, and SRAM usage. Fig. 4 compares execution time for
all correct code generated by LLMs in the first iteration. The
execution time was categorized into three outcomes:
•	 Equal (blue bars): The generated code had the same

execution time as the reference code

9	 https://store.arduino.cc/products/arduino-uno-rev3

� ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12344� 81

•	 Greater (orange bars): generated code had a longer execution
time

•	 Smaller (gray bars): generated code had a shorter execution
time.

From Fig. 4, it is observed that ChatGPT-4o shows the
highest number of codes matching the execution time of our
reference codes, whereas Gemini 2.0 Flash performed strongly,
which shows a higher number of codes where execution time
is shorter. In addition, DeepSeek-V3 performed well with
equal and smaller execution times. Interestingly, Claude 3.5

Sonnet shows a higher number of codes where execution time
is shorter, but overall correctness (RQ1) is the poorest among
the models. GitHub Copilot had an even distribution between
equal and greater execution times, whereas LLaMA-3
presented a balanced number of greater and smaller codes.

Fig. 5 shows the comparison of flash memory usage for all
generated codes in the first iteration, which are categorized
into three outcomes: Equal, greater, and smaller, similar to
what we did for execution time.

15

5

12
7

10 11

4 6
3

5
10

7
11

14 13
9

7 7

0
5

10
15
20

C
ha

tG
PT

 4
o

G
em

in
i 2

.0
 F

la
sh

D
ee

pS
ee

k-
V3

C
la

ud
e

3.
5

So
nn

et

G
itH

ub
 C

op
ilo

t
(G

PT
-4

o)

LL
aM

A
3

C
ou

nt

Equal Greater Smaller

Fig. 4. Comparison of execution time outcomes: Equal, greater, or
smaller than reference code.

Fig. 2. The evaluation procedure used.

96.8%

80.6%
90.3%

67.7%

87.1%
80.6%

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

C
ha

tG
PT

 4
o

G
em

in
i 2

.0
 F

la
sh

D
ee

pS
ee

k-
V3

C
la

ud
e

3.
5

So
nn

et

G
itH

ub
 C

op
ilo

t
(G

PT
-4

o)

LL
aM

A
3

Pe
rc

en
ta

ge
 (%

)

LLMs

Fig. 3. Zero-shot overall correctness (RQ1) rate (%) of a
large language model.

TABLE II
Arduino IDE Specifications

Platform Specifications Detail
Arduino IDE IDE version 2.3.5

GCC compiler version 7.3.0
GCC compiler optimization levels Os (default)

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X�

82� http://dx.doi.org/10.14500/aro.12344

The results show that DeepSeek-V3 has strong optimization
capability with the highest number of codes with smaller flash
memory usage than reference codes. In comparison, models
such as Gemini 2 Flash and GitHub Copilot exhibited more
code with higher flash memory usage. ChatGPT-4o presents a
relatively balanced distribution, whereas LLaMA-3 maintains
an even spread across equal, greater, and smaller memory
usage categories.

Fig. 6 compares SRAM usage across evaluated LLMs,
categorizing outcomes into equal, greater, or smaller usage.

Based on the results shown, ChatGPT-4o demonstrates the
highest number of codes where the generated code exhibits
equal SRAM usage compared to the reference code. followed
closely by DeepSeek-V3 and LLaMA-3. Furthermore,
GitHub Copilot performed well. In contrast, Gemini 2.0
Flash exhibits a more varied distribution with a higher
number of greater SRAM usages, whereas Claude 3.5 Sonnet
shows fewer codes of reduced SRAM usage compared to
other models.

C. Multi-attempt Code Correction (RQ3)
We examine the effectiveness of the multi-attempt

correction process in enhancing code generation for
functional correctness across all models. Since all models
support multi-attempt conversations, we instruct them to

regenerate code snippets up to five times if they fail during
the functional correctness test in RQ1.

As shown in Fig. 7, all models reduced incorrect outputs
over attempts. Claude 3.5 Sonnet started with the highest
number of incorrect codes (10) but managed to reduce
them to just one by the second attempt, maintaining that
level through the fifth. Similarly, Gemini 2.0 Flash and
LLaMA-3 showed consistent improvement, reaching a
minimum of one incorrect output by the fifth attempt.
DeepSeek-V3 and ChatGPT-4o achieved full correction
by the second attempt, whereas GitHub Copilot quickly
dropped from four to one by the second attempt. These
results indicate that multi-attempt code correction is
effective in improving code correctness, particularly within
the first few iterations.

D. Code Complexity (RQ4)
Code complexity is a critical factor that significantly

affects readability, maintainability, and overall code quality
(Tashtoush, et al., 2023). Hence, highly complex code can
be harder to understand (readability) and maintain. The
results for Cyclomatic Complexity are shown in Fig. 8,
where most LLMs, including ChatGPT-4o, Claude 3.5
Sonnet, and LLaMA-3, tend to generate code with low

1
0 0 0 0

6

4

2
1 1

3

1
0 0 0

10

1 1 1 1

4

1 1 1 1

6

2
1 1 1

0

2

4

6

8

10

12

 1st attempt 2nd attempt 3rd attempt 4th attempt 5th attempt

of

 In
co

rre
ct

 C
od

es

ChatGPT 4o
Gemini 2.0 Flash

DeepSeek-V3
Claude 3.5 Sonnet

GitHub Copilot (GPT-4o)
LLaMA 3

Fig. 7. Multi-attempt code fixing progress across a large
language model (RQ3).

9

4

7

5 6 7

11 11

7 7

12

7

10 10

14

9 9

11

0
2
4
6
8

10
12
14
16
18
20

C
ha

tG
PT

 4
o

G
em

in
i 2

.0
 F

la
sh

D
ee

pS
ee

k-
V3

C
la

ud
e

3.
5

So
nn

et

G
itH

ub
 C

op
ilo

t
 (G

PT
-4

o)

LL
aM

A
3

C
ou

nt

Equal Greater Smaller

Fig. 5. Comparison of flash memory usage: Equal, greater,
or smaller than reference.

24

11

20

12

17

20

2

8

3

6 8

44 6 5

3 2 1

0
5

10
15
20
25
30

C
ha

tG
PT

 4
o

G
em

in
i 2

.0
 F

la
sh

D
ee

pS
ee

k-
V3

C
la

ud
e

3.
5

So
nn

et

G
itH

ub
 C

op
ilo

t
(G

PT
-4

o)

LL
aM

A
3

C
ou

nt

Equal Greater Smaller

Fig. 6. Comparison of SRAM usage: Equal, greater, or
smaller than reference.

14

4

12

14
13 13

15

11

4

13

10
9

10

44

9

3
4

6

4

8

2

11

2 2 2
1 1

0

2
1

0 0

2
3

0

2

4

6

8

10

12

14

16

18

20

C
ha

tG
PT

 4
o

G
em

in
i 2

.0
 F

la
sh

D
ee

pS
ee

k-
V

3

C
la

ud
e

3.
5

So
nn

et

G
itH

ub
 C

op
ilo

t
(G

PT
-4

o)

LL
aM

A
3

R
ef

er
en

ce
 C

od
es

C
ou

nt

2 3 4 5 ≥6

Fig. 8. Distribution of cyclomatic complexity values.

� ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12344� 83

cyclomatic complexity (values of 2 and 3), closely mirroring
our reference code, indicating that these models generate
relatively simple and maintainable logic structures. In
contrast, Gemini 2.0 Flash stands out by generating a higher
number of codes with complexity levels of 4 and 5, which
reduces code readability and maintainability. In addition, a
high cyclomatic complexity can potentially lead to a high
probability of errors and bugs in the code.

Fig. 9 categorizes the NCLOC into five ranges. The results
show that most models have generated short codes in the
6–10 line range, including ChatGPT-4o, DeepSeek-V3, and
LLaMA-3. Claude 3.5 Sonnet and GitHub Copilot generated
longer codes, with most in the 6–10 and 11–15 line range.
However, Gemini 2.0 GPT-4 not only has more lines but
also more complex codes compared to other models and the
reference code. Overall, these results highlight that while
some LLMs align closely with the reference in terms of
code length and complexity (ChatGPT-4o, DeepSeek-V3,
and LLaMA-3), others vary significantly (Gemini 2.0 Flash,
Claude 3.5 Sonnet, and GitHub Copilot).

E. Code Similarity (RQ5)
To derive additional information about the difference

between the generated and reference code, we computed
the CodeBLEU score. Fig. 10 shows the CodeBLEU scores
between the reference and generated codes by all models. The
CodeBLEU scores vary across models, with ChatGPT-4o and
LLaMA-3 achieving the highest median values, indicating
that their outputs are most similar to reference codes. In

contrast, Gemini 2.0 Flash shows the lowest median and a
narrower interquartile range, reflecting greater deviations from
the reference. Moreover, other models such as DeepSeek-V3,
Claude 3.5 Sonnet, and GitHub Copilot show moderate
performance with varying levels of consistency. These results
suggest that while some models (ChatGPT-4o, LLaMA-3)
are adept at mimicking human-like code patterns, others
(Gemini 2.0 Flash) generate code with significant structural or
semantic deviations, potentially impacting software quality –
notably through reduced readability and maintainability.

V. Discussion
Our evaluation of state-of-the-art LLMs on Arduino code

generation reveals nuanced trade-offs between correctness,
performance, and code quality. Although ChatGPT-4o
achieved the highest zero-shot functional correctness
rate (96.8%), its generated code consistently has longer
execution times than Gemini 2.0 Flash, indicating that there
is no positive correlation between functional correctness and
code efficiency. In contrast, DeepSeek-V3 has a zero-shot
functional correctness rate of 90.3%, less than ChatGPT-
4o, which delivered significantly lower execution times and
reduced Flash memory consumption compared to ChatGPT-
4o. Claude 3.5 Sonnet has the lowest zero-shot functional
correctness rate of 67.7%. Error analysis revealed that many
of its generated codes appended unnecessary infinite loops or
the code was inside Arduino’s continuously running loop(),
even when the prompt did not require it. In addition, despite
using the same zero-shot prompts across all models, Claude
3.5 Sonnet showed the least ability to interpret and adhere
to the prompt constraints. GitHub Copilot achieved a zero-
shot functional correctness rate of 87.1%, ranking third
behind ChatGPT-4o and DeepSeek-V3. Finally, although
Copilot was trained on a large corpus of code from GitHub
and explicitly designed for programming tasks (Jiang, et al.,
2024), it generated less efficient code compared to other
models, which are trained on a broader range of text data and
have a better understanding of the overall prompt context.

The effectiveness of multi-attempt error correction across
all models highlights the potential of iterative refinement
in practical development workflows. Both ChatGPT-4o and
DeepSeek-V3 were able to resolve 100% of their initial
failures by the second attempt (Miah and Zhu, 2024), and
all models corrected the majority of their errors within five
rounds. These results suggest that integrating compiler or
developer feedback into prompts can be a powerful strategy
to overcome initial model limitations.

Code complexity metrics further highlight the trade-off
between maintainability and performance. Models such as
ChatGPT-4o, LLaMA-3, and Claude 3.5 Sonnet consistently
generated code with cyclomatic complexity values in the
2–3 range, comparable to our code. This lower complexity
enhances readability and reduces the cognitive load required
for developers to understand and maintain the code. In
contrast, performance-focused models such as Gemini 2.0
Flash tended to generate code with higher complexity (≥4) and

0
2

0
2 1 1 1

21

4

19

13 12

20 20

7
9 9

13
11

5 5
3

9

2 1
4 3 2

0

6

1 1 2 1
3

0

5

10

15

20

25

C
ha

tG
PT

 4
o

G
em

in
i 2

.0
 F

la
sh

D
ee

pS
ee

k-
V

3

C
la

ud
e

3.
5

So
nn

et

G
itH

ub
 C

op
ilo

t
(G

PT
-4

o)

LL
aM

A
3

R
ef

er
en

ce
 C

od
es

C
ou

nt

0-5 6-10 11-15 16-20 ≥21

Fig. 9. Distribution of non-comment lines of code.

Fig. 10. Distribution of CodeBLEU scores (0–1 scale) between
reference and generated codes.

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X�

84� http://dx.doi.org/10.14500/aro.12344

longer lines, often due to optimizations such as loop unrolling
or generating custom functions instead of using built-in
functions or libraries. Although these strategies can improve
execution speed, they also increase code complexity, raising
concerns about code understandability and maintainability.

Our CodeBLEU similarity analysis reinforces these
findings by clearly highlighting differences in how closely the
models align with human coding practices. ChatGPT-4o and
LLaMA-3 achieved the highest CodeBLEU scores, indicating
strong structural and semantic similarity to the reference
code. This alignment translated not only into readable and
maintainable code but also into comparable performance
and code complexity. In contrast, although Gemini 2.0
Flash produced longer and more complex code with faster
execution times, its substantially lower CodeBLEU scores
reveal a significant departure from the reference code.

Overall, our comprehensive evaluation underscores that
none of the evaluated LLMs excel across all dimensions of
Arduino code generation. Table III clearly compares models
across correctness, performance, error correction, complexity,
and similarity to reference code. These findings emphasize
the importance of selecting models based on a project’s
priorities – correctness, performance, maintainability, or
alignment with human coding practices.

VI. Threats to Validity
There are some potential threats affecting the validity of

our experimental results and conclusions.
•	 External Validity. In this study, only six LLMs were

selected. Therefore, the results cannot be generalized to
all LLMs, nor to future model versions. However, these
models were carefully chosen based on their popularity
and recent advancements in the field. Another threat is that
commercial LLMs are closed and may be updated or fine-
tuned without notice, leading to hosted-model drift and
potential differences in output over time. Both the model
versions and the access data have been clearly reported to
support transparency and reproducibility.

•	 Internal Validity. One potential threat is that using only
Arduino tasks and a specific set of 31 programs may
introduce a single-board bias, potentially affecting the

causal interpretation of results. This threat was mitigated by
ensuring consistent prompts, using the same Arduino board,
and using identical IDE settings across all experiments.

•	 Construct Validity. The study employed multiple metrics,
including functional correctness, execution time, cyclomatic
complexity, and CodeBLEU, using established tools such as
Lizard and CodeXGLUE to ensure reliability. However, some
limitations remain: CodeBLEU, originally designed for general-
purpose languages, may not fully capture semantic or logical
equivalence in Arduino code, and cyclomatic complexity may
not reflect all aspects of code complexity. These considerations
were carefully acknowledged, and the use of well-defined
and diverse metrics ensures that the evaluation meaningfully
captures Arduino code generation performance.

VII. Conclusion
This study provides a comprehensive evaluation of LLMs
for Arduino code generation, highlighting each model’s
strengths and limitations in producing efficient, maintainable,
and human-like code. Our analysis of six state-of-the-art
models shows that none of the evaluated LLMs excel across
all dimensions: ChatGPT‑4o leads in zero-shot functional
correctness and alignment with human coding practices,
whereas Gemini 2.0 Flash excels in runtime efficiency at the
expense of readability, and DeepSeek‑V3 demonstrates strong
potential for memory-optimized applications through efficient
flash memory usage. The study also identifies limitations
in current LLMs, including prompt adherence problems in
Claude 3.5 Sonnet and unexpected inefficiencies in GitHub
Copilot despite its domain-specific training.

For future work, this research can be extended to other
resource-constrained devices, such as Raspberry Pi, ESP32, or
ARM-based microcontrollers, and to programming languages
that target hardware devices, such as MicroPython. Additional
studies could investigate optimization techniques to further
improve code correctness, efficiency, and maintainability.
By addressing these directions, future research can advance
the potential of LLMs as tools for efficient and automated
microcontroller programming used in IoT and embedded
systems, covering many aspects of daily life.

TABLE III
Performance of Large Language Models (LLMs) in Arduino Code Generation (RQ1–RQ5)

Model Overall
Correctness
(RQ1)

Execution Time
(RQ2)

Flash Usage
(RQ2)

SRAM Usage
(RQ2)

Multi‑Attempt
Fixing (RQ3)

Cyclomatic
Complexity
(RQ4)

Code Length
(NCLOC)
(RQ4)

Code
Similarity
(RQ5)

ChatGPT‑4o 96.8% (Best) Mostly Equal Balanced (Equal/
Greater/Smaller)

Mostly Equal
(Best)

Fixed All by 2nd
Attempt

 Low Short Most similar
(Best)

DeepSeek‑V3 90.3% Equal/Smaller Most Memory
Efficient (Best)

Mostly Equal Fixed All by 2nd
Attempt

Low Short Mostly
Similar

GitHub Copilot 87.1% Balanced (Equal/
Greater/Smaller)

Mostly Greater Mostly Equal Needed up to 2nd
Attempt

Low/High Medium Less Similar

Gemini 2.0 Flash 80.6% Mostly Smaller
(Best)

Mostly Greater Equal/Greater Fixed Most by 5th
Attempt

High Longer Least
Similar

LLaMA‑3 80.6% Mostly Equal Mostly Smaller Mostly Equal Fixed Most by 5th
Attempt

Low Short Mostly
Similar

Claude 3.5 Sonnet 67.7% Equal/Smaller Mostly Smaller Mostly Equal Fixed by 2nd Attempt Low Short/Medium Less Similar

� ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12344� 85

References
Abdullah, A.A., Mohammed, N.S., Khanzadi, M., Asaad, S.M., Abdul, Z.K.,
and Maghdid, H.S., 2025. In-depth analysis on machine learning approaches:
Techniques, applications, and trends. The Scientific Journal of Koya University,
13(1), pp.190-202.

Beurer-Kellner, L., Vechev, M., and Fischer, M., 2023. Prompting is
programming: A query language for large language models. Proceedings of the
ACM on Programming Languages, 7, pp.1946-1969.

Bucaioni, A., Ekedahl, H., Helander, V., and Nguyen, P.T., 2024. Programming
with ChatGPT: How far can we go? Machine Learning with Applications, 15,
p.100526.

Clark, A., Igbokwe, D., Ross, S., and Zibran, M.F., 2024. A Quantitative
Analysis of Quality and Consistency in AI-Generated Code. In:
Proceedings - 2024 7th International Conference on Software and System
Engineering, ICoSSE 2024. Institute of Electrical and Electronics Engineers
Inc., pp.37-41.

Coello, C.E.A., Alimam, M.N., and Kouatly, R., 2024. Effectiveness of ChatGPT
in coding: A comparative analysis of popular large language models. Digital,
4(1), pp.114-125.

DeLorenzo, M., Gohil, V., and Rajendran, J., 2024. CreativEval: Evaluating
Creativity of LLM-Based Hardware Code Generation. In: Conference: 2024
IEEE LLM Aided Design Workshop (LAD). pp.1-5.

Ebert, C., Cain, J., Antoniol, G., Counsell, S., and Laplante, P., 2016. Cyclomatic
complexity. IEEE Software, 33(6), pp.27-29.

Evtikhiev, M., Bogomolov, E., Sokolov, Y., and Bryksin, T., 2023. Out of the
BLEU: How should we assess quality of the Code Generation models? Journal
of Systems and Software, 203, p.111741.

Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K., Li, L., Luo, X., Lo, D.,
Grundy, J., and Wang, H., 2024. Large language models for software engineering:
A systematic literature review. ACM Transactions on Software Engineering and
Methodology, 33(8), pp.1-79.

Jiang, J., Wang, F., Shen, J., Kim, S. and Kim, S., 2024. A survey on large
language models for code generation. arXiv, arXiv:2406.00515. [Last accessed
on 2025 Apr 25].

Kim, S.M., Choi, Y., and Suh, J., 2020. Applications of the open-source hardware
arduino platform in the mining industry: A review. Applied Sciences, 10, 5018.

Kok, I., Demirci, O., and Ozdemir, S., 2024. When IoT Meet LLMs: Applications
and Challenges. In: 2024 IEEE International Conference on Big Data (BigData).
Los Alamitos, CA, USA: IEEE Computer Society. pp.7075-7084.

Koubaa, A., Qureshi, B., Ammar, A., Khan, Z., Boulila, W., and Ghouti, L., 2023.
Humans are still better than ChatGPT: Case of the IEEEXtreme competition.
Heliyon, 9(11), p.e21624.

Li, J., Li, G., Li, Y., and Jin, Z., 2024. Structured Chain-of-Thought Prompting for
Code Generation. ACM Transactions on Software Engineering and Methodology,
34, pp.1-23.

Liu, C., Bao, X., Zhang, H., Zhang, N., Hu, H., Zhang, X., and Yan, M.,
2024. Guiding ChatGPT for Better Code Generation: An Empirical Study.
In: Proceedings - 2024 IEEE International Conference on Software Analysis,
Evolution and Reengineering, SANER 2024. Institute of Electrical and Electronics
Engineers Inc. pp.102-113.

Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A., Blanco, A., Clement,
C., Drain, D., Jiang, D., Tang, D. and Li, G., 2021. Codexglue: A machine
learning benchmark dataset for code understanding and generation. arXiv,
arXiv:2102.04664. [Last accessed on 2025 Apr 25].

Miah, T., and Zhu, H., 2024. User Centric Evaluation of Code Generation Tools
(Invited Paper). In: 2024 IEEE International Conference on Artificial Intelligence
Testing (AITest). Los Alamitos, CA, USA: IEEE Computer Society. pp.109-119.

Mirjalili, S., Abdulla, A.A., Hassan, B.A., and Rashid, T.A., 2025. LLaMA-

Adapter + MRP: Integrating Meta-Reasoning Prompting with LLaMA-Adapter
for Efficient Multi-Modal and Task-Adaptive Reasoning. TechRxiv, June 18.

Moradi Dakhel, A., Majdinasab, V., Nikanjam, A., Khomh, F., Desmarais, M.C.,
and Jiang, Z.M. (Jack), 2023. GitHub Copilot AI pair programmer: Asset or
Liability? The Journal of Systems and Software, 203(C), p.111734.

Nayyar, A., and Puri, V., 2016. A review of Arduino board’s, Lilypad’s & Arduino
shields. In: 2016 3rd International Conference on Computing for Sustainable
Global Development (INDIACom). pp.1485-1492.

Nazir, A., and Wang, Z., 2023. A comprehensive survey of ChatGPT:
Advancements, applications, prospects, and challenges. Meta-Radiology, 1,
p.100022.

Niu, C., Zhang, T., Li, C., Luo, B., and Ng, V., 2024. On Evaluating the Efficiency
of Source Code Generated by LLMs. In: Proceedings - 2024 IEEE/ACM
1st International Conference on AI Foundation Models and Software Engineering,
FORGE 2024. Association for Computing Machinery, Inc. pp.103-107.

Nuñez-Varela, A.S., Pérez-Gonzalez, H.G., Martínez-Perez, F.E., and
Soubervielle-Montalvo, C., 2017. Source code metrics: A systematic mapping
study. Journal of Systems and Software, 128, pp.164-197.

Palla, D., and Slaby, A., 2025. Evaluation of generative AI models in python code
generation: A comparative study. IEEE Access, 13, pp.65334-65347.

Paul, D.G., Zhu, H., and Bayley, I., 2024. ScenEval: A Benchmark for Scenario-
Based Evaluation of Code Generation. In: 2024 IEEE International Conference
on Artificial Intelligence Testing (AITest). IEEE. pp.55-63.

Petrovic, N., Konicanin, S., and Suljovic, S., 2023. ChatGPT in IoT Systems:
Arduino Case Studies. In: 2023 IEEE 33rd International Conference on
Microelectronics, MIEL 2023. Institute of Electrical and Electronics Engineers
Inc., pp.1-4.

Rai, L., Khatiwada, S., Deng, C., and Liu, F., 2024. Cross-Language Code
Development with Generative AI: A Source-to-Source Translation Perspective.
In: 2024 IEEE 7th International Conference on Electronic Information and
Communication Technology, ICEICT 2024. Institute of Electrical and Electronics
Engineers Inc., pp.562-565.

Ren, S., Guo, D., Lu, S., Zhou, L., Liu, S., Tang, D., Sundaresan, N., Zhou,
M., Blanco, A. and Ma, S., 2020. Codebleu: a method for automatic evaluation
of code synthesis. arXiv, arXiv:2009.10297. [Last accessed on 2025 Apr 25].

Sharma, T., 2024. LLMs for Code: The Potential, Prospects, and Problems. In:
Proceedings - IEEE 21st International Conference on Software Architecture
Companion, ICSA-C 2024. Institute of Electrical and Electronics Engineers
Inc. pp.373-374.

Shuvo, U.A., Dip, S.A., Vaskar, N.R., and Al Islam, A.B.M.A., 2025.
Assessing ChatGPT’s Code Generation Capabilities with Short vs Long
Context Programming Problems. In: Proceedings of the 2024 11th International
Conference on Networking, Systems and Security, NSysS 2024. Association for
Computing Machinery, Inc. pp.32-40.

Su, H., Ai, J., Yu, D., and Zhang, H., 2023. An Evaluation Method for Large Language
Models’ Code Generation Capability. In: Proceedings - 2023 10th International
Conference on Dependable Systems and Their Applications, DSA 2023. Institute
of Electrical and Electronics Engineers Inc. pp.831-838.

Tashtoush, Y., Abu-El-Rub, N., Darwish, O., Al-Eidi, S., Darweesh, D., and
Karajeh, O., 2023. A notional understanding of the relationship between code
readability and software complexity. Information (Switzerland), 14(2), 81.

Yin, T., 2024. Lizard: A Simple Code Complexity Analyser without Caring
about the c/c++ Header Files or Java Imports, Supports Most of the Popular
Languages. pp. 21-27. Available from: https://github.com/terryyin/lizard [Last
accessed on 2025 Apr 25].

Yusro, M., Guntoro, N., and Rikawarastuti, R., 2021. Utilization of microcontroller
technology using Arduino board for Internet of Things (a systematic review).
AIP Conference Proceedings, 2331, p.060004.

