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Abstract—Large language models (LLMs), also known as 
generative AI, have transformed code generation by translating 
natural language prompts into executable code. Yet, their capabilities 
in generating code for resource-constrained devices such as Arduino, 
which are used in the Internet of Things and embedded systems, 
remained underexplored. This study evaluates six state-of-the-art 
LLMs for generating correct, efficient, and high-quality Arduino 
code. The evaluation was performed across five dimensions, namely 
functional correctness, runtime efficiency, memory usage, code 
quality, similarity to human-written code, and multi-round error 
correction. The results reveal that ChatGPT-4o achieves the highest 
zero-shot functional correctness and aligns closely with human 
code in readability and similarity. On the other hand, Gemini 2.0 
Flash generates faster-executing code but at the cost of higher code 
complexity and lower similarity. DeepSeek-V3 balances correctness 
with superior flash memory optimization, whereas Claude 3.5 
Sonnet struggles with prompt adherence. Finally, multi-round error 
correction improves correctness across all six models. Overall, the 
findings underscore that none of the evaluated LLMs consistently 
outperforms all evaluation criteria. Hence, model choice must align 
with project priorities; as shown, ChatGPT-4o excels in functional 
correctness, whereas Gemini 2.0 excels in execution time, and 
DeepSeek-V3 in memory efficiency. This study provides a systematic 
evaluation of code generated with LLMs for Arduino, which, to 
the best of our knowledge, has not been previously studied across 
multiple models and performance metrics, thereby establishing a 
foundation for future research and contributing to enhancing the 
trustworthiness and effectiveness of LLM-generated code.

Index Terms—Large language models, Arduino, Code 
generation, Internet of Things, Code performance.

I. Introduction
Large language models (LLMs) have rapidly advanced the 
field of code generation by enabling the automatic translation 
of natural language prompts into syntactically correct and 
executable code (Jiang, et al., 2024). These models have 
shown considerable promise in supporting developers with 

code generation (Koubaa, et al., 2023) (Sharma, 2024), 
documentation (Coello, Alimam and Kouatly, 2024) (Hou, 
et al., 2024), debugging (Nazir and Wang, 2023), and code 
translation (Rai, et al., 2024). While LLMs have shown 
promising results in general-purpose programming languages, 
their effectiveness in generating code for resource-constrained 
devices such as Arduino remains underexplored.

Arduino is a cheap, low-power, and small-sized computing 
device (Nayyar and Puri, 2016). It has been used for over 
a decade in a wide range of systems and applications such 
as Internet of Things (IoT), robotics, smart homes, and real-
time control, including monitoring systems (Kim, Choi and 
Suh, 2020). Arduino is currently one of the most popular 
development platforms for prototyping and implementing 
IoT systems due to its simplicity, flexibility, affordability, and 
large community support (Yusro, Guntoro and Rikawarastuti, 
2021). However, these devices have limited computing 
power and resources. Therefore, it is essential to program 
them efficiently when developing time-critical applications 
where every microsecond matters. In addition, efficient 
programming helps reduce energy consumption, which is an 
essential factor for battery-powered systems used primarily 
in IoT and wireless sensor networks. Moreover, optimized 
code allows developers to integrate more features and 
functionalities without exceeding the device’s constraints.

To better understand the capabilities and limitations 
of LLMs for code generation, the study evaluates and 
investigates their capabilities in generating correct, efficient, 
and high-quality Arduino code. To this end, we evaluate 
six state-of-the-art models: ChatGPT-4o, Gemini 2 Flash, 
DeepSeek-V3, Claude 3.5 Sonnet, GitHub Copilot, and 
LLaMA-3 using 31 subject programs of Arduino coding tasks 
covering various aspects of coding capabilities, including 
data types, functions, structures, loops, arrays, and more, 
with a focus on code performance. We structure our analysis 
around five Research Questions (RQs), explained in Section 
III, that target the performance of the selected LLMs in terms 
of Overall Correctness, Code Performance, Multi-round 
Error Correction, Code Complexity, and Code Similarity. 
Our evaluation follows recent recommendations for multi-
metric machine learning assessment (Abdullah, et al., 2025), 
considering correctness, performance, and complexity.

The results of the study reveal that ChatGPT‑4o and 
DeepSeek‑V3 offer a strong balance of correctness, 
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maintainability, and adaptability to iterative refinement, 
whereas Gemini 2.0 Flash stands out in raw performance 
but at the cost of code readability and alignment with 
human coding conventions. In contrast, LLMs such as 
Claude 3.5 Sonnet demonstrate the importance of precise 
prompt interpretation, and GitHub Copilot, which has been 
trained on a large corpus of code, highlights that code-focused 
models do not guarantee superior output. The findings 
indicate that none of the evaluated LLMs outperform all 
evaluation criteria; consequently, trade‑offs among functional 
correctness, performance, and code maintainability must be 
balanced. The findings inform several real-world applications. 
Specifically, automated code generation for resource-
constrained devices such as Arduino is highly relevant to IoT, 
enabling rapid prototyping and robotics development, smart 
home automation, and industrial control through efficient 
and reliable integration of sensors and actuators. Moreover, 
the results guide developers in selecting models that balance 
code quality and development time, while highlighting 
limitations that inform future improvements to enhance the 
trustworthiness and effectiveness of LLM-generated code.
The key contributions of this paper are outlined as follows:
•	 A quantitative evaluation of the capabilities of six 

leading LLMs in generating Arduino code. To the best 
of our knowledge, it is the first study to evaluate LLMs’ 
performance in generating correct, efficient, and quality 
code for Arduino across multiple models and performance 
metrics.

•	 The study introduces subject programs consisting of 31 
optimized Arduino programs, covering various tasks to 
evaluate LLMs across various coding dimensions such as 
data types, functions, structures, loops, and arrays, focusing 
on code performance. The subject programs are publicly 
available on GitHub1.

•	 It also contributes to advancing the potential knowledge and 
understanding capabilities of LLMs in improving automated 
code generation, with a particular focus on Arduino code 
generation, and establishing a foundation for future research 
in this swiftly developing field.

The organization of this paper is structured as follows: 
Section II presents an overview of the key related works. 
Section III describes the research methodology. Section IV 
presents the study’s results and findings. Section V provides 
a discussion across different directions. Finally, the study’s 
conclusions are provided in Section VI.

II. Related Works
This section briefly reviews the most relevant literature 

publications on the topic, and Table I summarizes them. 
The authors (Petrovic, Konicanin and Suljovic, 2023) 
explored the application of ChatGPT in embedded systems 
by integrating it with the Arduino platform. They conducted 
two case studies: They first used ChatGPT to perform 

1	 https://github.com/LLMsRes-ch/arduino-subject-programs/

classification tasks on sensor data collected through 
Arduino, and they secondly employed ChatGPT to generate 
template code for typical Arduino use cases automatically. 
The study highlighted ChatGPT’s potential to accelerate 
development, though limitations in context retention and 
code correctness were noted. However, their work is limited 
to a single model (ChatGPT) and a small number of case 
studies, lacking the systematic, multi-model, and multi-
metric comparative analysis required to understand the 
broader landscape of LLM capabilities for this domain. 
The authors (Su, et al., 2023) proposed a comprehensive 
evaluation framework to evaluate the code generation 
capabilities of LLMs, focusing on six dimensions: validity, 
correctness, complexity, reliability, security, and readability. 
They introduced the LLMC dataset, consisting of 45 Python-
based coding problems, and applied it to four LLMs. 
Similarly, authors (Bucaioni, et al., 2024) conducted an 
empirical study to evaluate ChatGPT’s capability in solving 
general programming problems using C++ and Java. They 
created a dataset covering various categories and difficulty 
levels, and through a structured experimental setup, they 
evaluated the correctness, runtime efficiency, and memory 
usage of ChatGPT-generated solutions, comparing them to 
those produced by human programmers. Moreover, authors 
(Miah and Zhu, 2024) evaluated ChatGPT’s effectiveness 
as an R code generation tool using a user-centric approach. 
They evaluated code quality (accuracy, readability, and 
conciseness) and user experience. ChatGPT showed strong 
performance in generating accurate and readable code 
with clear explanations, but scored lower on conciseness. 
In a more recent study, authors (Palla and Slaby, 2025) 
conducted a comparative study evaluating LLMs for Python 
code generation. Their framework evaluated models such 
as OpenAI’s GPT series, Google’s Gemini, Meta’s LLaMA, 
and Anthropic’s Claude across 10 programming tasks of 
varying complexity, with evaluation criteria including syntax 
correctness, accuracy, reliability across multiple iterations, 
response time, cost, and exception handling. While these 
studies provide valuable methodologies for evaluating code 
quality, their focus on general-purpose languages such as 
Python, Java, and R means their findings are not directly 
transferable to the unique constraints of resource-constrained 
IoT devices, where memory usage and execution speed are 
critical. The authors (Kok, Demirci and Ozdemir, 2024) 
examined the integration of IoT and LLMs, outlining key 
applications in smart homes, healthcare, transportation, 
manufacturing, and environmental monitoring. They 
highlighted how LLMs enhance IoT systems through natural 
language interfaces and improved decision-making. The 
paper also addressed challenges such as resource limitations, 
latency, and privacy concerns, and suggested edge-cloud 
collaboration and model optimization as potential solutions. 
However, their work remains conceptual, outlining challenges 
like resource limitations without offering an empirical 
evaluation of code generation for resource-constrained IoT 
devices. The authors (DeLorenzo, Gohil and Rajendran, 
2024) proposed CreativEval, a framework for assessing the 
creativity of LLM-generated HDL (Hardware Description 
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Language) code, focusing on novelty and functionality. They 
evaluated solutions across diverse hardware design tasks 
and benchmarked responses from multiple LLMs, including 
ChatGPT and Code Llama. Their work demonstrates 
potential but is limited to only two LLMs, GPT-3 and GPT-4. 
Similarly, authors (Paul, Zhu and Bayley, 2024) introduced 
ScenEval, a benchmark tailored for scenario-based evaluation 
of the generated code. ChatGPT was evaluated on the 
benchmark using a range of metrics, including functional 
correctness, cyclomatic complexity, cognitive complexity, 
and the average number of attempts. However, their 
evaluation is also limited to a single LLM and focuses on 
general-purpose Java programming. Consequently, it lacks 
systematic, multi-model comparative analysis and does not 
address critical performance constraints – such as execution 
time. Recently, authors (Shuvo, et al., 2025) conducted 
an empirical study evaluating ChatGPT’s code generation 
performance using several datasets. Their analysis revealed 
that ChatGPT achieved high accuracy on concise problem 
descriptions, whereas performance dropped significantly 

on narrative-driven problems, highlighting challenges in 
problem recognition and strategic planning under extended 
contexts. They further explored multiple programming 
languages (Python and C++), iterative prompting, and 
targeted feedback loops, demonstrating limited improvements 
in accuracy and efficiency through error-driven refinement. 
Despite these contributions, their work remains limited to a 
single LLM (ChatGPT-4) and focused primarily on accuracy 
and runtime performance. Broader aspects such as memory 
consumption and systematic multi-model comparisons 
remain unaddressed. Beyond code generation, recent research 
has explored enhancing LLMs for specialized tasks through 
improved prompting. For instance, authors (Liu, et al., 
2024) conducted an empirical study on guiding ChatGPT 
for improved code generation using prompt engineering 
techniques. They evaluated ChatGPT’s performance on two 
tasks – text-to-code and code-to-code generation – using the 
widely adopted CodeXGlue benchmark. Their methodology 
applied chain-of-thought (CoT) prompting and multi-step 
optimizations, exploring factors such as prompt specificity, 

TABLE I
Summary of Related Works on Large Language Models (LLMs) for Code Generation

Paper Target languages Models evaluated Datasets used Prompting types Metrics/Methods used
(Mirjalili, et al., 
2025) 

N/A LLaMA‑7B with custom 
adapters+MRP layers

GSM8K, MMLU, 
ScienceQA, 
Alpaca‑52K, 
HotpotQA, 
LVLM‑eHub

Meta‑Reasoning Prompting 
(MRP).

Accuracy, Params, Training time, 
Strategy Switch Rate, BLEU@4, 
CIDEr

(Kok, Demirci and 
Ozdemir, 2024)

N/A GPT, LLaMA, Claude, 
Gemini, Mistral, BERT 
(reviewed).

N/A (Literature 
Review)

Survey of prompting 
strategies.

Accuracy, latency, memory, power 
(reviewed).

(Su, et al., 2023) Python ChatGPT, Claude, Spark, 
Bing AI

LLMC Dataset (45 
tasks).

Manual Standard/
Template‑Based Prompting.

Validity, Correctness (pass rate), 
Complexity, Reliability/Security, 
Readability

(Shuvo, et al., 2025) C++, Python ChatGPT (GPT‑4). LeetCode (102 
tasks), Codeforces 
(150 tasks)

Few‑Shot+Iterative/
Multi‑Round Prompting.

Accepted, Wrong Answer, Time 
Limit Exceeded, Runtime Error, 
Memory Limit Exceeded, Compile 
Error.

(Palla and Slaby, 
2025)

Python GPT series, Gemini series, 
LLaMA 3, Claude 3 series

10 custom coding 
tasks of varying 
complexity.

Standard/Template‑based 
Prompting.

Syntax, Completeness, Response 
Time, Accuracy, Reliability, 
Exception‑handling, Cost, Efficiency

(Bucaioni, et al., 
2024)

C++, Java ChatGPT (GPT‑4). LeetCode (240 tasks) Efficiency/Conciseness 
Prompts.

Correctness, Runtime Efficiency, 
Memory Usage

(Liu, et al., 2024) Java, C# ChatGPT (GPT‑3.5‑Turbo). CodeXGlue Structured 
CoT+Template‑Based 
Prompting

BLEU, CodeBLEU

(Petrovic, Konicanin 
and Suljovic, 2023)

Arduino ChatGPT (GPT‑4). Two Arduino case 
studies. 

In‑Context/Zero‑Shot 
Prompting.

Prediction time, Context size, 
Accuracy, Code gen time, Compile 
errors

(Paul, Zhu and 
Bayley, 2024)

Java ChatGPT. ScenEval dataset Zero‑Shot Prompting. Pass@1, Avg Pass, Complexity 
(cyclomatic, cognitive, LOC)

(Miah and Zhu, 
2024)

R ChatGPT. R programming tasks 
(351).

Iterative/Multi‑Round 
User‑Centric Prompting.

Usability attributes (Acc, 
Completeness, Conciseness, 
Readability, etc.), Attempts, 
Completion time

(DeLorenzo, Gohil 
and Rajendran, 2024)

Verilog GPT‑3.5, GPT‑4, 
CodeLlama, VeriGen

HDLBits Structured/
Creativity‑Oriented 
Prompting

Fluency, Flexibility, Originality, 
Elaboration, Functionality, GNN4IP 
similarity

This Work Arduino ChatGPT‑4o, Gemini 2.0 
Flash, DeepSeek‑V3, 
Claude 3.5 Sonnet, GitHub 
Copilot, LLaMA‑3

31 
performance‑focused 
Arduino programs.

Zero‑Shot/Role‑Based 
Prompting.

Syntactic and Functional correctness, 
Execution time, SRAM, Flash 
Memory, Multi‑round Error 
Correction, Cyclomatic Complexity, 
NCLOC, CodeBLEU. 
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conciseness, session settings, and generation randomness. 
Similarly, authors (Mirjalili, et al., 2025) integrated meta-
reasoning prompting with adapter methods to boost the 
efficiency and task-adaptive reasoning of models such as 
LLaMA in multi-modal contexts. Their work underscores the 
importance of sophisticated prompt design and model fine-
tuning for specialized domains, a consideration that aligns 
with the challenges of generating efficient code for resource-
constrained environments.

While previous studies have investigated LLMs for 
general-purpose programming or domain-specific code 
generation (e.g., Python), and some have explored basic 
integrations with Arduino, none have systematically 
evaluated LLMs for Arduino code generation. Unlike prior 
research, which focused on single models, limited task types, 
or a narrow set of metrics, our work provides a comparative 
analysis of six state-of-the-art LLMs across 31 performance-
focused Arduino coding tasks. Beyond functional correctness, 
we measure execution time, memory usage, code complexity, 
and code similarity to reference code. Our findings reveal 
each model’s trade‑offs between speed, efficiency, and 
maintainability, contributing to improvements in the 
reliability and efficiency of LLMs for code generation in 
resource-constrained applications.

III. Methodology
The methodology employed in this study consists of seven 

steps: identifying research questions, preparing the subject 
programs, selecting LLMs, defining evaluation metrics, 
prompting the models to generate codes, testing codes, 
and analyzing the results to evaluate LLMs’ capabilities in 
generating correct, efficient, and high-quality Arduino codes, 
with each step described in detail in the following sections.

A. RQs
Several RQs have been identified and addressed in this study, 

each focusing on a specific aspect of the topic as follows.
•	 RQ1 (Overall Correctness): Is the code generated by LLMs 

syntactically and functionally correct?
•	 RQ2 (Code Performance): How efficient is the generated 

code in terms of runtime and memory usage?
•	 RQ3 (Multi-round Error Correction): Can iterative 

prompting improve the correctness of initially incorrect 
code?

•	 RQ4 (Code Complexity): Does the generated code reflect 
the same level of complexity as code written by human 
developers?

•	 RQ5 (Code Similarity): How similar is the generated code 
to the original developer-implemented code?

B. Subject Program Preparation
The subject programs, consisting of 31 optimized Arduino 

programs, were constructed using coding examples from the 
official Arduino reference website2 to cover all programming 

2	 https://www.arduino.cc/reference/en/

constructions. The subject programs cover a wide range 
of Arduino fundamentals, instructions, and tasks, where 
for each program task, the authors prepared two reference 
solutions to reflect real-world developer variation and to 
ensure we explored the best possible approaches, as it was 
not always clear which coding strategy would perform better. 
Some programs were more efficient in terms of memory 
usage, whereas others offered lower execution times. The 
reference solutions were developed with a strong emphasis 
on performance, and manual optimization was applied to 
ensure they were efficient, reliable, and of high quality, with 
each code task accompanied by a specific zero-shot prompt 
(Li, et al., 2024) (directly ask the model to perform a task 
without providing any examples) each clearly defines the role 
and expertise level, specifies the board, states the task (code 
question), and requests optimized code for best performance. 
The prompt is structured as follows:
	 “You are an experienced software developer. Write an 

optimized Arduino Uno Rev3 code that [code question]. 
Only write the code and ensure it’s optimized for best 
performance.”

An example prompt and the code generated by ChatGPT 
are shown in Fig. 1.

C. LLMs Selection
LLMs are trained on existing datasets, and in the simplest 

terms, they are a black box that solves the problem of 
predicting the next word in a sequence. To evaluate their 
capabilities and limitations in code generation, we selected 
six of the most well-known models available: ChatGPT-4o3 
by OpenAI, Gemini 2.0 Flash4 by Google, DeepSeek-V35 by 
DeepSeek, Claude 3.5 Sonnet6 by Anthropic, GitHub Copilot7 

(powered by ChatGPT-4o) by OpenAI in collaboration with 
GitHub, and LLaMA-38 by Meta. Each of these models is 
developed and maintained by a leading tech company, ensuring 
a diverse representation of current advancements in LLMs.

D. Evaluation Metrics
Our research follows a quantitative approach, and to 

ensure the accuracy and reliability of our results, we selected 
a set of well-known evaluation metrics, including Cyclomatic 
Complexity (Ebert, et al., 2016) and CodeBLEU (Ren, et al., 
2020). In addition, we introduce new metrics used for the first 
time in this context, including SRAM (Static Random Access 
Memory) usage and Flash memory usage. These metrics are 
chosen carefully to match each RQ and to provide a clear 
understanding of the performance and effectiveness of our 
methods.

To answer RQ1 (Overall Correctness), we evaluate 
both syntactic and functional correctness (Moradi Dakhel, 

3	 https://chatgpt.com/
4	 https://gemini.google.com/
5	 https://www.deepseek.com/
6	 https://claude.ai/
7	 https://github.com/copilot
8	 https://www.meta.ai/
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et al., 2023) of the generated codes. Syntactic correctness 
is verified using the Arduino compiler to detect syntax 
mistakes, undeclared variables, missing semicolons, etc., 
while functional correctness is evaluated by executing the 
generated code and comparing its outputs with expected 
results. If the initial attempt generated correct code, it was 
marked successful; otherwise, it was marked failed.

To answer RQ2 (Code Performance), we compare the 
performance of the generated code with our reference code. 
The performance of each code was measured in terms of 
execution time/runtime (Niu, et al., 2024) (the amount of 
time required to execute the code), flash memory usage 
(the space required to store the sketch that executes the 
code), and SRAM (Static Random Access Memory) usage 
(the space required for the sketch that executes the code to 
create and manipulate variables when it runs). The Arduino 
IDE was used to measure the amount of SRAM and flash 
memory usage, whereas execution time was measured in 
microseconds. Furthermore, each experiment was repeated 
for two runs: the first run (automatically triggered through the 
Arduino IDE upload process) was treated as a warm-up and 
discarded to reduce measurement noise, whereas the second 
run was obtained by manually pressing the board’s reset 
button and used as the recorded measurement. Furthermore, 
input/output operations (e.g., Serial.print()) were isolated 
from timing to ensure that only the core computation was 
measured. The execution time measurement was determined 
using the pseudo-code shown below. The pseudo-code was 
added to all codes before execution to obtain execution 
time, Flash memory, and SRAM. Any code that executes 
faster, uses less flash memory, and consumes less SRAM is 
considered the best and outperforms the others. However, 
not all codes perform well in all metrics. Therefore, we have 
compared each metric individually.

Execution time measurement pseudo-code:
•	 Begin
•	 Get start time
•	 Execute the code
•	 Get end time
•	 Elapsed time = (end time - start time)
•	 End

To answer RQ3 (Multi-round Error Correction), we 
instruct the models to regenerate code that did not pass the 
overall correctness in RQ1. We aimed to complete each 
task in as few attempts as possible. If the code generated by 
LLM is incorrect, the second attempt is made using compiler 
error feedback or author feedback. In case the output is 
incorrect, the process continues until either the number of 
attempts reaches the maximum of five or a correct solution 
is obtained. Therefore, it leads to the #attempt metric (Miah 
and Zhu, 2024), which represents the number of times the 
user prompted LLMs to generate a correct solution.

To answer RQ4 (Code Complexity), we compare the 
complexity of the generated code to the reference code. 
Code complexity is a critical factor that significantly 
affects readability, maintainability, and overall code quality 
(Tashtoush, et al., 2023). Highly complex code can be 
harder to understand (readability) and maintain. Hence, 
code quality cannot be assessed solely on correctness (RQ1) 
or performance (RQ2); it requires an understanding of the 
structural complexity and adherence to established standards 
(Clark, et al., 2024). For this RQ, we used the following 
metrics:
•	 Cyclomatic Complexity (CC) (Ebert, et al., 2016): It 

measures the number of linearly independent paths in a 
program, which directly correlates with the number of 
decision points in the code. In addition, lower cyclomatic 

Fig. 1. Example of prompt and code solution generated by ChatGPT.
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complexity is generally considered a sign of higher code 
quality, which is calculated using Equation 1.

M = E − N + 2P� (1)

Where:
•	 M is the CC of a program or function.
•	 E is the number of edges.
•	 N is the number of nodes.
•	 P is the number of connected components or exit points.

•	 Non-Comment Lines of Code (NCLOC) (Beurer-Kellner, 
Vechev and Fischer, 2023): It measures the number of 
executable lines in a code, excluding comments and empty 
lines, which is often used to estimate development effort, 
cost, and productivity. Therefore, it supports defect analysis 
and maintainability assessment (Nuñez-Varela, et al., 2017). 
Furthermore, functions with higher NCLOC are typically 
more complex and harder to maintain, whereas shorter 
functions improve readability and ease of testing.

It is worth mentioning that both CC and NCLOC metrics 
were computed using the Lizard tool provided by (Yin, 2024).

To answer RQ5 (Code Similarity), we compare the 
generated code to our reference code to derive additional 
information about the difference between the two codes by 
employing the CodeBLEU (Bilingual Evaluation Understudy) 
score (Ren, et al., 2020). CodeBLEU is a composite metric 
with the scores being the weighted average of 4 different 
sub-metrics treating code differently: n-gram matching 
(BLEU), syntax match, data flow match, and semantic match 
(Evtikhiev, et al., 2023). In addition, it is a widely adopted 
similarity metric, and it can be calculated using Equation 2.

CodeBLEU = α⋅BLEU + β⋅Syntax Match + γ⋅Data Flow 
Match + δ⋅Semantic Match� (2)

Where:
•	 BLEU: measures n-gram overlap between generated and 

reference code.
•	 Syntax Match: compares abstract syntax trees (AST).
•	 Data Flow Match: evaluates the consistency of variable 

usage and dependencies.
•	 Semantic Match: assesses code structure and functionality.

The weights α, β, γ, and δ are tunable hyperparameters, 
allowing flexibility based on the importance of each 
component in a specific context.

A value of 0 in CodeBLEU indicates no similarity between 
the generated and reference code, whereas a value closer to 1 
indicates a high degree of similarity. We compute this metric 
using the tool provided by CodeXGLUE (Lu, et al., 2021).

E. Prompting, Testing, and Analyzing
Fig.  2 shows an overview of our evaluation procedure. 

Our experiments begin by retrieving a prompt (code 
question) from our subject programs and passing it to the 
models to generate an initial code solution. Using the same 
Arduino hardware and Arduino IDE software with its default 

configurations and settings, the solution is assessed for overall 
correctness, including syntactic and functional correctness. 
If the solution fails the correctness check, the model is re-
prompted using feedback—compiler feedback in the case of 
syntactic errors or author feedback in the case of functional 
errors. This process is repeated up to five times if the model 
continues to generate incorrect solutions. If a solution passes 
the overall correctness check, then analyze it in terms of 
code performance and complexity using the Arduino device. 
Otherwise, it is only evaluated for code similarity and multi-
round error correction. The same Arduino device, which is 
the original Arduino Uno Rev3 and the most commonly used 
device, has been employed in all tests to ensure consistent 
hardware specifications9, with the Arduino IDE configured as 
specified in Table II. All code generation experiments were 
conducted during April 2025 using the default configuration 
settings (e.g., temperature) of each model.

IV. Experimental Results
This section presents and discusses the experimental 

results of this study, where each RQ is summarized with a 
short title and discussed in its respective subsection based on 
the study’s findings.

A. Overall Correctness (RQ1)
We evaluate the syntactic and functional correctness 

success rate of all generated codes in the first iteration (zero-
shot ability). As shown in Fig.  3, we found an impressive 
performance by ChatGPT-4o, achieving a remarkable 
96.8% correctness rate on first-iteration solutions. Similarly, 
DeepSeek-V3 follows with a strong performance of 90.3%, 
whereas GitHub Copilot attains 87.1%. Furthermore, Gemini 
2.0 Flash and LLaMA-3 both achieve 80.6%. On the other 
hand, Claude 3.5 Sonnet shows the lowest performance 
among the evaluated models, with a correctness rate of 
67.7%. When looking at the errors in the generated codes, 
most were functional errors (logical errors), either incorrect 
outputs or included unnecessary infinite loops, indicating 
that models are very effective in generating syntactically 
correct code and rarely make syntax errors.

B. Code Performance (RQ2)
In this RQ, we aim to investigate how the performance of 

code generated by LLMs compares to our reference code. 
Performance is a crucial factor in systems with limited 
resources, such as Arduino devices, which are constrained 
by limited resources and computing capabilities. Hence, we 
evaluate and compare the generated and reference code based 
on three key performance metrics: execution time, flash memory 
usage, and SRAM usage. Fig.  4 compares execution time for 
all correct code generated by LLMs in the first iteration. The 
execution time was categorized into three outcomes:
•	 Equal (blue bars): The generated code had the same 

execution time as the reference code

9	 https://store.arduino.cc/products/arduino-uno-rev3
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•	 Greater (orange bars): generated code had a longer execution 
time

•	 Smaller (gray bars): generated code had a shorter execution 
time.

From Fig.  4, it is observed that ChatGPT-4o shows the 
highest number of codes matching the execution time of our 
reference codes, whereas Gemini 2.0 Flash performed strongly, 
which shows a higher number of codes where execution time 
is shorter. In addition, DeepSeek-V3 performed well with 
equal and smaller execution times. Interestingly, Claude 3.5 

Sonnet shows a higher number of codes where execution time 
is shorter, but overall correctness (RQ1) is the poorest among 
the models. GitHub Copilot had an even distribution between 
equal and greater execution times, whereas LLaMA-3 
presented a balanced number of greater and smaller codes.

Fig. 5 shows the comparison of flash memory usage for all 
generated codes in the first iteration, which are categorized 
into three outcomes: Equal, greater, and smaller, similar to 
what we did for execution time.
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Fig. 4. Comparison of execution time outcomes: Equal, greater, or 
smaller than reference code.

Fig. 2. The evaluation procedure used.
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Fig. 3. Zero-shot overall correctness (RQ1) rate (%) of a 
large language model.

TABLE II
Arduino IDE Specifications

Platform Specifications Detail
Arduino IDE IDE version 2.3.5

GCC compiler version 7.3.0
GCC compiler optimization levels Os (default)
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The results show that DeepSeek-V3 has strong optimization 
capability with the highest number of codes with smaller flash 
memory usage than reference codes. In comparison, models 
such as Gemini 2 Flash and GitHub Copilot exhibited more 
code with higher flash memory usage. ChatGPT-4o presents a 
relatively balanced distribution, whereas LLaMA-3 maintains 
an even spread across equal, greater, and smaller memory 
usage categories.

Fig.  6 compares SRAM usage across evaluated LLMs, 
categorizing outcomes into equal, greater, or smaller usage.

Based on the results shown, ChatGPT-4o demonstrates the 
highest number of codes where the generated code exhibits 
equal SRAM usage compared to the reference code. followed 
closely by DeepSeek-V3 and LLaMA-3. Furthermore, 
GitHub Copilot performed well. In contrast, Gemini 2.0 
Flash exhibits a more varied distribution with a higher 
number of greater SRAM usages, whereas Claude 3.5 Sonnet 
shows fewer codes of reduced SRAM usage compared to 
other models.

C. Multi-attempt Code Correction (RQ3)
We examine the effectiveness of the multi-attempt 

correction process in enhancing code generation for 
functional correctness across all models. Since all models 
support multi-attempt conversations, we instruct them to 

regenerate code snippets up to five times if they fail during 
the functional correctness test in RQ1.

As shown in Fig. 7, all models reduced incorrect outputs 
over attempts. Claude 3.5 Sonnet started with the highest 
number of incorrect codes (10) but managed to reduce 
them to just one by the second attempt, maintaining that 
level through the fifth. Similarly, Gemini 2.0 Flash and 
LLaMA-3 showed consistent improvement, reaching a 
minimum of one incorrect output by the fifth attempt. 
DeepSeek-V3 and ChatGPT-4o achieved full correction 
by the second attempt, whereas GitHub Copilot quickly 
dropped from four to one by the second attempt. These 
results indicate that multi-attempt code correction is 
effective in improving code correctness, particularly within 
the first few iterations.

D. Code Complexity (RQ4)
Code complexity is a critical factor that significantly 

affects readability, maintainability, and overall code quality 
(Tashtoush, et al., 2023). Hence, highly complex code can 
be harder to understand (readability) and maintain. The 
results for Cyclomatic Complexity are shown in Fig.  8, 
where most LLMs, including ChatGPT-4o, Claude 3.5 
Sonnet, and LLaMA-3, tend to generate code with low 
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Fig. 5. Comparison of flash memory usage: Equal, greater, 
or smaller than reference.
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Fig. 6. Comparison of SRAM usage: Equal, greater, or 
smaller than reference.
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cyclomatic complexity (values of 2 and 3), closely mirroring 
our reference code, indicating that these models generate 
relatively simple and maintainable logic structures. In 
contrast, Gemini 2.0 Flash stands out by generating a higher 
number of codes with complexity levels of 4 and 5, which 
reduces code readability and maintainability. In addition, a 
high cyclomatic complexity can potentially lead to a high 
probability of errors and bugs in the code.

Fig. 9 categorizes the NCLOC into five ranges. The results 
show that most models have generated short codes in the 
6–10 line range, including ChatGPT-4o, DeepSeek-V3, and 
LLaMA-3. Claude 3.5 Sonnet and GitHub Copilot generated 
longer codes, with most in the 6–10 and 11–15 line range. 
However, Gemini 2.0 GPT-4 not only has more lines but 
also more complex codes compared to other models and the 
reference code. Overall, these results highlight that while 
some LLMs align closely with the reference in terms of 
code length and complexity (ChatGPT-4o, DeepSeek-V3, 
and LLaMA-3), others vary significantly (Gemini 2.0 Flash, 
Claude 3.5 Sonnet, and GitHub Copilot).

E. Code Similarity (RQ5)
To derive additional information about the difference 

between the generated and reference code, we computed 
the CodeBLEU score. Fig.  10 shows the CodeBLEU scores 
between the reference and generated codes by all models. The 
CodeBLEU scores vary across models, with ChatGPT-4o and 
LLaMA-3 achieving the highest median values, indicating 
that their outputs are most similar to reference codes. In 

contrast, Gemini 2.0 Flash shows the lowest median and a 
narrower interquartile range, reflecting greater deviations from 
the reference. Moreover, other models such as DeepSeek-V3, 
Claude 3.5 Sonnet, and GitHub Copilot show moderate 
performance with varying levels of consistency. These results 
suggest that while some models (ChatGPT-4o, LLaMA-3) 
are adept at mimicking human-like code patterns, others 
(Gemini 2.0 Flash) generate code with significant structural or 
semantic deviations, potentially impacting software quality – 
notably through reduced readability and maintainability.

V. Discussion
Our evaluation of state-of-the-art LLMs on Arduino code 

generation reveals nuanced trade-offs between correctness, 
performance, and code quality. Although ChatGPT-4o 
achieved the highest zero-shot functional correctness 
rate (96.8%), its generated code consistently has longer 
execution times than Gemini 2.0 Flash, indicating that there 
is no positive correlation between functional correctness and 
code efficiency. In contrast, DeepSeek-V3 has a zero-shot 
functional correctness rate of 90.3%, less than ChatGPT-
4o, which delivered significantly lower execution times and 
reduced Flash memory consumption compared to ChatGPT-
4o. Claude 3.5 Sonnet has the lowest zero-shot functional 
correctness rate of 67.7%. Error analysis revealed that many 
of its generated codes appended unnecessary infinite loops or 
the code was inside Arduino’s continuously running loop(), 
even when the prompt did not require it. In addition, despite 
using the same zero-shot prompts across all models, Claude 
3.5 Sonnet showed the least ability to interpret and adhere 
to the prompt constraints. GitHub Copilot achieved a zero-
shot functional correctness rate of 87.1%, ranking third 
behind ChatGPT-4o and DeepSeek-V3. Finally, although 
Copilot was trained on a large corpus of code from GitHub 
and explicitly designed for programming tasks (Jiang, et al., 
2024), it generated less efficient code compared to other 
models, which are trained on a broader range of text data and 
have a better understanding of the overall prompt context.

The effectiveness of multi-attempt error correction across 
all models highlights the potential of iterative refinement 
in practical development workflows. Both ChatGPT-4o and 
DeepSeek-V3 were able to resolve 100% of their initial 
failures by the second attempt (Miah and Zhu, 2024), and 
all models corrected the majority of their errors within five 
rounds. These results suggest that integrating compiler or 
developer feedback into prompts can be a powerful strategy 
to overcome initial model limitations.

Code complexity metrics further highlight the trade-off 
between maintainability and performance. Models such as 
ChatGPT-4o, LLaMA-3, and Claude 3.5 Sonnet consistently 
generated code with cyclomatic complexity values in the 
2–3 range, comparable to our code. This lower complexity 
enhances readability and reduces the cognitive load required 
for developers to understand and maintain the code. In 
contrast, performance-focused models such as Gemini 2.0 
Flash tended to generate code with higher complexity (≥4) and 
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Fig. 10. Distribution of CodeBLEU scores (0–1 scale) between 
reference and generated codes.
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longer lines, often due to optimizations such as loop unrolling 
or generating custom functions instead of using built-in 
functions or libraries. Although these strategies can improve 
execution speed, they also increase code complexity, raising 
concerns about code understandability and maintainability.

Our CodeBLEU similarity analysis reinforces these 
findings by clearly highlighting differences in how closely the 
models align with human coding practices. ChatGPT-4o and 
LLaMA-3 achieved the highest CodeBLEU scores, indicating 
strong structural and semantic similarity to the reference 
code. This alignment translated not only into readable and 
maintainable code but also into comparable performance 
and code complexity. In contrast, although Gemini 2.0 
Flash produced longer and more complex code with faster 
execution times, its substantially lower CodeBLEU scores 
reveal a significant departure from the reference code.

Overall, our comprehensive evaluation underscores that 
none of the evaluated LLMs excel across all dimensions of 
Arduino code generation. Table III clearly compares models 
across correctness, performance, error correction, complexity, 
and similarity to reference code. These findings emphasize 
the importance of selecting models based on a project’s 
priorities – correctness, performance, maintainability, or 
alignment with human coding practices.

VI. Threats to Validity
There are some potential threats affecting the validity of 

our experimental results and conclusions.
•	 External Validity. In this study, only six LLMs were 

selected. Therefore, the results cannot be generalized to 
all LLMs, nor to future model versions. However, these 
models were carefully chosen based on their popularity 
and recent advancements in the field. Another threat is that 
commercial LLMs are closed and may be updated or fine-
tuned without notice, leading to hosted-model drift and 
potential differences in output over time. Both the model 
versions and the access data have been clearly reported to 
support transparency and reproducibility.

•	 Internal Validity. One potential threat is that using only 
Arduino tasks and a specific set of 31 programs may 
introduce a single-board bias, potentially affecting the 

causal interpretation of results. This threat was mitigated by 
ensuring consistent prompts, using the same Arduino board, 
and using identical IDE settings across all experiments.

•	 Construct Validity. The study employed multiple metrics, 
including functional correctness, execution time, cyclomatic 
complexity, and CodeBLEU, using established tools such as 
Lizard and CodeXGLUE to ensure reliability. However, some 
limitations remain: CodeBLEU, originally designed for general-
purpose languages, may not fully capture semantic or logical 
equivalence in Arduino code, and cyclomatic complexity may 
not reflect all aspects of code complexity. These considerations 
were carefully acknowledged, and the use of well-defined 
and diverse metrics ensures that the evaluation meaningfully 
captures Arduino code generation performance.

VII. Conclusion
This study provides a comprehensive evaluation of LLMs 
for Arduino code generation, highlighting each model’s 
strengths and limitations in producing efficient, maintainable, 
and human-like code. Our analysis of six state-of-the-art 
models shows that none of the evaluated LLMs excel across 
all dimensions: ChatGPT‑4o leads in zero-shot functional 
correctness and alignment with human coding practices, 
whereas Gemini 2.0 Flash excels in runtime efficiency at the 
expense of readability, and DeepSeek‑V3 demonstrates strong 
potential for memory-optimized applications through efficient 
flash memory usage. The study also identifies limitations 
in current LLMs, including prompt adherence problems in 
Claude 3.5 Sonnet and unexpected inefficiencies in GitHub 
Copilot despite its domain-specific training.

For future work, this research can be extended to other 
resource-constrained devices, such as Raspberry Pi, ESP32, or 
ARM-based microcontrollers, and to programming languages 
that target hardware devices, such as MicroPython. Additional 
studies could investigate optimization techniques to further 
improve code correctness, efficiency, and maintainability. 
By addressing these directions, future research can advance 
the potential of LLMs as tools for efficient and automated 
microcontroller programming used in IoT and embedded 
systems, covering many aspects of daily life.

TABLE III
Performance of Large Language Models (LLMs) in Arduino Code Generation (RQ1–RQ5)

Model Overall 
Correctness 
(RQ1)

Execution Time 
(RQ2)

Flash Usage 
(RQ2)

SRAM Usage 
(RQ2)

Multi‑Attempt  
Fixing (RQ3)

Cyclomatic 
Complexity 
(RQ4)

Code Length 
(NCLOC) 
(RQ4)

Code 
Similarity 
(RQ5)

ChatGPT‑4o 96.8% (Best) Mostly Equal Balanced (Equal/
Greater/Smaller)

Mostly Equal 
(Best)

Fixed All by 2nd 
Attempt

 Low Short Most similar 
(Best)

DeepSeek‑V3 90.3% Equal/Smaller Most Memory 
Efficient (Best)

Mostly Equal Fixed All by 2nd 
Attempt

Low Short Mostly 
Similar 

GitHub Copilot 87.1% Balanced (Equal/
Greater/Smaller)

Mostly Greater Mostly Equal Needed up to 2nd 
Attempt

Low/High Medium Less Similar

Gemini 2.0 Flash 80.6% Mostly Smaller 
(Best)

Mostly Greater Equal/Greater Fixed Most by 5th 
Attempt

High Longer Least 
Similar

LLaMA‑3 80.6% Mostly Equal Mostly Smaller Mostly Equal Fixed Most by 5th 
Attempt

Low Short Mostly 
Similar 

Claude 3.5 Sonnet 67.7% Equal/Smaller Mostly Smaller Mostly Equal Fixed by 2nd Attempt Low Short/Medium Less Similar
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