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Abstract—Adhering to good coding practices is critical for 
enhancing a software’s readability, maintainability, and reliability. 
Common static code analysis tools for Python, such as Pylint 
and Flake8, are widely used to enforce code quality by detecting 
coding violations without executing the code. Yet, they often fail to 
handle deeper semantic understanding and contextual reasoning. 
This study investigates the effectiveness of large language models 
(LLMs) compared to traditional static code analysis tools in 
detecting Python coding violations. Six state-of-the-art LLMs: 
ChatGPT, Gemini, Claude Sonnet, DeepSeek, Kimi, and Qwen 
were evaluated against Pylint and Flake8 tools. To do so, a curated 
dataset of 75 Python code snippets, annotated with 27 common 
code violations, was used. In addition, three common prompting 
strategies: Structural, chain-of-thought, and role-based, were used 
to instruct the selected LLMs. The experimental results reveal that 
Claude Sonnet achieved the highest F1-Score (0.81), outperforming 
Flake8 (0.79) and demonstrating strong precision (0.99) and recall 
(0.69). However, LLMs showed differences in performance, with 
Qwen and DeepSeek underperforming relative to others. Moreover, 
LLMs that identified documentation and design violations (such 
as type hints and nested method structures) performed better 
than stylistic consistency and complex semantic reasoning. The 
results were heavily influenced by the prompting approach, with 
structural prompts yielding the most balanced performance in 
the majority of cases. This research contributes to the practical 
empirical work on employing LLMs for code quality assurance 
while also demonstrating their potential role as complementary 
static code analysis tools for Python, with methodologies that may 
extend to other languages.

Index Terms—Large language models, Software 
metrics, Software quality, Static code analysis.

I. Introduction
Adherence to good coding remains critical in contemporary 
software engineering, affecting a given software project’s 
reliability, maintainability, and security (Moratis, et al., 2024; 

Wadhwa, et al., 2024). One aspect of poor coding is termed 
“code smells”, which can sharply reduce quality and may lead 
to costly errors that are expensive to fix later in the software 
development lifecycle (AlOmar and Mkaouer, 2024). To 
solve this problem, static code analysis tools have emerged 
as essential components within quality assurance workflows 
for software products (Guo, et al., 2023b). Tools for static 
code analysis, such as Pylint, Flake8, PMD, FindBugs, and 
SonarQube, are designed to analyze source code without 
execution; they flag violations, such as coding defects, 
vulnerabilities, and style inconsistencies against pre-defined 
rules (Mohajer, et al., 2023). While such tools often generate 
high false positives (FPs), which can be overwhelming for 
developers and require manual checks, their refinement 
could help detect early issues, reducing maintenance costs 
(Li, et al., 2023a).

In parallel, large language models (LLMs), such as 
ChatGPT, have a deep impact on software engineering 
and they are significantly transform diverse aspects of 
its domains (Ságodi, Siket and Ferenc, 2024; Zhang, et 
al., 2024). LLMs are trained on datasets of both natural 
language and source code; therefore, they demonstrate 
remarkable capabilities in natural language interpretation as 
well as in comprehending source code. Consequently, they 
can perform tasks, such as code generation, code review, 
and program repair (Ságodi, Siket and Ferenc, 2024; 
Zhang, et al., 2024). Their strength lies in their capability 
for code understanding and detecting subtle code patterns 
related to bugs or vulnerabilities. They also provide help 
with automated code improvements using natural language 
commands (Purba, et al., 2023; Ma, et al., 2024). However, 
understanding code behaviors is often difficult for LLMs. 
Since LLMs are prone to hallucinations that can lead to 
functionally incorrect or vulnerable code (Jesse, et al., 
2023; Pearce, et al., 2023; Haindl and Weinberger, 2024). 
This study aims to quantitatively and qualitatively evaluate 
the performance of LLMs against established static code 
analysis tools in identifying and rectifying Python coding 
violations, including violations of Python Enhancement 
Proposal 8 (PEP-8)1. Our aims are to investigate the 
capabilities and limitations of various LLMs in detecting 
and explaining Python coding violations, benchmarking 

1	  https://peps.python.org/pep-0008/
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their performance against traditional static code analysis 
tools, and exploring the influence of prompting strategies, 
code characteristics, and inter-LLM consistency on their 
effectiveness.

Python was selected over other programming languages 
for this research as it is currently ranked as the number 
one programming language according to the TIOBE 
Index2. Furthermore, it is the most widely used language 
in artificial intelligence/machine learning development 
due to its simple syntax, extensive libraries (such as 
TensorFlow, PyTorch, and scikit-learn), and strong 
community support (Raschka, Patterson and Nolet, 2020). 
Moreover, Python has become a dominant language for the 
Internet of Things (IoT), where it is used for programming 
microcontrollers (such as Raspberry Pi and MicroPython-
based devices), integrating sensors, and building rapid IoT 
prototypes (Kedia, Kumari and Mundra, 2023). Its high-
level abstractions, cross-platform compatibility, and many 
libraries (e.g., paho-mqtt and adafruit-io) make Python 
especially suitable for connecting devices, managing data, 
and enabling communication in IoT environments. As IoT 
systems increasingly rely on intelligent processing and 
edge computing, Python’s role in bridging AI capabilities 
and IoT infrastructures becomes crucial for innovation and 
static code analysis applicability.

This study contributes to code analysis by evaluating how 
effectively and consistently LLMs detect coding violations 
in comparison to traditional static code analysis tools, as 
follows:
1.	 Comparative effectiveness analysis: Evaluates how well 

LLMs detect coding violations and benchmarks their 
performance against traditional static code analysis tools.

2.	 Taxonomy of violations: Develops a detailed taxonomy that 
classifies coding violations, showing where LLMs perform 
better or worse, thereby highlighting model strengths and 
limitations.

3.	 Cross-model consistency: Analyzes six state-of-the-art 
LLMs to identify consistent model-specific patterns across 
violation detection.

4.	 Batch versus Individual code analysis: Investigates the 
impact of granularity by comparing LLMs’ performance 
on batch code snippets versus individual snippet analysis, 
thereby guiding effective use cases.

5.	 Dataset construction: Builds and releases a new, specialized 
dataset focused on evaluating Python coding violations, 
providing a benchmarking standard for benchmarking 
present and future models.

Collectively, this study advances the understanding of 
LLMs’ applicability in Python code quality assessment, 
while offering a methodology that may be extended to other 
programming languages in future studies.

The remainder of this study is structured as follows: 
Section II reviews related work. Section III details the 
research methodology that have been used in this study. 
Section IV presents and discusses the experimental results of 
this study. Section V highlights the main limitations of using 

2	  https://www.tiobe.com/tiobe-index/

LLMs for static code analysis. Finally, Section VI concludes 
the study and suggests directions and future research.

II. Related Works
This section presents the most related works to this 

study. LLMs are being evaluated for their capability to 
detect software vulnerabilities in (Noever, 2023; Purba, 
et al., 2023). This includes evaluating their performance 
against traditional tools, such as Snyk and Fortify, or with 
pre-trained models for vulnerability detection. Specific 
approaches involve using LLMs for static taint analysis 
to infer APIs’ taint specifications and classify vulnerable 
paths as True or FPs through contextual analysis, as in (Li, 
Dutta and Naik, 2025). Beyond mere detection, LLMs are 
also explored for broader software vulnerability analysis 
tasks, including vulnerability assessment (e.g., qualitative 
severity ratings), vulnerability location, and vulnerability 
description, providing more contextual information that can 
improve LLMs’ vulnerability assessment capabilities (Yin, 
Ni and Wang, 2024). LLMs are used to identify and address 
general code quality problems (Souma, et al., 2023). This 
covers both error detection and correction (such as syntax 
and type errors). By producing and ranking code fixes to 
increase acceptance rates and reduce developer workload, 
LLMs assist in addressing code quality issues with tools, 
such as CodeQL and SonarQube, in the context of static 
code analysis (Wadhwa, et al., 2024).

In addition, LLMs are used to refactor and fix bugs 
found by static code analysis tools, especially those related 
to design, error proneness, best practices, and code style 
(AlOmar and Mkaouer, 2024). Although LLMs are good at 
detecting issues in single locations, they might not be able 
to grasp the larger code context for intricate design problems 
(Guo, et al., 2023b; Li, et al., 2023a). To determine whether 
potential bugs found by static code analysis are real bugs or 
FPs, LLMs might be consulted, particularly in circumstances 
that are unclear (Li, et al., 2023b). To lower the rate of 
FPs, tools, such as SkipAnalyzer, combine automatic bug 
repair, false-positive alerts, and LLM-based static bug 
detection (Mohajer, et al., 2023). Assessing LLMs’ ability 
to perform program analysis tasks, such as abstract syntax 
tree generation, Expression Matching, control flow graph 
generation, call graph generation, data dependency analysis, 
taint analysis, and pointer analysis is a crucial component 
of integrating them with static code analysis (Ma, et al., 
2024). For LLMs to be used correctly and sensibly in code-
related activities, it is essential to appreciate both their 
strengths and weaknesses in understanding program syntax 
and statically approximating program behavior. Even if 
LLMs are promising for applications, such as type inference, 
more complex domains, such as CG analysis, may still be 
better served by traditional techniques (Venkatesh, et al., 
2024). To summarize, the tasks assigned to LLMs start with 
a fundamental understanding of the code, along with static 
behavior approximation, followed by higher-order tasks, such 
as detecting and resolving numerous types of violations, 

https://www.tiobe.com/tiobe-index/
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and critically, refining the output of traditional static code 
analysis tools.

While prior research works have explored the capabilities 
of LLMs in software vulnerability detection, taint analysis, 
and broader vulnerability assessment, our study extends the 
research by focusing specifically on Python code violations, a 
critical yet underexplored aspect of static code analysis. Unlike 
previous works that primarily assess LLMs against security-
focused tools, such as Snyk and Fortify, our study provides 
a comprehensive comparison with traditional static code 
analysis tools (i.e., Pylint and Flake8), emphasizing coding 
quality. In addition, while existing studies highlight LLMs’ 
potential in error correction and false-positive reduction, our 
study introduces a novel taxonomy of 27 Python-specific 
coding violations and systematically evaluates six state-of-the-
art LLMs across multiple prompting strategies. This granular 
approach not only identifies LLMs’ strengths in detecting 
different violations but also reveals their limitations in semantic 
reasoning and stylistic consistency, a contribution that refines 
the understanding of LLMs’ role in code quality assurance. 
Furthermore, our findings on batch versus individual code 
analysis and prompt sensitivity offer practical insights for 
integrating LLMs into developer workflows, advancing beyond 
the theoretical aspects proposed in earlier studies.

III. Research Methodology
This study’s methodology consists of eight steps (shown in 

Fig.  1): identifying research questions (RQs), preparing the 
code snippet dataset, manually labeling the data, selecting 
LLMs and static code analysis tools, designing prompts 
for the LLMs, defining evaluation metrics, conducting 
experiments and analyzing results to assess LLMs’ ability to 
detect Python coding violations. Each step is detailed in the 
following subsections:

A. RQs
Several RQs have been identified and answered in this study. 

Each RQ addresses a particular aspect of the topic, as follows:

•	 RQ1 (overall performance comparison): How effective 
are LLMs at identifying coding violations compared to 
traditional static code analysis tools?

•	 RQ2 (violation-type detection strengths and weaknesses): 
What types of coding violations are LLMs better at detecting 
compared to static code analysis tools, and which types do 
they struggle with?

•	 RQ3 (model consistency): How consistent are different 
LLMs in identifying the same coding violations?

•	 RQ4 (prompting strategies): Do different prompting 
strategies affect an LLM’s model’s ability to identify coding 
violations?

•	 RQ5 (Batch vs. individual code analysis): Does analyzing 
code snippets in batches, as opposed to individually, lead to 
different outcomes in the identification of coding violations?

B. Code Snippets Dataset Preparation
This study curated 75 Python code snippets extracted from 

LeetCode3 website, across three difficulty levels (25 Easy, 25 
Medium, and 25 Hard). Each snippet represents a realistic 
programming task rather than artificially constructed 
examples. The snippets were manually annotated by the 
authors for quality. The annotation followed the PEP-8 
standards and included 27 common violation categories 
(Table I). Examples include stylistic violations (e.g., 
missing whitespace), documentation issues (e.g., absent 
function docstrings), and structural/design flaws (e.g., nested 
methods). Each violation was labeled independently by both 
authors, and disagreements were resolved through discussion, 
ensuring consistent ground truth labels. The full dataset 
and annotation guidelines are made publicly available in a 
GitHub repository4.

Fig.  2 illustrates a sample code snippet from our dataset 
that demonstrates several violations of coding, their details 
are presented in Table II.

3	  https://leetcode.com/
4	  https://github.com/CodingWithLLMs/Online-CodeBase

Fig. 1. The methodology of this study.

https://leetcode.com/
https://github.com/CodingWithLLMs/Online-CodeBase
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TABLE I
Violations that LLMs Detect or Miss

# Violations Types Claude Gemini Qwen ChatGPT Kimi DeepSeek
1. Too‑many‑local‑variables‑(>15) Complexity/modularity      

2. Function‑return‑not‑implemented Design/completeness      

3. Class‑inside‑method Design/modularity      

4. Method‑inside‑method‑(no‑single‑responsibility) Design/modularity      

5. Add‑meaningful‑comments‑to‑complex‑logic Documentation/clarity      

6. Function‑type‑hints‑Not‑define Documentation/clarity      

7. Class‑doc‑string‑Not‑written Documentation/stylistic      

8. Function‑doc‑string‑Not‑written Documentation/stylistic      

9. Expected‑blank‑line‑after‑class Layout/formatting      

10. Expected‑blank‑line Layout/formatting      

11. Expected‑blank‑line‑before‑a‑nested‑definition Layout/formatting      

12. Expected‑a‑blank‑line‑after‑method Layout/formatting      

13. Line‑too‑long‑(>‑79‑characters) Layout/formatting      

14. Missing‑Space‑around‑operator Layout/formatting      

15. Missing‑whitespace‑after‑(comma) Layout/formatting      

16. Missing‑whitespace‑after‑(colon) Layout/formatting      

17. Unused‑variable Maintainability/efficiency      

18. Function‑name‑not‑snake‑case Naming      

19. Variables‑naming‑conventions Naming      

20. Class‑name‑should‑be‑snake‑case Naming      

21. Consider‑using‑enumerate‑instead‑of‑iterating Readability      

22. Unnecessary‑“elif”‑after‑“return” Readability/refactoring      

23. Unnecessary‑“else”‑after‑“return” Readability/refactoring      

24. Redefining‑built‑in‑“next” Reliability/clarity      

25. Functions‑input‑not‑validated‑early Robustness/security      

26. Undefined‑variable Runtime error/logic      

27. Import‑should‑be‑outside‑top‑level Structural/layout      

TABLE II
Coding Violations Identified

# Violation Frequency
1. Function‑name‑not‑snake‑case 2
2. Missing‑whitespace‑after‑comma 8
3. Function‑type‑hints‑Not‑written 2
4. Function‑doc‑string‑Not‑written 2
5. Missing‑Space‑around‑operators 3
6. Expected‑blank‑line‑before‑a‑nested‑definition 1
7. Add‑meaningful‑comments‑to‑logic 1
8. Method‑inside‑method‑(no‑single‑responsibility) 1
9. Functions‑input‑not‑Validate‑early 1
Total violations 21

C. LLMs Selection
To assess the capabilities and limitations of LLMs in 

detecting different coding violations while ensuring robust 
and reliable results, we selected six state-of-the-art models: 
DeepSeek-V35 (DeepSeek) from DeepSeek, ChatGPT 
4-Turbo6 (ChatGPT) from OpenAI, Claude 3.7-Sonnet7 

(Claude) from Anthropic, Gemini 2.5-pro-preview-03-25c8 

(Gemini) from Google, Kimi9 from Moonshot AI and Qwen 

5	  https://www.deepseek.com/
6	  https://chatgpt.com/
7	  https://claude.ai/
8	  https://gemini.google.com/
9	  https://www.kimi.com/

2.5-Max10 (Qwen) from Alibaba. These models were chosen 
to ensure a comprehensive evaluation of present LLM 
performance in code-related tasks.

D. Static Code Analysis Tools Selection
To ensure rigorous evaluation of code quality, we 

employed two industry-standard Python static code analysis 
tools, Pylint (Pylint-Dev., 2024) and Flake8 (Flake8-Dev, 
2025). These tools complement each other: Flake8 ensures 
strict PEP-8 compliance, while Pylint covers broader software 
engineering and coding best practices, together providing a 
strong selection for evaluating both style and code quality.

10	  https://chat.qwen.ai/

Fig. 2. Sample Python code with different violations.
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E. Prompt Design
We employed three common prompting strategies to 

evaluate LLMs’ performance:
•	 Structural prompt (P1): Example of structural prompt: 

“Analyze the following Python code for any PEP-8 
violations or potential issues”.

•	 Chain of thought (CoT) prompt (P2): Example of CoT 
prompt: “Analyze the provided Python code for PEP-8 
violations, potential issues, or areas of improvement. Use a 
Chain of Thought (CoT) approach to systematically evaluate 
the code”.

•	 Role-based prompt (P3): Example of role-based prompt: “As a 
software engineer, you are tasked with analyzing the following 
Python code for any PEP-8 violations or potential issues”.

The three prompt types structural, CoT, and role-based, 
were selected due to their proven ability to enhance LLM 
performance by providing essential guidance. Structural 
prompts boost clarity and specificity by incorporating 
detailed task descriptions, explicit output formats (such as 
JSON), and crucial code context, leading to more precise and 
relevant outputs (Liu, Yang and Liao, 2024). CoT prompts 
enable LLMs to tackle complex problems by encouraging 
step-by-step reasoning and problem decomposition, which in 
turn improves accuracy and the robustness of responses (Li, 
et al., 2023a). Finally, role-based prompts assign a specific 
persona to the LLM (e.g., “vulnerability detection system”), 
establishing a clear task context that helps the model focus 
and significantly improves its performance in generating 
desired outputs (Hajipour, et al., 2024).

F. Evaluation Metrics
To address the majority of the RQs, we employed a set 

of established evaluation metrics, including true positive 
(TP), false negative (FN), FP, precision, recall, and F1-
Score (Omar and Shiaeles, 2023; Ignatyev, et al., 2024). For 
specific cases requiring additional scrutiny, supplementary 
metrics, such as false discovery rate (FDR) (Li, Dutta and 
Naik, 2025), consistency rate (CR), average CR (Carandang, 
et al., 2025), prompt agreement (PA) (Mousavi, Alghisi and 
Riccardi, 2025), and lines of code were utilized.
•	 To answer RQ1 (overall performance comparison): After 

obtaining the results from the static code analysis tools 
and LLMs (processing 25 code snippets at a time in JSON 
format), we manually labeled each prediction as TP, FP, 
or FN based on ground truths. The correctness of labeling 
was manually validated by the authors. We then calculated 
precision, recall, F1-Score, and FDR for the entire dataset, 
as defined in equations (1), (2), (3), and (4).

Precision
TP

TP FP



� (1)

Recall
TP

TP FN



� (2)

F Score *
Precision*Recall

Precision Recall
1 2 


� (3)

FDR
FP

FP TP



� (4)

Where:
•	 TP: Correctly predicted positive case.
•	 FP: Incorrectly predicted positive when the actual is 

negative.
•	 FN: Incorrectly predicted negative when the actual is 

positive.
•	 Precision: How well the model avoids FPs.
•	 Recall: How well the model finds all actual positives.
•	 F1-Score: Harmonic mean of precision and recall.
•	 FDR: Proportion of FPs, among all predicted positives.

•	 To answer RQ2 (violation-type detection strengths and 
weaknesses): The results were filtered by classification 
(FN and TP) and grouped by type and subtype to assess 
the LLM’s strengths and weaknesses in detecting violation 
types.

•	 To answer RQ3 (model consistency): The obtained results 
were filtered to find cases with both FN and TP for each 
LLM, enabling consistency assessment. Average CR was 
computed across three prompts (P1, P2, and P3) to evaluate 
performance stability, and PA was calculated to identify 
the LLM with the highest agreement rate, as defined in 
equations (5) and (6).

AverageCR Recall
1 1n

ii
n � (5)

#  Prompts with 1 TPPA
Total Prompts


 � (6)

Where:
•	 N: Total number of prompts.
•	 PA: Measures LLM consistency by evaluating responses 

to varied (perturbed) versions of the same prompt.
•	 To answer RQ4 (prompting strategies): To improve LLM 

output consistency, we used three prompting strategies: 
structured, CoT, and role-based, and evaluated them using 
precision, recall, and F1-Score to assess their impact on the 
LLMs’ performance.

•	 To answer RQ5 (Batch vs. Individual Analysis): We 
selected 15 code snippets (five per difficulty level) and 
ran an evaluation using only the (P1) prompt to check if 
individual snippet assessments differ across all LLMs. We 
then manually annotated model predictions as TP, FP, or 
FN by comparing them to ground truth labels. Using this, 
we calculated precision, recall, and F1-Score for the (P1) 
dataset and compared these results with those from (RQ1) 
to identify any discrepancies or consistencies.

IV. Results and Discussion
In this section, the experimental results of this study are 

presented and discussed. Each RQ is summarized with a 
short title and discussed in its respective subsection based on 
the study’s findings.
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A. Overall Performance Comparison (RQ1)
The obtained results for this RQ, based on three sessions 

per LLM using 25 code snippets each with P1, are shown 
in Fig.  3. Claude achieves the highest F1-Score (0.81), 
demonstrating a strong balance between precision (0.99) 
and recall (0.69), closely followed by Flake8 with F1-Score 
(0.79), which maintains perfect Precision (1.00) but slightly 
lower recall (0.66). Gemini also performs well with F1-score 
(0.78), with near-perfect precision (0.99), and moderate recall 
(0.64). In contrast, Kimi with F1-Score (0.56), DeepSeek 
with F1-Score (0.46), and Qwen with F1-Score (0.36) exhibit 
declining performance due to lower recall values of 0.39, 
0.34, and 0.23, respectively, despite relatively high Precision. 
Notably, Pylint and ChatGPT show the weakest performance, 
with F1-Scores of 0.35 and 0.13, respectively, primarily due 
to their extremely low recall of 0.21 and 0.07, despite perfect 
or near-perfect Precision. These results reveal that while 
some LLMs, such as Claude, can outperform traditional 
static code analysis tools.

Another aspect is important for the overall performance of 
LLMs, which is FDR (Table III), which compares the FDR 
of the LLMs across three prompts (P1, P2, and P3), revealing 
significant variations in their reliability. Kimi emerges as the 
top performer with a perfect FDR of 0.00 across all prompts, 
demonstrating exceptional precision. Claude and Gemini also 
perform remarkably well, both maintaining an average FDR 
of just 0.01, with Claude achieving a flawless (0.00) with the 
third prompt. ChatGPT shows strong overall performance 
with an average FDR of 0.06, though its rate rises to 0.17 
with the third prompt, indicating some prompt sensitivity. 
DeepSeek exhibits consistently higher FDRs between 0.26 
and 0.35, averaging 0.29, suggesting a tendency for more 

FP. Most notably, Qwen displays extreme variability, with 
FDRs ranging from 0.00 with the second prompt to 0.92 
with the third prompt, resulting in an average of 0.36, this 
dramatic fluctuation highlights potential instability in certain 
contexts. These findings suggest that while models, such as 
Kimi, Claude, and Gemini, are highly reliable for precision-
critical tasks, others like Qwen, may require additional 
safeguards or carefully engineered prompts to mitigate false 
discoveries. The results underscore the importance of both 
model selection and prompt design when deploying LLMs in 
applications with high performance variability, emphasizing 
the importance of ensuring consistency across different 
prompt types.

B. Violation-Type Detection Strengths and Weaknesses 
(RQ2)

Here, the obtained data from three prompts (P1, P2, and P3) 
are used to evaluate how well static code analysis tools 
and LLMs identify 27 coding violations in code snippets, 
distinguishing correct from incorrect identifications, as shown 
in Fig.  4. The results demonstrate significant variability 
in performance across the evaluated models. Claude and 
Gemini emerge as the most effective models, each correctly 
identifying 16 violations while making only 11 incorrect 
identifications. In contrast, traditional static code analysis 
tools, such as Flake8, show moderate performance with 15 
correct identifications and 12 incorrect ones, while Pylint 
performed only 8 correct detections against 19 incorrect 
ones. The remaining LLMs exhibit progressively weaker 
performance; Qwen and ChatGPT both performed 6 correct 
and 21 incorrect detections, demonstrating particularly low 
accuracy. Notably, Kimi and DeepSeek perform the poorest, 
with only 4 correct identifications, alongside 23 incorrect 
ones. These findings suggest that while some LLMs, such as 
Claude, can outperform traditional static code analysis tools 
in identifying coding violations, many present LLMs still 
struggle with accuracy in this domain. The results highlight 
the need for further refinement of LLMs for static code 
analysis tasks, particularly in reducing FP while maintaining 
detection rates.

In addition, the capability of LLMs to detect violations 
that are missed by static code analysis tools is shown in 
Table IV, which reveals that LLMs are generally more 

Fig. 3. Performance comparison of large language models versus static code analysis tools.

TABLE III
LLMs’ FDR Across Three Prompts

# LLMs FDR Average FDR
Round‑1‑(P1) Round‑2‑(P2) Round‑3‑(P3)

1. Qwen 0.17 0.00 0.92 0.36
2. DeepSeek 0.26 0.35 0.27 0.29
3. ChatGPT 0.01 0.01 0.17 0.06
4. Gemini 0.01 0.00 0.02 0.01
5. Claude 0.01 0.02 0.00 0.01
6. Kimi 0.00 0.00 0.00 0.00
FDR: False discovery rate
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TABLE IV
LLMs’ Detection of Violations Missed by Static Code Analysis Tools

# LLMs Violations Types
1. ChatGPT Import‑should‑be‑outside‑top‑level Structural/layout

Function‑return‑not‑implemented Design/completeness
Class‑attributes‑should‑be‑spaced Layout/formatting

2. Claude Add‑comments‑to‑complex‑logic Documentation/clarity
Type‑hints‑are‑not‑defined Documentation/clarity
Method‑inside‑method‑ 
(no‑single‑responsibility)

Design/modularity

Function’s‑input‑not‑validated‑early Robustness/security
Variables‑naming‑conventions Naming

3. Kimi Use‑consistent‑string‑quotes Layout/formatting
4. Gemini Add‑comments‑to‑complex‑logic Documentation/clarity

Function’s‑input‑not‑validated‑early Robustness/security
Type‑hints‑are‑not‑defined Documentation/clarity

5. Qwen Type‑hints‑are‑not‑define Documentation/clarity
Avoid‑hardcoding‑values Naming

6. DeepSeek NON

effective in identifying coding violations than traditional 
static code analysis tools. These violations are categorized 
into Structural/Layout, Naming, and Robustness/Security. 
ChatGPT is particularly effective in identifying stylistic 
violations, while Claude is strong in detecting documentation 
gaps and design flaws. Gemini and Qwen primarily highlight 
documentation-related issues, whereas Kimi focuses on 
stylistic consistency. DeepSeek, on the other hand, failed 
to identify any additional violations detected by static code 
analysis tools, indicating lower performance. Despite their 
variability in accuracy, LLMs show particular strengths 
in identifying nuanced or context-dependent violations, 
suggesting they could complement static code analysis tools 
by addressing gaps in detecting documentation and design-
related issues.

Collectively, Table I highlights the coding violations that 
LLMs correctly detect (marked with a  sign) and miss 
(marked with a  sign), illustrating their limitations. ChatGPT 
missed critical violations, such as undefined variables and 
complex methods, while Claude failed to detect modularity 
violations. Qwen showed the worst performance, confirming 
its lower accuracy. Overall, LLMs struggle with consistency 
and context-sensitive violations, making them unreliable as 
standalone linters. Hybrid approaches that combine static 

code analysis tools for syntax checks with LLMs for higher-
level guidance are recommended to address these gaps.

To further illustrate the limitations of LLMs, the results 
in Table I confirm that LLMs struggle with consistency 
and context-sensitive violations, limiting their reliability 
as standalone tools. A  closer look in Fig.  5 and Table V 
shows how Gemini exemplifies these weaknesses. In the 
combination Sum function, Gemini detected some stylistic 
issues (e.g., missing whitespace and missing docstrings) 
but failed to flag deeper problems, such as method nesting, 
missing input validation, and lack of comments. It also 
underreported the frequency of stylistic errors. Taken 
together, the aggregate evidence from Table I and this 
qualitative case confirms a consistent trend: LLMs handle 
surface-level violations reasonably well but frequently miss 
structural and semantic violations, reinforcing the need for 
hybrid approaches that combine static code analysis tools 
with LLM-based reasoning.
Ground truth violations identified:
•	 Function-name-not-in-snake_case
•	 Missing-whitespace-after-comma (8 instances)
•	 Missing-type-hints (2 instances)
•	 Missing-function-docstring (2 instances)
•	 Missing-class-docstring
•	 Missing-space-around-operator (3 instances)
•	 Missing-blank-line-before-nested-definition
•	 Missing-meaningful-comments
•	 Method-defined-inside-method
•	 Function-input-not-validated-early

C. Model Consistency (RQ3)
LLMs can produce unreliable and inconsistent 

responses due to stochasticity, output unpredictability, and 
hallucination, where they generate non-sensical or inaccurate 
answers. Prompt engineering was selected as a solution 
to mitigate stochasticity and hallucinations, particularly 
given the limitations of free web-based versions without 
API control. Three tailored prompts (P1, P2, and P3) were 
applied iteratively to batches of 25 code snippets. Only 
clear TP and FN results were collected and summarized in 
Fig.  6. This approach allowed for a structured evaluation 
of model performance under constrained experimental 
conditions. The results reveal that Claude and Gemini 

Fig. 4. Detected violations by static code analysis tools versus large language models.
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TABLE V
Gemini Output versus Ground Truth

# Violation Gemini result Evaluation
1 Missing‑whitespace‑after‑comma Detected 2 TP (2), FN (6)
2 Missing‑space‑around‑operator Detected 1 TP (1), FN (2)
3 Missing‑function‑docstring Detected 2 TP (2)
4 Function‑name‑not‑snake_case Missed FN
5 Missing‑type‑hints Missed FN (2)
6 Missing‑class‑docstring Missed FN
7 Function‑input‑not‑validated‑early Missed FN
8 Missing‑blank‑line‑before‑nested‑definition Missed FN
9 Add‑meaningful‑comments Missed FN
10 Method‑inside‑method Missed FN
TP: True positive, FN: False negative

achieved the highest average detection rate, with 5 violations 
each. Claude demonstrated consistent performance across 
prompts 4, 7, and 5, while Gemini showed a notable peak 
in P2, detecting 8 violations. ChatGPT follows with a 
moderate average 4 violations, while DeepSeek, Qwen, and 
Kimi exhibit significantly lower detection rates averaging 
1, 1, and 0 violations, respectively. The study indicates that 
while some LLMs can identify violations with contextual or 
semantic complexity, others struggle with simple violations, 
highlighting the need for model-specific refinement.

To further evaluate the consistency of LLMs, two 
additional metrics, average CR and PA, were employed. The 
results presented in Fig.  7 reveal pronounced disparities in 
LLMs’ reliability. Claude achieved the highest average CR 
(0.59) and PA (0.41). However, its CR variability (0.70 in 
P1  vs. 0.50 in P2) suggests lingering stochasticity. Gemini 
followed with moderate consistency CR (0.48) and PA (0.32), 
though its CR drops sharply in P3  (0.24), indicating prompt 

sensitivity. In contrast, ChatGPT demonstrated critically low 
consistency CR (0.06) and PA (0.16), mirroring its middling 
detection rates and underscoring its unreliability for static 
code analysis. The remaining models (Qwen, Kimi, and 
DeepSeek) exhibited inconsistent CR trends (e.g., DeepSeek’s 
P3 surged to 0.36 vs. 0.06 in P2) and negligible PA (≤0.13), 
corroborating their poor violation detection noted earlier. 
These findings confirm that LLMs, including top models, 
such as Claude and Gemini, face challenges related to 
randomness and hallucinations, emphasizing the importance 
of consistency when applying LLMs for static code analysis.

D. Prompting Strategies (RQ4)
The design of prompts significantly influences the accuracy 

and overall performance of LLMs (Guo, et al., 2023a). In 
this study, we evaluate three prompt designs (P1, P2, and 
P3), with Fig. 8 showing their comparison across six LLMs. 
The results reveal substantial variations in performance. 
ChatGPT demonstrated high precision (0.99) across P1 and 
P2 but suffered from extremely low recall (0.07) and F1-
Scores (0.13), indicating a trade-off between accuracy and 
coverage. Gemini performed notably well with P1, achieving 
an F1-Score of 0.78, but its efficacy declined with P2  (0.72) 
and P3  (0.39), suggesting that P1 may be more effective for 
this model. Claude showed strong performance across all 
prompt types, particularly in P1 with F1-Score of 0.81 and 
in P3 with F1-Score of 0.78, highlighting its adaptability. In 
contrast, DeepSeek and Qwen exhibited inconsistent results. 
Qwen showed particularly poor performance in P3 with 
F1-Score of 0.01. Kimi maintained perfect Precision (1.0) 
across all prompts but struggled with recall and F1-Scores, 
indicating a potential limitation in response completeness. 
Overall, the results indicate that prompt design has a major 
effect on LLM performance, with P1 typically producing the 
most balanced and reliable outcomes across models.

E. Batch versus Individual Code Analysis (RQ5)
Analyzing code snippets in batches versus individually 

can yield different results in detecting coding violations 
by LLMs (Yin, Ni and Wang, 2024). The impact depends 
on the batching strategy and task complexity. Fig.  9 
shows LLM’s performance when analyzing individual Fig. 5. Code Snippet with ground-truth violations.

Fig. 6. Frequency of coding violations with simultaneous true positive and true negative.
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code snippets. Notably, all models achieved perfect 
Precision (1.0), indicating that their identified violations 
were consistently correct. However, recall scores varied 
significantly, reflecting differences in the LLM’s ability 
to detect all existing violations. Gemini demonstrated the 
highest recall (0.85) and F1-score (0.92), suggesting robust 
overall performance, while Claude with a recall (0.73) and 
F1-score (0.85) and ChatGPT with a recall (0.63) and F1-
score (0.77) exhibited moderate effectiveness. In contrast, 
DeepSeek, Qwen, and Kimi showed markedly lower 
recall of 0.58, 0.44, and 0.42, respectively, and F1-Scores, 
underscoring their limitations in comprehensive violation 
detection. The findings suggest that while all models excel 
at avoiding precision, their utility for thorough static code 

analysis hinges on improving recall, particularly for lower-
performing models.

Furthermore, Table VI presents a comparative analysis of 
the F1-Score performance of various LLMs when evaluating 
batch versus individual code input. The results demonstrate 
that all LLMs exhibit improved performance when analyzing 
code snippets individually rather than in batches. ChatGPT 
shows the most significant improvement, increasing its F1-
score from 0.13 in batch mode to 0.77 in individual mode, 
yielding an improvement of +0.64. DeepSeek and Qwen also 
demonstrate notable gains of +0.27 and +0.25, respectively. 
Gemini shows a moderate increase of +0.14, while Claude 
and Kimi display minimal improvements of +0.04 and 
+0.03, respectively. These findings suggest that processing 

Fig. 8. Comparing prompt design efficiency in large language models.

Fig. 7. Average consistency rate and prompt agreement across evaluated large language models.

Fig. 9. Overall performance of large language models (Individual code).
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TABLE VI
F1‑Score Performance Comparison (Batch versus Individual code)

# LLMs F1‑score 
(batch)

F1‑score 
(individual)

Overall 
improvement

1. ChatGPT 0.13 0.77 +0.64
2. DeepSeek 0.46 0.73 +0.27
3. Qwen 0.36 0.61 +0.25
4. Gemini 0.78 0.92 +0.14
5. Claude 0.81 0.85 +0.04
6. Kimi 0.56 0.59 +0.03

code snippets individually rather than in batches positively 
influences the effectiveness of LLMs in identifying coding 
violations.

To sum up, our study provides Python-specific empirical 
evidence that certain LLMs can effectively complement 
static code analysis tools. Future research should investigate 
whether these findings generalize to other programming 
languages and domains.

V. Limitations and Challenges
Implementing LLMs to detect coding violations faces 

several key challenges. Their limited context window 
restricts the understanding of large or multi-file codebases, 
hindering recognition of project-wide dependencies and 
design issues (Ignatyev, et al., 2024). Although they are 
effective in syntax analysis, LLMs struggle with deep 
semantic comprehension and intricate logic; they may 
misinterpret issues or offer suggested solutions that 
inadvertently increase complexity (Souma, et al., 2023). An 
important limitation of relying solely on LLMs is the risk of 
FN, where genuine violations or vulnerabilities are missed. 
Unlike deterministic static code analysis tools that guarantee 
detection of specific rule-based violations, LLMs provide 
probabilistic outputs without formal correctness guarantees. 
In security-sensitive contexts, such omissions could leave 
critical flaws undetected, creating a false sense of assurance 
for developers. For example, failing to detect invalidated 
user input or hardcoded credentials could result in 
exploitable vulnerabilities despite the model reporting clean 
code. Hybrid approaches, where LLMs provide contextual 
reasoning and static code tools enforce deterministic checks, 
may offer a more reliable pathway toward safe adoption in 
industrial settings.

LLMs frequently rely on well-crafted user prompts and 
tend to prioritize syntax over functional accuracy (Liu, Yang 
and Liao, 2024). Due to inherent biases and limitations in 
training data, LLMs could memorize patterns rather than 
fully internalize best practices. Without careful consideration, 
it is difficult for developers to trust their suggestions because 
of their ambiguous reasoning. Although LLMs show promise 
for code violation detection, their deployment in industrial 
settings faces challenges beyond accuracy. Cloud-based 
APIs introduce latency and cannot guarantee real-time 
responsiveness, making them less reliable than local static 
code analysis tools, such as Pylint and Flake8. In addition, 
LLMs-based workflows often require iterative user feedback, 

are constrained by limited context windows, and can incur 
substantial costs for large-scale projects. Consequently, LLMs 
are best positioned as assistive tools that complement rather 
than replace traditional static code analysis tools. Broader 
adoption will depend on advances in latency reduction, 
offline inference, and mechanisms for seamless integration of 
user feedback into development environments.

VI. Conclusion
The ability of LLMs in detecting coding violations was 
assessed in this study, and their effectiveness was contrasted 
with traditional static code analysis tools. The results show 
that while LLMs, such as Claude and Gemini, may compete 
with or even outperform static code analysis tools in some 
areas; their efficacy varies considerably depending on the 
model and type of violation. Overall, Claude emerged as the 
top-performing LLM (F1-Score: 0.81), showcasing strengths 
in contextual understanding and recall, while static code 
analysis tools, such as Flake8 excelled in precision (1.00) 
but lagged in detecting nuanced violations. In terms of 
advantages and disadvantages, within the context of Python, 
LLMs can complement static code analysis tools in certain 
areas, but their non-deterministic nature and susceptibility to 
FNs make them unsuitable as standalone tools for security 
critical applications. Future work should examine whether 
these findings generalize to languages with stricter typing or 
different structural characteristics. Regarding the prompting 
strategies, structural prompts (P1) yielded the most balanced 
results, whereas CoT and role-based prompts showed mixed 
efficacy, underscoring the importance of prompt engineering. 
LLMs faced limitations in batch processing and long-context 
analysis, with individual snippet evaluation proving more 
reliable. Our contribution lies in the empirical evidence, 
the proposed taxonomy, dataset, and practical insights for 
integrating LLMs with existing tools.

In the future, we aim to expand this study by including 
more LLMs, additional prompt types, and a wider range of 
coding violations. Moreover, combining LLMs with static 
code analysis tools to create neuro-symbolic systems that 
reduce FP and enhance vulnerability detection in terms of 
integration and practical application is a crucial next step. 
Finally, we aim to develop a benchmark dataset specifically 
for static code analysis to support researchers in contributing 
effectively contribute to this rapidly evolving field.
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