
� ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12395� 215

A Study of Large Language Models in Detecting
Python Code Violations

Hekar A. Mohammed Salih and Qusay I. Sarhan†

Department of Computer Science, College of Science, University of Duhok,
Duhok, Kurdistan Region – F.R. Iraq

Abstract—Adhering to good coding practices is critical for
enhancing a software’s readability, maintainability, and reliability.
Common static code analysis tools for Python, such as Pylint
and Flake8, are widely used to enforce code quality by detecting
coding violations without executing the code. Yet, they often fail to
handle deeper semantic understanding and contextual reasoning.
This study investigates the effectiveness of large language models
(LLMs) compared to traditional static code analysis tools in
detecting Python coding violations. Six state-of-the-art LLMs:
ChatGPT, Gemini, Claude Sonnet, DeepSeek, Kimi, and Qwen
were evaluated against Pylint and Flake8 tools. To do so, a curated
dataset of 75 Python code snippets, annotated with 27 common
code violations, was used. In addition, three common prompting
strategies: Structural, chain-of-thought, and role-based, were used
to instruct the selected LLMs. The experimental results reveal that
Claude Sonnet achieved the highest F1-Score (0.81), outperforming
Flake8 (0.79) and demonstrating strong precision (0.99) and recall
(0.69). However, LLMs showed differences in performance, with
Qwen and DeepSeek underperforming relative to others. Moreover,
LLMs that identified documentation and design violations (such
as type hints and nested method structures) performed better
than stylistic consistency and complex semantic reasoning. The
results were heavily influenced by the prompting approach, with
structural prompts yielding the most balanced performance in
the majority of cases. This research contributes to the practical
empirical work on employing LLMs for code quality assurance
while also demonstrating their potential role as complementary
static code analysis tools for Python, with methodologies that may
extend to other languages.

Index Terms—Large language models, Software
metrics, Software quality, Static code analysis.

I. Introduction
Adherence to good coding remains critical in contemporary
software engineering, affecting a given software project’s
reliability, maintainability, and security (Moratis, et al., 2024;

Wadhwa, et al., 2024). One aspect of poor coding is termed
“code smells”, which can sharply reduce quality and may lead
to costly errors that are expensive to fix later in the software
development lifecycle (AlOmar and Mkaouer, 2024). To
solve this problem, static code analysis tools have emerged
as essential components within quality assurance workflows
for software products (Guo, et al., 2023b). Tools for static
code analysis, such as Pylint, Flake8, PMD, FindBugs, and
SonarQube, are designed to analyze source code without
execution; they flag violations, such as coding defects,
vulnerabilities, and style inconsistencies against pre-defined
rules (Mohajer, et al., 2023). While such tools often generate
high false positives (FPs), which can be overwhelming for
developers and require manual checks, their refinement
could help detect early issues, reducing maintenance costs
(Li, et al., 2023a).

In parallel, large language models (LLMs), such as
ChatGPT, have a deep impact on software engineering
and they are significantly transform diverse aspects of
its domains (Ságodi, Siket and Ferenc, 2024; Zhang, et
al., 2024). LLMs are trained on datasets of both natural
language and source code; therefore, they demonstrate
remarkable capabilities in natural language interpretation as
well as in comprehending source code. Consequently, they
can perform tasks, such as code generation, code review,
and program repair (Ságodi, Siket and Ferenc, 2024;
Zhang, et al., 2024). Their strength lies in their capability
for code understanding and detecting subtle code patterns
related to bugs or vulnerabilities. They also provide help
with automated code improvements using natural language
commands (Purba, et al., 2023; Ma, et al., 2024). However,
understanding code behaviors is often difficult for LLMs.
Since LLMs are prone to hallucinations that can lead to
functionally incorrect or vulnerable code (Jesse, et al.,
2023; Pearce, et al., 2023; Haindl and Weinberger, 2024).
This study aims to quantitatively and qualitatively evaluate
the performance of LLMs against established static code
analysis tools in identifying and rectifying Python coding
violations, including violations of Python Enhancement
Proposal 8 (PEP-8)1. Our aims are to investigate the
capabilities and limitations of various LLMs in detecting
and explaining Python coding violations, benchmarking

1	 https://peps.python.org/pep-0008/

ARO-The Scientific Journal of Koya University
Vol. XIII, No.2 (2025), Article ID: ARO.12395. 11 pages
DOI: 10.14500/aro.12395
Received: 01 July 2025; Accepted: 14 September 2025
Regular research paper; Published: 10 October 2025
†Corresponding author’s e-mail: qusay.sarhan@uod.ac
Copyright © 2025 Hekar A. Mohammed Salih and Qusay I.
Sarhan. This is an open-access article distributed under the Creative
Commons Attribution License (CC BY-NC-SA 4.0).

https://peps.python.org/pep-0008/

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X�

216� http://dx.doi.org/10.14500/aro.12395

their performance against traditional static code analysis
tools, and exploring the influence of prompting strategies,
code characteristics, and inter-LLM consistency on their
effectiveness.

Python was selected over other programming languages
for this research as it is currently ranked as the number
one programming language according to the TIOBE
Index2. Furthermore, it is the most widely used language
in artificial intelligence/machine learning development
due to its simple syntax, extensive libraries (such as
TensorFlow, PyTorch, and scikit-learn), and strong
community support (Raschka, Patterson and Nolet, 2020).
Moreover, Python has become a dominant language for the
Internet of Things (IoT), where it is used for programming
microcontrollers (such as Raspberry Pi and MicroPython-
based devices), integrating sensors, and building rapid IoT
prototypes (Kedia, Kumari and Mundra, 2023). Its high-
level abstractions, cross-platform compatibility, and many
libraries (e.g., paho-mqtt and adafruit-io) make Python
especially suitable for connecting devices, managing data,
and enabling communication in IoT environments. As IoT
systems increasingly rely on intelligent processing and
edge computing, Python’s role in bridging AI capabilities
and IoT infrastructures becomes crucial for innovation and
static code analysis applicability.

This study contributes to code analysis by evaluating how
effectively and consistently LLMs detect coding violations
in comparison to traditional static code analysis tools, as
follows:
1.	 Comparative effectiveness analysis: Evaluates how well

LLMs detect coding violations and benchmarks their
performance against traditional static code analysis tools.

2.	 Taxonomy of violations: Develops a detailed taxonomy that
classifies coding violations, showing where LLMs perform
better or worse, thereby highlighting model strengths and
limitations.

3.	 Cross-model consistency: Analyzes six state-of-the-art
LLMs to identify consistent model-specific patterns across
violation detection.

4.	 Batch versus Individual code analysis: Investigates the
impact of granularity by comparing LLMs’ performance
on batch code snippets versus individual snippet analysis,
thereby guiding effective use cases.

5.	 Dataset construction: Builds and releases a new, specialized
dataset focused on evaluating Python coding violations,
providing a benchmarking standard for benchmarking
present and future models.

Collectively, this study advances the understanding of
LLMs’ applicability in Python code quality assessment,
while offering a methodology that may be extended to other
programming languages in future studies.

The remainder of this study is structured as follows:
Section II reviews related work. Section III details the
research methodology that have been used in this study.
Section IV presents and discusses the experimental results of
this study. Section V highlights the main limitations of using

2	 https://www.tiobe.com/tiobe-index/

LLMs for static code analysis. Finally, Section VI concludes
the study and suggests directions and future research.

II. Related Works
This section presents the most related works to this

study. LLMs are being evaluated for their capability to
detect software vulnerabilities in (Noever, 2023; Purba,
et al., 2023). This includes evaluating their performance
against traditional tools, such as Snyk and Fortify, or with
pre-trained models for vulnerability detection. Specific
approaches involve using LLMs for static taint analysis
to infer APIs’ taint specifications and classify vulnerable
paths as True or FPs through contextual analysis, as in (Li,
Dutta and Naik, 2025). Beyond mere detection, LLMs are
also explored for broader software vulnerability analysis
tasks, including vulnerability assessment (e.g., qualitative
severity ratings), vulnerability location, and vulnerability
description, providing more contextual information that can
improve LLMs’ vulnerability assessment capabilities (Yin,
Ni and Wang, 2024). LLMs are used to identify and address
general code quality problems (Souma, et al., 2023). This
covers both error detection and correction (such as syntax
and type errors). By producing and ranking code fixes to
increase acceptance rates and reduce developer workload,
LLMs assist in addressing code quality issues with tools,
such as CodeQL and SonarQube, in the context of static
code analysis (Wadhwa, et al., 2024).

In addition, LLMs are used to refactor and fix bugs
found by static code analysis tools, especially those related
to design, error proneness, best practices, and code style
(AlOmar and Mkaouer, 2024). Although LLMs are good at
detecting issues in single locations, they might not be able
to grasp the larger code context for intricate design problems
(Guo, et al., 2023b; Li, et al., 2023a). To determine whether
potential bugs found by static code analysis are real bugs or
FPs, LLMs might be consulted, particularly in circumstances
that are unclear (Li, et al., 2023b). To lower the rate of
FPs, tools, such as SkipAnalyzer, combine automatic bug
repair, false-positive alerts, and LLM-based static bug
detection (Mohajer, et al., 2023). Assessing LLMs’ ability
to perform program analysis tasks, such as abstract syntax
tree generation, Expression Matching, control flow graph
generation, call graph generation, data dependency analysis,
taint analysis, and pointer analysis is a crucial component
of integrating them with static code analysis (Ma, et al.,
2024). For LLMs to be used correctly and sensibly in code-
related activities, it is essential to appreciate both their
strengths and weaknesses in understanding program syntax
and statically approximating program behavior. Even if
LLMs are promising for applications, such as type inference,
more complex domains, such as CG analysis, may still be
better served by traditional techniques (Venkatesh, et al.,
2024). To summarize, the tasks assigned to LLMs start with
a fundamental understanding of the code, along with static
behavior approximation, followed by higher-order tasks, such
as detecting and resolving numerous types of violations,

https://www.tiobe.com/tiobe-index/

� ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12395� 217

and critically, refining the output of traditional static code
analysis tools.

While prior research works have explored the capabilities
of LLMs in software vulnerability detection, taint analysis,
and broader vulnerability assessment, our study extends the
research by focusing specifically on Python code violations, a
critical yet underexplored aspect of static code analysis. Unlike
previous works that primarily assess LLMs against security-
focused tools, such as Snyk and Fortify, our study provides
a comprehensive comparison with traditional static code
analysis tools (i.e., Pylint and Flake8), emphasizing coding
quality. In addition, while existing studies highlight LLMs’
potential in error correction and false-positive reduction, our
study introduces a novel taxonomy of 27 Python-specific
coding violations and systematically evaluates six state-of-the-
art LLMs across multiple prompting strategies. This granular
approach not only identifies LLMs’ strengths in detecting
different violations but also reveals their limitations in semantic
reasoning and stylistic consistency, a contribution that refines
the understanding of LLMs’ role in code quality assurance.
Furthermore, our findings on batch versus individual code
analysis and prompt sensitivity offer practical insights for
integrating LLMs into developer workflows, advancing beyond
the theoretical aspects proposed in earlier studies.

III. Research Methodology
This study’s methodology consists of eight steps (shown in

Fig. 1): identifying research questions (RQs), preparing the
code snippet dataset, manually labeling the data, selecting
LLMs and static code analysis tools, designing prompts
for the LLMs, defining evaluation metrics, conducting
experiments and analyzing results to assess LLMs’ ability to
detect Python coding violations. Each step is detailed in the
following subsections:

A. RQs
Several RQs have been identified and answered in this study.

Each RQ addresses a particular aspect of the topic, as follows:

•	 RQ1 (overall performance comparison): How effective
are LLMs at identifying coding violations compared to
traditional static code analysis tools?

•	 RQ2 (violation-type detection strengths and weaknesses):
What types of coding violations are LLMs better at detecting
compared to static code analysis tools, and which types do
they struggle with?

•	 RQ3 (model consistency): How consistent are different
LLMs in identifying the same coding violations?

•	 RQ4 (prompting strategies): Do different prompting
strategies affect an LLM’s model’s ability to identify coding
violations?

•	 RQ5 (Batch vs. individual code analysis): Does analyzing
code snippets in batches, as opposed to individually, lead to
different outcomes in the identification of coding violations?

B. Code Snippets Dataset Preparation
This study curated 75 Python code snippets extracted from

LeetCode3 website, across three difficulty levels (25 Easy, 25
Medium, and 25 Hard). Each snippet represents a realistic
programming task rather than artificially constructed
examples. The snippets were manually annotated by the
authors for quality. The annotation followed the PEP-8
standards and included 27 common violation categories
(Table I). Examples include stylistic violations (e.g.,
missing whitespace), documentation issues (e.g., absent
function docstrings), and structural/design flaws (e.g., nested
methods). Each violation was labeled independently by both
authors, and disagreements were resolved through discussion,
ensuring consistent ground truth labels. The full dataset
and annotation guidelines are made publicly available in a
GitHub repository4.

Fig. 2 illustrates a sample code snippet from our dataset
that demonstrates several violations of coding, their details
are presented in Table II.

3	 https://leetcode.com/
4	 https://github.com/CodingWithLLMs/Online-CodeBase

Fig. 1. The methodology of this study.

https://leetcode.com/
https://github.com/CodingWithLLMs/Online-CodeBase

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X�

218� http://dx.doi.org/10.14500/aro.12395

TABLE I
Violations that LLMs Detect or Miss

Violations Types Claude Gemini Qwen ChatGPT Kimi DeepSeek
1. Too‑many‑local‑variables‑(>15) Complexity/modularity      

2. Function‑return‑not‑implemented Design/completeness      

3. Class‑inside‑method Design/modularity      

4. Method‑inside‑method‑(no‑single‑responsibility) Design/modularity      

5. Add‑meaningful‑comments‑to‑complex‑logic Documentation/clarity      

6. Function‑type‑hints‑Not‑define Documentation/clarity      

7. Class‑doc‑string‑Not‑written Documentation/stylistic      

8. Function‑doc‑string‑Not‑written Documentation/stylistic      

9. Expected‑blank‑line‑after‑class Layout/formatting      

10. Expected‑blank‑line Layout/formatting      

11. Expected‑blank‑line‑before‑a‑nested‑definition Layout/formatting      

12. Expected‑a‑blank‑line‑after‑method Layout/formatting      

13. Line‑too‑long‑(>‑79‑characters) Layout/formatting      

14. Missing‑Space‑around‑operator Layout/formatting      

15. Missing‑whitespace‑after‑(comma) Layout/formatting      

16. Missing‑whitespace‑after‑(colon) Layout/formatting      

17. Unused‑variable Maintainability/efficiency      

18. Function‑name‑not‑snake‑case Naming      

19. Variables‑naming‑conventions Naming      

20. Class‑name‑should‑be‑snake‑case Naming      

21. Consider‑using‑enumerate‑instead‑of‑iterating Readability      

22. Unnecessary‑“elif”‑after‑“return” Readability/refactoring      

23. Unnecessary‑“else”‑after‑“return” Readability/refactoring      

24. Redefining‑built‑in‑“next” Reliability/clarity      

25. Functions‑input‑not‑validated‑early Robustness/security      

26. Undefined‑variable Runtime error/logic      

27. Import‑should‑be‑outside‑top‑level Structural/layout      

TABLE II
Coding Violations Identified

Violation Frequency
1. Function‑name‑not‑snake‑case 2
2. Missing‑whitespace‑after‑comma 8
3. Function‑type‑hints‑Not‑written 2
4. Function‑doc‑string‑Not‑written 2
5. Missing‑Space‑around‑operators 3
6. Expected‑blank‑line‑before‑a‑nested‑definition 1
7. Add‑meaningful‑comments‑to‑logic 1
8. Method‑inside‑method‑(no‑single‑responsibility) 1
9. Functions‑input‑not‑Validate‑early 1
Total violations 21

C. LLMs Selection
To assess the capabilities and limitations of LLMs in

detecting different coding violations while ensuring robust
and reliable results, we selected six state-of-the-art models:
DeepSeek-V35 (DeepSeek) from DeepSeek, ChatGPT
4-Turbo6 (ChatGPT) from OpenAI, Claude 3.7-Sonnet7

(Claude) from Anthropic, Gemini 2.5-pro-preview-03-25c8

(Gemini) from Google, Kimi9 from Moonshot AI and Qwen

5	 https://www.deepseek.com/
6	 https://chatgpt.com/
7	 https://claude.ai/
8	 https://gemini.google.com/
9	 https://www.kimi.com/

2.5-Max10 (Qwen) from Alibaba. These models were chosen
to ensure a comprehensive evaluation of present LLM
performance in code-related tasks.

D. Static Code Analysis Tools Selection
To ensure rigorous evaluation of code quality, we

employed two industry-standard Python static code analysis
tools, Pylint (Pylint-Dev., 2024) and Flake8 (Flake8-Dev,
2025). These tools complement each other: Flake8 ensures
strict PEP-8 compliance, while Pylint covers broader software
engineering and coding best practices, together providing a
strong selection for evaluating both style and code quality.

10	 https://chat.qwen.ai/

Fig. 2. Sample Python code with different violations.

� ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12395� 219

E. Prompt Design
We employed three common prompting strategies to

evaluate LLMs’ performance:
•	 Structural prompt (P1): Example of structural prompt:

“Analyze the following Python code for any PEP-8
violations or potential issues”.

•	 Chain of thought (CoT) prompt (P2): Example of CoT
prompt: “Analyze the provided Python code for PEP-8
violations, potential issues, or areas of improvement. Use a
Chain of Thought (CoT) approach to systematically evaluate
the code”.

•	 Role-based prompt (P3): Example of role-based prompt: “As a
software engineer, you are tasked with analyzing the following
Python code for any PEP-8 violations or potential issues”.

The three prompt types structural, CoT, and role-based,
were selected due to their proven ability to enhance LLM
performance by providing essential guidance. Structural
prompts boost clarity and specificity by incorporating
detailed task descriptions, explicit output formats (such as
JSON), and crucial code context, leading to more precise and
relevant outputs (Liu, Yang and Liao, 2024). CoT prompts
enable LLMs to tackle complex problems by encouraging
step-by-step reasoning and problem decomposition, which in
turn improves accuracy and the robustness of responses (Li,
et al., 2023a). Finally, role-based prompts assign a specific
persona to the LLM (e.g., “vulnerability detection system”),
establishing a clear task context that helps the model focus
and significantly improves its performance in generating
desired outputs (Hajipour, et al., 2024).

F. Evaluation Metrics
To address the majority of the RQs, we employed a set

of established evaluation metrics, including true positive
(TP), false negative (FN), FP, precision, recall, and F1-
Score (Omar and Shiaeles, 2023; Ignatyev, et al., 2024). For
specific cases requiring additional scrutiny, supplementary
metrics, such as false discovery rate (FDR) (Li, Dutta and
Naik, 2025), consistency rate (CR), average CR (Carandang,
et al., 2025), prompt agreement (PA) (Mousavi, Alghisi and
Riccardi, 2025), and lines of code were utilized.
•	 To answer RQ1 (overall performance comparison): After

obtaining the results from the static code analysis tools
and LLMs (processing 25 code snippets at a time in JSON
format), we manually labeled each prediction as TP, FP,
or FN based on ground truths. The correctness of labeling
was manually validated by the authors. We then calculated
precision, recall, F1-Score, and FDR for the entire dataset,
as defined in equations (1), (2), (3), and (4).

Precision
TP

TP FP



� (1)

Recall
TP

TP FN



� (2)

F Score *
Precision*Recall

Precision Recall
1 2 


� (3)

FDR
FP

FP TP



� (4)

Where:
•	 TP: Correctly predicted positive case.
•	 FP: Incorrectly predicted positive when the actual is

negative.
•	 FN: Incorrectly predicted negative when the actual is

positive.
•	 Precision: How well the model avoids FPs.
•	 Recall: How well the model finds all actual positives.
•	 F1-Score: Harmonic mean of precision and recall.
•	 FDR: Proportion of FPs, among all predicted positives.

•	 To answer RQ2 (violation-type detection strengths and
weaknesses): The results were filtered by classification
(FN and TP) and grouped by type and subtype to assess
the LLM’s strengths and weaknesses in detecting violation
types.

•	 To answer RQ3 (model consistency): The obtained results
were filtered to find cases with both FN and TP for each
LLM, enabling consistency assessment. Average CR was
computed across three prompts (P1, P2, and P3) to evaluate
performance stability, and PA was calculated to identify
the LLM with the highest agreement rate, as defined in
equations (5) and (6).

AverageCR Recall
1 1n

ii
n � (5)

Prompts with 1 TPPA
Total Prompts


 � (6)

Where:
•	 N: Total number of prompts.
•	 PA: Measures LLM consistency by evaluating responses

to varied (perturbed) versions of the same prompt.
•	 To answer RQ4 (prompting strategies): To improve LLM

output consistency, we used three prompting strategies:
structured, CoT, and role-based, and evaluated them using
precision, recall, and F1-Score to assess their impact on the
LLMs’ performance.

•	 To answer RQ5 (Batch vs. Individual Analysis): We
selected 15 code snippets (five per difficulty level) and
ran an evaluation using only the (P1) prompt to check if
individual snippet assessments differ across all LLMs. We
then manually annotated model predictions as TP, FP, or
FN by comparing them to ground truth labels. Using this,
we calculated precision, recall, and F1-Score for the (P1)
dataset and compared these results with those from (RQ1)
to identify any discrepancies or consistencies.

IV. Results and Discussion
In this section, the experimental results of this study are

presented and discussed. Each RQ is summarized with a
short title and discussed in its respective subsection based on
the study’s findings.

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X�

220� http://dx.doi.org/10.14500/aro.12395

A. Overall Performance Comparison (RQ1)
The obtained results for this RQ, based on three sessions

per LLM using 25 code snippets each with P1, are shown
in Fig. 3. Claude achieves the highest F1-Score (0.81),
demonstrating a strong balance between precision (0.99)
and recall (0.69), closely followed by Flake8 with F1-Score
(0.79), which maintains perfect Precision (1.00) but slightly
lower recall (0.66). Gemini also performs well with F1-score
(0.78), with near-perfect precision (0.99), and moderate recall
(0.64). In contrast, Kimi with F1-Score (0.56), DeepSeek
with F1-Score (0.46), and Qwen with F1-Score (0.36) exhibit
declining performance due to lower recall values of 0.39,
0.34, and 0.23, respectively, despite relatively high Precision.
Notably, Pylint and ChatGPT show the weakest performance,
with F1-Scores of 0.35 and 0.13, respectively, primarily due
to their extremely low recall of 0.21 and 0.07, despite perfect
or near-perfect Precision. These results reveal that while
some LLMs, such as Claude, can outperform traditional
static code analysis tools.

Another aspect is important for the overall performance of
LLMs, which is FDR (Table III), which compares the FDR
of the LLMs across three prompts (P1, P2, and P3), revealing
significant variations in their reliability. Kimi emerges as the
top performer with a perfect FDR of 0.00 across all prompts,
demonstrating exceptional precision. Claude and Gemini also
perform remarkably well, both maintaining an average FDR
of just 0.01, with Claude achieving a flawless (0.00) with the
third prompt. ChatGPT shows strong overall performance
with an average FDR of 0.06, though its rate rises to 0.17
with the third prompt, indicating some prompt sensitivity.
DeepSeek exhibits consistently higher FDRs between 0.26
and 0.35, averaging 0.29, suggesting a tendency for more

FP. Most notably, Qwen displays extreme variability, with
FDRs ranging from 0.00 with the second prompt to 0.92
with the third prompt, resulting in an average of 0.36, this
dramatic fluctuation highlights potential instability in certain
contexts. These findings suggest that while models, such as
Kimi, Claude, and Gemini, are highly reliable for precision-
critical tasks, others like Qwen, may require additional
safeguards or carefully engineered prompts to mitigate false
discoveries. The results underscore the importance of both
model selection and prompt design when deploying LLMs in
applications with high performance variability, emphasizing
the importance of ensuring consistency across different
prompt types.

B. Violation-Type Detection Strengths and Weaknesses
(RQ2)

Here, the obtained data from three prompts (P1, P2, and P3)
are used to evaluate how well static code analysis tools
and LLMs identify 27 coding violations in code snippets,
distinguishing correct from incorrect identifications, as shown
in Fig. 4. The results demonstrate significant variability
in performance across the evaluated models. Claude and
Gemini emerge as the most effective models, each correctly
identifying 16 violations while making only 11 incorrect
identifications. In contrast, traditional static code analysis
tools, such as Flake8, show moderate performance with 15
correct identifications and 12 incorrect ones, while Pylint
performed only 8 correct detections against 19 incorrect
ones. The remaining LLMs exhibit progressively weaker
performance; Qwen and ChatGPT both performed 6 correct
and 21 incorrect detections, demonstrating particularly low
accuracy. Notably, Kimi and DeepSeek perform the poorest,
with only 4 correct identifications, alongside 23 incorrect
ones. These findings suggest that while some LLMs, such as
Claude, can outperform traditional static code analysis tools
in identifying coding violations, many present LLMs still
struggle with accuracy in this domain. The results highlight
the need for further refinement of LLMs for static code
analysis tasks, particularly in reducing FP while maintaining
detection rates.

In addition, the capability of LLMs to detect violations
that are missed by static code analysis tools is shown in
Table IV, which reveals that LLMs are generally more

Fig. 3. Performance comparison of large language models versus static code analysis tools.

TABLE III
LLMs’ FDR Across Three Prompts

LLMs FDR Average FDR
Round‑1‑(P1) Round‑2‑(P2) Round‑3‑(P3)

1. Qwen 0.17 0.00 0.92 0.36
2. DeepSeek 0.26 0.35 0.27 0.29
3. ChatGPT 0.01 0.01 0.17 0.06
4. Gemini 0.01 0.00 0.02 0.01
5. Claude 0.01 0.02 0.00 0.01
6. Kimi 0.00 0.00 0.00 0.00
FDR: False discovery rate

� ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12395� 221

TABLE IV
LLMs’ Detection of Violations Missed by Static Code Analysis Tools

LLMs Violations Types
1. ChatGPT Import‑should‑be‑outside‑top‑level Structural/layout

Function‑return‑not‑implemented Design/completeness
Class‑attributes‑should‑be‑spaced Layout/formatting

2. Claude Add‑comments‑to‑complex‑logic Documentation/clarity
Type‑hints‑are‑not‑defined Documentation/clarity
Method‑inside‑method‑
(no‑single‑responsibility)

Design/modularity

Function’s‑input‑not‑validated‑early Robustness/security
Variables‑naming‑conventions Naming

3. Kimi Use‑consistent‑string‑quotes Layout/formatting
4. Gemini Add‑comments‑to‑complex‑logic Documentation/clarity

Function’s‑input‑not‑validated‑early Robustness/security
Type‑hints‑are‑not‑defined Documentation/clarity

5. Qwen Type‑hints‑are‑not‑define Documentation/clarity
Avoid‑hardcoding‑values Naming

6. DeepSeek NON

effective in identifying coding violations than traditional
static code analysis tools. These violations are categorized
into Structural/Layout, Naming, and Robustness/Security.
ChatGPT is particularly effective in identifying stylistic
violations, while Claude is strong in detecting documentation
gaps and design flaws. Gemini and Qwen primarily highlight
documentation-related issues, whereas Kimi focuses on
stylistic consistency. DeepSeek, on the other hand, failed
to identify any additional violations detected by static code
analysis tools, indicating lower performance. Despite their
variability in accuracy, LLMs show particular strengths
in identifying nuanced or context-dependent violations,
suggesting they could complement static code analysis tools
by addressing gaps in detecting documentation and design-
related issues.

Collectively, Table I highlights the coding violations that
LLMs correctly detect (marked with a  sign) and miss
(marked with a  sign), illustrating their limitations. ChatGPT
missed critical violations, such as undefined variables and
complex methods, while Claude failed to detect modularity
violations. Qwen showed the worst performance, confirming
its lower accuracy. Overall, LLMs struggle with consistency
and context-sensitive violations, making them unreliable as
standalone linters. Hybrid approaches that combine static

code analysis tools for syntax checks with LLMs for higher-
level guidance are recommended to address these gaps.

To further illustrate the limitations of LLMs, the results
in Table I confirm that LLMs struggle with consistency
and context-sensitive violations, limiting their reliability
as standalone tools. A closer look in Fig. 5 and Table V
shows how Gemini exemplifies these weaknesses. In the
combination Sum function, Gemini detected some stylistic
issues (e.g., missing whitespace and missing docstrings)
but failed to flag deeper problems, such as method nesting,
missing input validation, and lack of comments. It also
underreported the frequency of stylistic errors. Taken
together, the aggregate evidence from Table I and this
qualitative case confirms a consistent trend: LLMs handle
surface-level violations reasonably well but frequently miss
structural and semantic violations, reinforcing the need for
hybrid approaches that combine static code analysis tools
with LLM-based reasoning.
Ground truth violations identified:
•	 Function-name-not-in-snake_case
•	 Missing-whitespace-after-comma (8 instances)
•	 Missing-type-hints (2 instances)
•	 Missing-function-docstring (2 instances)
•	 Missing-class-docstring
•	 Missing-space-around-operator (3 instances)
•	 Missing-blank-line-before-nested-definition
•	 Missing-meaningful-comments
•	 Method-defined-inside-method
•	 Function-input-not-validated-early

C. Model Consistency (RQ3)
LLMs can produce unreliable and inconsistent

responses due to stochasticity, output unpredictability, and
hallucination, where they generate non-sensical or inaccurate
answers. Prompt engineering was selected as a solution
to mitigate stochasticity and hallucinations, particularly
given the limitations of free web-based versions without
API control. Three tailored prompts (P1, P2, and P3) were
applied iteratively to batches of 25 code snippets. Only
clear TP and FN results were collected and summarized in
Fig. 6. This approach allowed for a structured evaluation
of model performance under constrained experimental
conditions. The results reveal that Claude and Gemini

Fig. 4. Detected violations by static code analysis tools versus large language models.

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X�

222� http://dx.doi.org/10.14500/aro.12395

TABLE V
Gemini Output versus Ground Truth

Violation Gemini result Evaluation
1 Missing‑whitespace‑after‑comma Detected 2 TP (2), FN (6)
2 Missing‑space‑around‑operator Detected 1 TP (1), FN (2)
3 Missing‑function‑docstring Detected 2 TP (2)
4 Function‑name‑not‑snake_case Missed FN
5 Missing‑type‑hints Missed FN (2)
6 Missing‑class‑docstring Missed FN
7 Function‑input‑not‑validated‑early Missed FN
8 Missing‑blank‑line‑before‑nested‑definition Missed FN
9 Add‑meaningful‑comments Missed FN
10 Method‑inside‑method Missed FN
TP: True positive, FN: False negative

achieved the highest average detection rate, with 5 violations
each. Claude demonstrated consistent performance across
prompts 4, 7, and 5, while Gemini showed a notable peak
in P2, detecting 8 violations. ChatGPT follows with a
moderate average 4 violations, while DeepSeek, Qwen, and
Kimi exhibit significantly lower detection rates averaging
1, 1, and 0 violations, respectively. The study indicates that
while some LLMs can identify violations with contextual or
semantic complexity, others struggle with simple violations,
highlighting the need for model-specific refinement.

To further evaluate the consistency of LLMs, two
additional metrics, average CR and PA, were employed. The
results presented in Fig. 7 reveal pronounced disparities in
LLMs’ reliability. Claude achieved the highest average CR
(0.59) and PA (0.41). However, its CR variability (0.70 in
P1 vs. 0.50 in P2) suggests lingering stochasticity. Gemini
followed with moderate consistency CR (0.48) and PA (0.32),
though its CR drops sharply in P3 (0.24), indicating prompt

sensitivity. In contrast, ChatGPT demonstrated critically low
consistency CR (0.06) and PA (0.16), mirroring its middling
detection rates and underscoring its unreliability for static
code analysis. The remaining models (Qwen, Kimi, and
DeepSeek) exhibited inconsistent CR trends (e.g., DeepSeek’s
P3 surged to 0.36 vs. 0.06 in P2) and negligible PA (≤0.13),
corroborating their poor violation detection noted earlier.
These findings confirm that LLMs, including top models,
such as Claude and Gemini, face challenges related to
randomness and hallucinations, emphasizing the importance
of consistency when applying LLMs for static code analysis.

D. Prompting Strategies (RQ4)
The design of prompts significantly influences the accuracy

and overall performance of LLMs (Guo, et al., 2023a). In
this study, we evaluate three prompt designs (P1, P2, and
P3), with Fig. 8 showing their comparison across six LLMs.
The results reveal substantial variations in performance.
ChatGPT demonstrated high precision (0.99) across P1 and
P2 but suffered from extremely low recall (0.07) and F1-
Scores (0.13), indicating a trade-off between accuracy and
coverage. Gemini performed notably well with P1, achieving
an F1-Score of 0.78, but its efficacy declined with P2 (0.72)
and P3 (0.39), suggesting that P1 may be more effective for
this model. Claude showed strong performance across all
prompt types, particularly in P1 with F1-Score of 0.81 and
in P3 with F1-Score of 0.78, highlighting its adaptability. In
contrast, DeepSeek and Qwen exhibited inconsistent results.
Qwen showed particularly poor performance in P3 with
F1-Score of 0.01. Kimi maintained perfect Precision (1.0)
across all prompts but struggled with recall and F1-Scores,
indicating a potential limitation in response completeness.
Overall, the results indicate that prompt design has a major
effect on LLM performance, with P1 typically producing the
most balanced and reliable outcomes across models.

E. Batch versus Individual Code Analysis (RQ5)
Analyzing code snippets in batches versus individually

can yield different results in detecting coding violations
by LLMs (Yin, Ni and Wang, 2024). The impact depends
on the batching strategy and task complexity. Fig. 9
shows LLM’s performance when analyzing individual Fig. 5. Code Snippet with ground-truth violations.

Fig. 6. Frequency of coding violations with simultaneous true positive and true negative.

� ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12395� 223

code snippets. Notably, all models achieved perfect
Precision (1.0), indicating that their identified violations
were consistently correct. However, recall scores varied
significantly, reflecting differences in the LLM’s ability
to detect all existing violations. Gemini demonstrated the
highest recall (0.85) and F1-score (0.92), suggesting robust
overall performance, while Claude with a recall (0.73) and
F1-score (0.85) and ChatGPT with a recall (0.63) and F1-
score (0.77) exhibited moderate effectiveness. In contrast,
DeepSeek, Qwen, and Kimi showed markedly lower
recall of 0.58, 0.44, and 0.42, respectively, and F1-Scores,
underscoring their limitations in comprehensive violation
detection. The findings suggest that while all models excel
at avoiding precision, their utility for thorough static code

analysis hinges on improving recall, particularly for lower-
performing models.

Furthermore, Table VI presents a comparative analysis of
the F1-Score performance of various LLMs when evaluating
batch versus individual code input. The results demonstrate
that all LLMs exhibit improved performance when analyzing
code snippets individually rather than in batches. ChatGPT
shows the most significant improvement, increasing its F1-
score from 0.13 in batch mode to 0.77 in individual mode,
yielding an improvement of +0.64. DeepSeek and Qwen also
demonstrate notable gains of +0.27 and +0.25, respectively.
Gemini shows a moderate increase of +0.14, while Claude
and Kimi display minimal improvements of +0.04 and
+0.03, respectively. These findings suggest that processing

Fig. 8. Comparing prompt design efficiency in large language models.

Fig. 7. Average consistency rate and prompt agreement across evaluated large language models.

Fig. 9. Overall performance of large language models (Individual code).

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X�

224� http://dx.doi.org/10.14500/aro.12395

TABLE VI
F1‑Score Performance Comparison (Batch versus Individual code)

LLMs F1‑score
(batch)

F1‑score
(individual)

Overall
improvement

1. ChatGPT 0.13 0.77 +0.64
2. DeepSeek 0.46 0.73 +0.27
3. Qwen 0.36 0.61 +0.25
4. Gemini 0.78 0.92 +0.14
5. Claude 0.81 0.85 +0.04
6. Kimi 0.56 0.59 +0.03

code snippets individually rather than in batches positively
influences the effectiveness of LLMs in identifying coding
violations.

To sum up, our study provides Python-specific empirical
evidence that certain LLMs can effectively complement
static code analysis tools. Future research should investigate
whether these findings generalize to other programming
languages and domains.

V. Limitations and Challenges
Implementing LLMs to detect coding violations faces

several key challenges. Their limited context window
restricts the understanding of large or multi-file codebases,
hindering recognition of project-wide dependencies and
design issues (Ignatyev, et al., 2024). Although they are
effective in syntax analysis, LLMs struggle with deep
semantic comprehension and intricate logic; they may
misinterpret issues or offer suggested solutions that
inadvertently increase complexity (Souma, et al., 2023). An
important limitation of relying solely on LLMs is the risk of
FN, where genuine violations or vulnerabilities are missed.
Unlike deterministic static code analysis tools that guarantee
detection of specific rule-based violations, LLMs provide
probabilistic outputs without formal correctness guarantees.
In security-sensitive contexts, such omissions could leave
critical flaws undetected, creating a false sense of assurance
for developers. For example, failing to detect invalidated
user input or hardcoded credentials could result in
exploitable vulnerabilities despite the model reporting clean
code. Hybrid approaches, where LLMs provide contextual
reasoning and static code tools enforce deterministic checks,
may offer a more reliable pathway toward safe adoption in
industrial settings.

LLMs frequently rely on well-crafted user prompts and
tend to prioritize syntax over functional accuracy (Liu, Yang
and Liao, 2024). Due to inherent biases and limitations in
training data, LLMs could memorize patterns rather than
fully internalize best practices. Without careful consideration,
it is difficult for developers to trust their suggestions because
of their ambiguous reasoning. Although LLMs show promise
for code violation detection, their deployment in industrial
settings faces challenges beyond accuracy. Cloud-based
APIs introduce latency and cannot guarantee real-time
responsiveness, making them less reliable than local static
code analysis tools, such as Pylint and Flake8. In addition,
LLMs-based workflows often require iterative user feedback,

are constrained by limited context windows, and can incur
substantial costs for large-scale projects. Consequently, LLMs
are best positioned as assistive tools that complement rather
than replace traditional static code analysis tools. Broader
adoption will depend on advances in latency reduction,
offline inference, and mechanisms for seamless integration of
user feedback into development environments.

VI. Conclusion
The ability of LLMs in detecting coding violations was
assessed in this study, and their effectiveness was contrasted
with traditional static code analysis tools. The results show
that while LLMs, such as Claude and Gemini, may compete
with or even outperform static code analysis tools in some
areas; their efficacy varies considerably depending on the
model and type of violation. Overall, Claude emerged as the
top-performing LLM (F1-Score: 0.81), showcasing strengths
in contextual understanding and recall, while static code
analysis tools, such as Flake8 excelled in precision (1.00)
but lagged in detecting nuanced violations. In terms of
advantages and disadvantages, within the context of Python,
LLMs can complement static code analysis tools in certain
areas, but their non-deterministic nature and susceptibility to
FNs make them unsuitable as standalone tools for security
critical applications. Future work should examine whether
these findings generalize to languages with stricter typing or
different structural characteristics. Regarding the prompting
strategies, structural prompts (P1) yielded the most balanced
results, whereas CoT and role-based prompts showed mixed
efficacy, underscoring the importance of prompt engineering.
LLMs faced limitations in batch processing and long-context
analysis, with individual snippet evaluation proving more
reliable. Our contribution lies in the empirical evidence,
the proposed taxonomy, dataset, and practical insights for
integrating LLMs with existing tools.

In the future, we aim to expand this study by including
more LLMs, additional prompt types, and a wider range of
coding violations. Moreover, combining LLMs with static
code analysis tools to create neuro-symbolic systems that
reduce FP and enhance vulnerability detection in terms of
integration and practical application is a crucial next step.
Finally, we aim to develop a benchmark dataset specifically
for static code analysis to support researchers in contributing
effectively contribute to this rapidly evolving field.

References
AlOmar, E.A., and Mkaouer, M.W., 2024. Cultivating software quality
improvement in the classroom: An experience with chatGPT. In:
2024 36th International Conference on Software Engineering Education and
Training (CSEE&T). IEEE, United States, pp.1-10.

Carandang, K.A.M., Arana, J.M., Casin, E.R., Monterola, C., Tan, D.S.,
Valenzuela, J.F.B., and Alis, C., 2025. Are LLMs reliable? An exploration of the
reliability of large language models in clinical note generation. In: Proceedings of
the 63rd Annual Meeting of the Association for Computational Linguistics (Volume
6: Industry Track). Association for Computational Linguistics, Stroudsburg, PA,
USA, pp.1413-1422.

� ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.12395� 225

Flake8-Dev., 2025. Flake8 : Is a Python Tool That Check the Style and Quality
of Some Python Code. Available from: https://github.com/pycqa/flake8 [Last
accessed on 2025 Feb 17].

Guo, Q., Cao, J., Xie, X., Liu, S., Li, X., Chen, B., and Peng, X., 2023a. Exploring
the Potential of ChatGPT in Automated Code Refinement: An Empirical Study.
Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering, pp.1-13.

Guo, Z., Tan, T., Liu, S., Liu, X., Lai, W., Yang, Y., Li, Y., Chen, L., Dong, W.,
and Zhou, Y., 2023b. Mitigating false positive static analysis warnings: Progress,
challenges, and opportunities. IEEE Transactions on Software Engineering,
49(12), pp.5154-5188.

Haindl, P., and Weinberger, G., 2024. Does chatGPT Help novice programmers
write better code? results from static code analysis. IEEE Access, 12, pp.114146-
114156.

Hajipour, H., Hassler, K., Holz, T., Schönherr, L., and Fritz, M., 2024.
CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models. In: 2024 IEEE Conference
on Secure and Trustworthy Machine Learning (SaTML). IEEE, United States,
pp.684-709.

Ignatyev, V.N., Shimchik, N.V., Panov, D.D., and Mitrofanov, A.A., 2024. Large
language models in source code static analysis. In: 2024 Ivannikov Memorial
Workshop (IVMEM). IEEE, United States, pp.28-35.

Jesse, K., Ahmed, T., Devanbu, P.T., and Morgan, E., 2023. Large language
models and simple, stupid bugs. In: 2023 IEEE/ACM 20th International
Conference on Mining Software Repositories (MSR). IEEE, United States,
pp.563-575.

Kedia, N.K., Kumari, H., and Mundra, S., 2023. A review paper on python
for data science and machine learning. Journal of Analysis and Computations,
17(2), pp.97-103.

Li, H., Hao, Y., Zhai, Y., and Qian, Z., 2023a. Assisting static analysis with large
language models: A ChatGPT experiment. In: Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. ACM, New York, NY, USA: pp.2107-2111.

Li, H., Hao, Y., Zhai, Y., and Qian, Z., 2023b. The Hitchhiker’s Guide to Program
Analysis: A Journey with Large Language Models. Cornell University, United
States.

Li, Z., Dutta, S., and Naik, M., 2025. IRIS: LLM-Assisted Static Analysis for
Detecting Security Vulnerabilities. Cornell University, United States, pp.1-24.

Liu, Z., Yang, Z., and Liao, Q., 2024. Exploration On Prompting LLM With
Code-Specific Information For Vulnerability Detection. In: Proceedings - 2024
IEEE International Conference on Software Services Engineering, SSE 2024,
pp.273-281.

Ma, W., Liu, S., Lin, Z., Wang, W., Hu, Q., Liu, Y., Zhang, C., Nie, L., Li, L.,
and Liu, Y., 2024. LLMs: Understanding Code Syntax and Semantics for Code
Analysis. Cornell University, United States.

Mohajer, M.M., Aleithan, R., Harzevili, N.S., Wei, M., Belle, A.B., Pham, H.V.,
and Wang, S., 2023. SkipAnalyzer: A Tool for Static Code Analysis with Large
Language Models. Cornell University, United States.

Moratis, K., Diamantopoulos, T., Nastos, D.N., and Symeonidis, A., 2024. Write
me This Code: An Analysis of ChatGPT Quality for Producing Source Code.
Proceedings - 2024 IEEE/ACM 21st International Conference on Mining Software
Repositories, MSR 2024, pp.147-151.

Mousavi, S.M., Alghisi, S., and Riccardi, G., 2025. LLMs as Repositories of
Factual Knowledge: Limitations and Solutions. Cornell University, United
States, pp.1-13.

Noever, D., 2023. Can Large Language Models Find and Fix Vulnerable
Software? Cornell University, United States.

Omar, M., and Shiaeles, S., 2023. VulDetect: A novel technique for detecting
software vulnerabilities using language models. In: 2023 IEEE International
Conference on Cyber Security and Resilience (CSR). IEEE, United States,
pp.105-110.

Pearce, H., Tan, B., Ahmad, B., Karri, R., and Dolan-Gavitt, B., 2023. Examining
zero-shot vulnerability repair with large language models. In: 2023 IEEE
Symposium on Security and Privacy (SP). IEEE, United States, pp.2339-2356.

Purba, M.D., Ghosh, A., Radford, B.J., and Chu, B., 2023. Software Vulnerability
Detection using Large Language Models. In: 2023 IEEE 34th International
Symposium on Software Reliability Engineering Workshops (ISSREW). IEEE,
United States, pp.112-119.

Pylint-Dev., 2024. Pylint: It’s Not Just a Linter That Annoys You. Available from:
https://github.com/pylint-dev/pylint [Last accessed on 2025 Feb 17].

Raschka, S., Patterson, J., and Nolet, C., 2020. Machine learning in python:
Main developments and technology trends in data science, machine learning,
and artificial intelligence. Information (Switzerland), 11(4), p.193.

Ságodi, Z., Siket, I., and Ferenc, R., 2024. Methodology for code synthesis
evaluation of LLMs presented by a case study of ChatGPT and copilot. IEEE
Access, 12, pp.72303-72316.

Souma, N., Ito, W., Obara, M., Kawaguchi, T., Akinobu, Y., Kurabayashi, T.,
Tanno, H., and Kuramitsu, K., 2023. Can chatGPT correct code based on logical
steps. Proceedings Asia-Pacific Software Engineering Conference, APSEC, 2,
pp.653-654.

Venkatesh, A.P.S., Sabu, S., Mir, A.M., Reis, S., and Bodden, E., 2024. The
emergence of large language models in static analysis: A first look through
micro-benchmarks. In: Proceedings of the 2024 IEEE/ACM First International
Conference on AI Foundation Models and Software Engineering. ACM,
New York, NY, USA, pp.35-39.

Wadhwa, N., Pradhan, J., Sonwane, A., Sahu, S.P., Natarajan, N., Kanade, A.,
Parthasarathy, S., and Rajamani, S., 2024. CORE: Resolving code quality
issues using LLMs. Proceedings of the ACM on Software Engineering, 1(FSE),
pp.789-811.

Yin, X., Ni, C., and Wang, S., 2024. Multitask-based evaluation of open-source
LLM on software vulnerability. IEEE Transactions on Software Engineering,
50(11), pp.3071-3087.

Zhang, Q., Fang, C., Xie, Y., Zhang, Y., Yang, Y., Sun, W., Yu, S., and Chen, Z.,
2024. A Survey on Large Language Models for Software Engineering. Cornell
University, United States.

