
ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

40 http://dx.doi.org/10.14500/aro.10590

 Cloud Storage Protection Scheme Based on Fully
Homomorphic Encryption
Mohammed A. Mohammed1 and Fadhil S. Abed2

1Department of Computer Science, College of Science, University of Sulaimani,
Sulaymaniyah, Kurdistan Region – F.R. Iraq

2Department of Information Technology, Kalar Technical Institute, Sulaimani Polytechnic University,
Khanaqeen, Kurdistan Region – F.R. Iraq

Abstract— Cloud computing allows enterprises and individuals
to have a less physical infrastructure of software and hardware.
Nevertheless, there are some concerns regarding privacy protection
which may turn out to be a strong barrier. Traditional encryption
schemes have been used to encrypt the data before sending them to
the cloud. However, the private key has to be provided to the server
before any calculations on the data. To solve this security problem,
this paper proposes a fully homomorphic encryption scheme for
securing cloud data at rest. The scheme is based on prime modular
operation, its security depends on factoring multiple large prime
numbers (p1, p2,...pn) up to n, which is formed from very large prime
numbers up to hundreds of digits as this is an open problem in
mathematics. In addition, the elements of the secret key are derived
from a series of mathematical operations and the calculation of an
Euler coefficient within the modular of integers. Furthermore, it
adds the complexity of noise to the plaintext using the number of
users of the Cloud Service Provider. Moreover, its randomness is
evaluated by the National Institute of Standards and Technology
statistical tests, and the results demonstrating that the best statistical
performance was obtained with this algorithm.

Index Terms— Cloud Computing Security, Cryptography, Fully
Homomorphic Encryption, Information Security.

I. Introduction
Cloud computing plays an important role in storing and
processing huge amounts of data since the fast progress
of computer networks and big data (Hashem, et al. 2015).
It provides flexible and on-demand remote storage and
computing capabilities to its users. Nevertheless, as Gonzales
et al. (2017) stated that cloud computing is not fully
trustable since its users do not have full control over their
data. Privacy protection and data leakage are the main risks
for individuals and enterprises when it comes to migrating

their data to cloud storage. The encryption techniques that
require encrypted data on the cloud to be decrypted before
performing any computation is still portend the privacy of
stored data. Whereas, in Homomorphic Encryption operations
can be performed directly on encrypted data without
decrypting it. In addition, the result of the operation on
encrypted data is equivalent to the result of its corresponding
plaintext operation. This paper attempts to add an extra value
to the privacy protection of cloud’s data through proposing a
new FHE scheme based on prime modular operation, which
security depends on factoring multiple large prime numbers
(p1, p2,…,pn) up to n, which is formed from very large prime
numbers up to hundreds of digits as this is an open problem
in mathematics. Moreover, the randomness of the proposed
work is evaluated by the well-known National Institute of
Standards and Technology (NIST) test suite, which is widely
used as a standard battery of tests to test randomness. The
results of the proposed algorithm in the NIST statistical tests
show that it produces the best statistical performance through
passing all the tests.

II. Problem Statement
Nowadays, individuals and enterprises are seeking to

access their private information anytime and anywhere.
This leads them to deploy it onto cloud storage. However,
they will be facing an extra amount of risks, which makes
it challenging to maintain the security of outsourced data
such as confidentiality, integrity, authentication, and privacy.
For example, the hacking attack on PlayStation network in
2011 led it to leak millions of user accounts’ passwords,
physical addresses, credit card information, and other
personal information. Later, the company stated that they
could have encrypted the data on their network (Sangani,
2011). In addition, as reported by the Identity Theft Resource
Center on May 31, 2018, thousands of FedEx customer
records were exposed due to an unsecured server; some of
the documents were passports, driving licenses, and security
IDs (CyberScout, 2018). Therefore, Cloud Service Providers
(CSPs) are required to keep an encrypted version of user’s
information on their storage. There is a variety of different
techniques used for data encryption. Nevertheless, as the

ARO-The Scientific Journal of Koya University
Vol. VIII, No.2 (2020), Article ID: ARO.10590, 08 pages
DOI:10.14500/aro.10590
Received: 14 November 2019; Accepted: 16 November 2020
Regular research paper: Published: 06 December 2020
Corresponding author’s e-mail: mohammed.anwar@univsul.edu.iq
Copyright © 2020 Mohammed A. Mohammed and Fadhil S. Abed.
This is an open-access article distributed unde r the Creative Commons
Attribution License.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.10590 41

data resides on the cloud storage, it required to be decrypted
before performing any operation on the data. This might
cause privacy and confidentiality problems to the stored
data. Whereas, homomorphic encryption allows performing
computations on the encrypted data without decrypting it.
Thus, HE solves the problems of confidentiality and privacy
of the stored data inside the cloud. Therefore, this paper
presents a new FHE scheme based on multiple large prime
modular operation which is formed from very large prime
numbers up to hundreds of digits. Hence, it makes the secret
key very complicated which is difficult to retrieve it and
resistance to different types of attacks.

III. Literature Review
Rivest et al. (1978) were proposed the first homomorphic

encryption scheme and were partially homomorphic encryption
(PHE). Then, Yao (1982) was also presented a PHE scheme.
After that, RSA which was a multiplicative homomorphism
introduced by Rivest et al. (1983). Afterward, several authors
such as Goldwasser and Micali (1984), Elgamal (1985),
and Paillier (1999) were also presented their PHE scheme.
Subsequently, a fully homomorphic encryption (FHE) scheme
suggested by Gentry (2009), which allows calculating of
any number of addition and multiplication, hence compute
arbitrary functions of encrypted data. Nevertheless, the
scheme was based on Somewhat Homomorphic Encryption
(SWHE), which increases the length and noise of ciphertext
when calculation performs on the ciphertext. Consequently,
van Dijk et al. (2010) have introduced FHE scheme that used
elementary modular arithmetic and used Gentry’s techniques
to convert SWHE cryptosystem to FHE scheme. In addition,
Smart and Vercauteren (2010) have presented an improved
version of Smart-Vercauteren encryption scheme, the scheme
was allowed several times decrease the ciphertext and keys
lengths. In addition, IBM has released a software package
named HElib in 2013, the company has implemented HE with
further optimizations (Cheon, et al. 2019). Moreover, a HE
scheme which is security dependent on the hardness of large
integer factorization has been proposed by Xiao et al. (2012).
Afterward, homomorphic encryption scheme has been worked
on and improved by numerous authors, they have also tested
it in a cloud computing system. Alattas and Elleithy (2013)
have presented the application of algebraic homomorphic
encryption mechanism and it was aiming at enhancing its
security. In addition, several HE schemes such as RSA,
Paillier, El-Gamal, and Gentry have been examined on a cloud
computing environment by Tebaa and El Hajii (2014). In
addition, Hayward and Chiang (2015) have improved Gentry’s
encryption in parallel processing and they have tested it in a
private cloud domain. Furthermore, structured and simplified
definitions in the homomorphic encryption discipline have
been proposed by Armknecht et al. (2015). Moreover, SAM
which is an FHE scheme over integers has been implemented
by Shihab and Makki (2018). Furthermore, Li et al. (2016)
constructed an efficient symmetric FHE scheme and utilized
it to design a privacy-preserving-outsourced association rule

mining scheme. Their proposal allows multiple data owners
to jointly mine some association rules without sacrificing data
privacy. The security of the HE scheme against the known-
plaintext attacks was established by examining the difficulty
of solving nonlinear systems. However, Wang et al. (2018)
illustrated that the security of Li et al.’s HE is overvalued.
They presented the retrieval and the second part can also
be retrieved using a Euclidean algorithm to address the
GCD problem of the first part of the secret key. Whereas, in
2019 (Li et al.) used a lookup table to propose a protocol to
evaluate any function using FHE.

Moreover, Ji and Shieh (2019) presented ways to reduce
the computation complexity of encrypted data by adopting
the concept of aggregate plaintext and proposing an efficient
scheme to handle the comparison and swap operation,
which is commonly used for sorting and searching in cloud
computing. In late 2019, the authors of Jubrin et al. introduced
FHE as an antidote to the challenges of security and privacy
of cloud data computation; they also provided insight into
future research directions in the field of FHE. Furthermore,
Mohammed and Abed (2019) proposed an improved FHE
based on N-primes, where the proposed model’s security
depends on the problem of factorization the integers to their
primary numbers. Mert et al. (2020) presented two hardware
architectures optimized for accelerating the encryption and
decryption operations of the BFV/HE scheme with high-
performance polynomial multipliers. In addition, in 2020, Tan
et al. presented a private comparison algorithm on encrypted
integers using FHE, which scales efficiently for the length of
input integers, applying techniques from finite field theory.
Whereas, Mohammed and Abed (2020) proposed a novel
framework and an algorithm for securing cloud data at rest.
The proposed framework guarantees users’ privacy protection
as they are communicating with an intermediary rather than
with the cloud server directly.

Despite all the works presented previously, the randomness
and robustness of the secret keys remain an open problem
in the area of FHE. Therefore, this paper presents a new
algorithm in which the elements of the secret key are derived
from a series of mathematical operations and the calculation
of an Euler coefficient within the modular of integers.
Furthermore, it adds the complexity of noise to the plaintext by
using the number of users of the CSP. Moreover, the proposed
algorithm’s randomness tests prove the best statistical
performance was obtained with this algorithm. Furthermore,
the algorithm works on encrypting and decrypting different
languages such as Kurdish, English, and Arabic.

IV. Homomorphic Encryption
In this section, HE scheme and its categories will be

presented. Homomorphic encryption is divided into different
categories, which are SWHE, FHE, and PHE. An encryption
scheme is said to be homomorphic over an operation “+” if
it supports the following equation, where ms is the plaintext
message given to the encryption algorithm E:

E(ms1) + E(ms2) = E(ms1 + ms2), ∀ms1, ms2 ∈ M

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

42 http://dx.doi.org/10.14500/aro.10590

Somewhat homomorphic encryption allows addition and
multiplication operations, however, both operations can be
performed in a limited number Fellows and Koblitz (1994)
and BNG by (Boneh-Goh-Nissim) (Dan, et al. 2005).
Whereas, PHE allows one type of operation, either addition or
multiplication, that is, Paillier, Goldwasser-Micali, Benaloh,
El-Gamal, and RSA. On the other hand, FHE allows an
unlimited number of both addition and multiplication on the
ciphertext. It can be considered as ring homomorphism. As in
mathematics, a ring is a set R equipped with two operations,
“+” and “×” satisfying the eight axioms, known as the ring
axioms. Examples of FHEs are FHE schemes Over Integers
(dos Santos, et al. 2015), Simple FHE scheme (Li, et al.
2012), LWE-based FHE schemes (Regev, 2005), ideal lattice-
based FHE schemes (Gentry, 2009), and NTRU-like FHE
schemes (Hoffstein, et al. 1998). Fig. 1 presents the popular
schemes proposed after the Gentry’s discovery.

V. The Proposed Scheme
The proposed scheme works on converting each plaintext

character into its corresponding Unicode and then encrypts
the derived Unicode by passing it to the encryption algorithm.
In addition, the scheme also works on encrypting plaintexts
in several languages such as Kurdish, English, and Arabic
languages. In addition, the algorithm uses two different
noises r as the first noise is added to make the ciphertext
more digestive, whereas the counter i works on converting
repeated characters in the text into different ciphertext
values. The detailed notations used in the key generation,
encryption, and decryption algorithms are presented in
Table I. Subsequently, the working flow of the algorithms is
illustrated in pseudocode.

Generating the Secret Key Ksp

At first choose multiple P prime numbers p p p pn1 2 3, , ... as
secret keys, then calculate P as P p p pn� � � �1 2 ... , calculate L

as L p p pn� � � �()()...()1 21 1 1 , then calculate M Fs ii

m
�

�� 1
,

where Fi = set of prime numbers up to L, and then calculate the

average value of sum of all prime numbers as M M
Lavg
s= , then

choose a random number Rn that satisfies gcd ,R Mn avg� � �1,

1< <R Mn avg , then select Usr as it is the number of existing

users of the cloud system U U Usr sr srn1 2, ,...,� �, where Usr ≥1,
calculate � P p pn� � � �� � �� �1 1 1... , and calculate

Q U P Msr s� � � �� �� mod and finally calculate Ksp as:

 Ksp = (Rn × Q) mod 256 (1)

Mod 255 is taken as this is because the secret key values
are derived from a series of mathematical calculations that
are within a certain scale between 1 and 255 so that the
values resulting from the equation are not very large and
prevent any slowness in the calculation process.

Encryption algorithm
 cph = ms + N (rKsp + i) (2)

Decryption algorithm
 ms = cphmodN (3)

Fig. 1. Main FHE schemes after Gentry’s discovery (Acar, et al. 2018).

Algorithm 1: Key generation
Procedure
Input : n prime numbers p1, p2, p3 … pn

for i = 1 to n
Pr = Pr × pi
L = L(pi+1)

end for
for i = 1 to L

Ms = Ms + pi

end for
Calc : Mavg = Ms DivisibleBy L
rand := a random number Rn → gcd(Rn, Mavg) = 1
Rn not equal ZERO AND smaller than Mavg

for i = 1 to n
(Pr) = (Pr)(pi−1)

end for
Input : Usr where its ≥ 1
Calc : Q = Usr ×((Pr) mod Ms)
Calc : Ksp = (Rn × Q) mod 256
Output : Ksp as the secret key
End procedure

Algorithm 2: Encryption
Procedure
Input: N as big prime number
Input: ms the plaintext message
rand:= a random number r
for i = 1 to length(ms)

cph = ms + N(r Ksp+i)
end for
Output: cph as ciphertext file
End procedure

Algorithm 3: Decryption
Procedure
for i = 1 to length(cph)

ms = cph mod N
end for
Output: ms as plaintext file
End procedure

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.10590 43

A. Proof of Homomorphism
This subsection will illustrate the homomorphism of the

proposed scheme, assume there are two ciphertexts cph1 and cph2
where cph ms N r K i1 1 1� � �()sup , cph ms N r K i2 2 2� � �()sup ,

and modcph N ms≡ , where ms N< , otherwise, we must take
(mod)ms N .
Homomorphism (Addition)

Assume that the sum of two ciphertexts cph1 and cph2 is
denoted by ()cph cph cph� � �1 2 so

cph cph cph ms ms N r K i N r K isp sp
� � � � �� � � �� � � �� �1 2 1 2 1 2 ,

nonetheless N r K i N r K i NK
r r
isp sp sp1 2

1 2

2
0�� � � �� � � �

�
�

�
�

�

�
� �

()

Then ms cph cph N ms ms� � �� � � �1 2 1 2 mod

Homomorphism (Multiplication)
Assume that the sum of two ciphertexts cph1 and cph2 is

denoted by (cph* = cph1 * cph2) cph* = [ms1 + N (r1Ksp + i)] ×
[ms2 + N (r2Ksp + i)] cph* = [ms1 × ms2 + ms1 × N (r2Ksp + i)]
+ N (r1Ksp + i) × ms2 + N (r1Ksp + i) × N (r2Ksp + i)] Then N ×
[ms1 × N (r2Ksp + i) + (r1Ksp + i) × ms2 N (r1Ksp + i) × N (r2Ksp
+ i) mod N] = 0 So that, cph* = ms1 × ms2 + 0 = ms1 × ms2.

VI. Result and Analysis
In this section, the results gained from the proposed

scheme will be presented through numerous tests on English,
Kurdish, and Arabic languages. To test the proposed scheme,
it is implemented with Java programming language and
processed on a computer with the following features: Intel
Core i7 processor, HDD hard drive, 16 GB RAM, and
Windows 10 64-bit. At first, the generation of the secret key
is illustrated then it will be used for all the tests presented in
this section.

Secret key generation
Choose a set of prime numbers for as p p1 231 59= =, and

p3 73= then � P� � � � � �30 58 72 125280 ,
P � � � �31 59 73 133517 . Then, calculate

L � �� � �� � �� � �31 1 59 1 73 1 142080, so Ms =129548351731,
Mavg = 911798 , assume Usr = 35and Rn =15 then

Q = 4384800 , finally Ksp = 224 .

A. Test on English Language
The proposed algorithm will be tested on an English

language text of “Hello world; this is a new Fully
Homomorphic algorithm.” For this test, the secret key will be
Ksp = 224 as generated previously, and N = 524287which is

big prime number, then choose a random number as
r = 62598 the ciphertext of the given text after applying the
proposed algorithm on it will be:

7351527148296 7351527672612 7351528196906
7351528721193 7351529245483 7 3 5 1 5 2 9 7 6 9 6 9 1
7351530294065 7351530818344 7 3 5 1 5 3 1 3 4 2 6 3 4
7351531866915 7351532391194 7 3 5 1 5 3 2 9 1 5 4 1 3
7351533439784 7351533964059 7 3 5 1 5 3 4 4 8 8 3 4 7
7351535012644 7351535536848 7 3 5 1 5 3 6 0 6 1 2 0 8
7351536585505 7351537109709 7 3 5 1 5 3 7 6 3 4 0 6 1
7351538158283 7351538682648 7 3 5 1 5 3 9 2 0 6 9 2 6
7351539731231 7351540255431 7 3 5 1 5 4 0 7 7 9 7 5 6
7351541304090 7351541828368 7 3 5 1 5 4 2 3 5 2 6 5 5
7351542876955 7351543401153 7 3 5 1 5 4 3 9 2 5 4 8 0
7351544449806 7351544974091 7 3 5 1 5 4 5 4 9 8 3 8 0
7351546022665 7351546546954 7 3 5 1 5 4 7 0 7 1 2 4 4
7351547595529 7351548119808 7 3 5 1 5 4 8 6 4 4 0 9 6
7351549168377 7351549692597 7 3 5 1 5 5 0 2 1 6 9 4 9
7351550741247 7351551265529 7 3 5 1 5 5 1 7 8 9 8 2 4
7351552314114 7351552838392 7 3 5 1 5 5 3 3 6 2 6 9 0
7351553886965 7351554411257

Table II and Fig. 2 illustrate the performance of the
proposed algorithm tested on different file sizes that contain
plaintext written in the English language.

B. Test on Kurdish Language
This test illustrates the proposed algorithm tested on a

Kurdish language text of “سڵاو ئەمە ئەلگۆریزمەکەمە بۆ تاقیکردنەوە,”
and the same values used for testing English language text
and the ciphertext will be:

7351527149811 7 3 5 1 5 2 7 6 7 4 2 2 8
7351528198373 7351528722693 7 3 5 1 5 2 9 2 4 5 4 0 4
73515297712337351530295695 7 3 5 1 5 3 0 8 1 9 8 3 8
7351531344269 7351531866839 7 3 5 1 5 3 2 3 9 2 6 6 8
7351532917130 7351533441272 7 3 5 1 5 3 3 9 6 5 6 6 6
7351534489976 7351535014114 7 3 5 1 5 3 5 5 3 8 5 5 6
7351536062689 7351536586995 7 3 5 1 5 3 7 1 1 1 4 2 6
7351537635669 7351538160000 7 3 5 1 5 3 8 6 8 4 1 4 3
7351539208574 7351539731144 7 3 5 1 5 4 0 2 5 6 9 7 5
7351540781420 7351541304005 7 3 5 1 5 4 1 8 2 9 8 3 8
7351542354122 7351542878436 7 3 5 1 5 4 3 4 0 2 8 6 1
7351543927113 7351544451280 7 3 5 1 5 4 4 9 7 5 5 6 5
7351545499875 7351546024305 7 3 5 1 5 4 6 5 4 8 4 5 1
7351547072879

Table III and Fig. 3 illustrate the performance of the
proposed algorithm tested on different file sizes that contain
plaintext written in the Kurdish language.

TABLE I
List of Notations

Notations Details
cph Ciphertext
ms The plaintext message
r Noise added to the ciphertext
N Big prime integer
Ksp Secret key
i Counter added as extra noise to the ciphertext works on

converting repeated character into different ciphertext value.
p1, p2, p3 … pn Multiple prime numbers
P Is the multiplications of prime numbers
L Is the multiplication of each prime number plus one
Ms The summation of prime numbers up to L
Mavg Average of all prime numbers
Rn Is a random number where gcd(Rn, Mavg) = 1
Usr Is the number of CSP’s users
CSP: Cloud service provider

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

44 http://dx.doi.org/10.14500/aro.10590

Fig. 2. Encryption and decryption time on English language plaintext file.

Fig. 3. Encryption and decryption time on Kurdish language plaintext
file.

TABLE II
Testing the Proposed Algorithm on Different File Sizes Written in

the English Language

File sizes Encryption (ms) Decryption (ms)
10 KB 378 414
20 KB 397 448
40 KB 413 499
80 KB 459 570
160 KB 486 625
320 KB 529 710
500 KB 599 831
1 MB 748 1081
2 MB 981 1597
4 MB 1698 2703
8 MB 2531 4843
16 MB 4234 8432

TABLE III
Testing the Proposed Algorithm on Different File Sizes Written in

the Kurdish Language

File sizes Encryption (ms) Decryption (ms)
10 KB 375 406
20 KB 391 438
40 KB 421 500
80 KB 437 562
160 KB 485 688
320 KB 578 766
500 KB 594 814
1 MB 734 1109
2 MB 1031 1625
4 MB 1702 2609
8 MB 2848 4582
16 MB 5471 9018

C. Test on Arabic Language
This time the proposed algorithm will be tested on an

Arabic text of “جدیدة خوارزمیة لكم نقدم also the values ”,مرحبا
from the first test will be used and the ciphertext is as
follow:

7351527149829 7351527674096 7351528198379
7351528722661 7351529246947 7 3 5 1 5 2 9 7 6 9 6 9 1
7351530295552 7351530819835 7 3 5 1 5 3 1 3 4 4 1 0 3
7351531868412 7351532391126 7 3 5 1 5 3 2 9 1 6 9 8 5
7351533441271 7351533965560 7 3 5 1 5 3 4 4 8 8 2 7 4
7351535014111 7351535538424 7 3 5 1 5 3 6 0 6 2 6 7 8
7351536586975 7351537111263 7 3 5 1 5 3 7 6 3 5 5 6 9
7351538159861 7351538684115 7 3 5 1 5 3 9 2 0 6 8 5 7
7351539732692 7351540256982 7 3 5 1 5 4 0 7 8 1 2 9 6
7351541305556 7351541829837

The previous tests presented that the proposed algorithm
can be performed on different languages, and it produces
different cipher-values for all plaintext values and also for
the repeated character within the same text. In addition,
the rest of this section will present the performance of the
proposed algorithm performed on different file sizes written
in English, Kurdish, and Arabic languages. Table IV and
Fig. 4 illustrate the performance of the proposed algorithm
tested on different file sizes that contain plaintext written in
the Arabic language.

Fig. 4. Encryption and decryption time on Arabic language plaintext file.

The results of the previous tests show that the proposed
algorithm is capable on encrypting plaintexts written in
different languages efficiently regardless of the file size.
In addition, it can be observed from the results that the
algorithm performs almost the same performance on the
same file sizes of various languages. Table V and Fig. 5
present a comparison of the previous tests gained from the
proposed algorithm. As it is illustrated, the encryption and
decryption time for all three languages are vary and almost
works the same. Such as the encryption time of 20 KB
Arabic text-file requires less time than the encryption time
on its corresponding English and Kurdish text-file. Whereas,
the encryption time of 2 MB English text-file takes less time
than Kurdish and Arabic text-files.

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.10590 45

Fig. 5. Encryption and decryption time on English, Kurdish, and Arabic language plaintext file.

TABLE IV
Testing the Proposed Algorithm on Different File Sizes Written in

the Arabic Language

File sizes Encryption (ms) Decryption (ms)
10 KB 364 414
20 KB 382 446
40 KB 395 477
80 KB 451 585
160 KB 467 590
320 KB 517 707
500 KB 614 831
1 MB 781 1042
2 MB 983 1543
4 MB 1787 2704
8 MB 2930 4612
16 MB 5741 8970

TABLE V
Time Complexity of the Basic Arithmetic Operations

Operation Time complexity
of binary integers

of size n

Time complexity
of decimal digits of

size n
Addition x + y O(n) O(log(n))
Subtraction x – y O(n) O(log(n))
Multiplication x × y O(n2) O((log(n2))
Division and Modular O(n2) O((log(n2))
Inverse x−1 O(n2log(n)) O(log(n))3)
Modular exponentiation xn O(n2log(n)) O(log(n))3)

D. Big O Notation (Time Complexity)
Searching for the “best” in algorithms is the main concern

of algorithms’ designers, and this can be achieved through
using O-notation. The aim of studying the time complexity
of an algorithm is to determine whether the algorithms’
running time is O(f(N)) for some function f() or not. Table VI
illustrates the complexity of the basic arithmetic operations
in Zn (Sagheer, 2012).

The input numbers of encryption and decryption algorithms
should be analyzed at first before performing any calculation
of the time complexity. The input numbers are either binary
integers or decimal digits, whereas the time complexity of the
first mentioned is O(n) and the time complexity of decimal
digits is O(log(n)), this excluding constant number whose
complexity is O(1). Since, n is the size of input numbers.

1) Time complexity of DGHV scheme
Let n be the size of input message unit.
Encryption function:
cph ms r p q� � � �2

Then: T cph O n T r O n() () () ()� � �2
2

T r O n() ()2 = , by shift operation

T cph O n O n O n() () () ()� � �2
2 2 bit operation.

Decryption function:
ms cph p= (mod)mod 2

Then: T ms O n() ()= 2 bit operation
2) Time complexity of SDC scheme
Let nbe the size of input message unit.
Encryption function:
cph ms p r p q� � � � �

Then: T cph O n O n O n() () () (())� � � 2
2

T cph O n O n O n() (()) (()) ()� � �2 2
2 2 bit operation.

Decryption function:
ms cph p= mod

Then: T ms O n() ()= 2 bit operation.
3) Time complexity of the proposed algorithm
Let n be the size of input message, n is decimal digit.
Encryption function:
cph ms N rK isp� � �()

Then: T cph O n O n() ((log())) ((log()))� �2 2 2

ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

46 http://dx.doi.org/10.14500/aro.10590

TABLE VI
Comparing the Results of the Algorithm Gained from Encrypting and Decrypting English, Kurdish, and Arabic Language’s Plaintexts

File sizes English Kurdish Arabic

Encryption (ms) Decryption (ms) Encryption (ms) Encryption (ms) Encryption (ms) Encryption (ms)
10 KB 378 414 375 406 364 414
20 KB 397 448 391 438 382 446
40 KB 413 499 421 500 395 477
80 KB 459 570 437 562 451 585
160 KB 486 625 485 688 467 590
320 KB 529 710 578 766 517 707
500 KB 599 831 594 814 614 831
1 MB 748 1081 734 1109 781 1042
2 MB 981 1597 1031 1625 983 1543
4 MB 1698 2703 1702 2609 1787 2704
8 MB 2531 4843 2848 4582 2930 4612
16 MB 5741 8970 5471 9018 5741 8970

T cph O n() (log())≡ 2

Decryption function:
ms cph N= mod

Then: T ms O n() ((log()))= 2 , Where, (log)2 n is the number
of bits of n

E. Resistance to Attacks
In this section, the resistance of the proposed algorithm

to different types of attacks such as Key Generation and
Character Repetition, Brute Force Attack, and Mathematical
Attack are illustrated.

4) Key generation and character repetition
The proposed algorithm encrypts each file with a different

key, and it depends on a variable that is different for every
cloud user. In addition, the algorithm encrypts the repetition
of each character into different values. Thus, the attacker
cannot analyze character repetition in the file. Consequently,
the combination of different keys for each file and different
values for the same character allows our proposed algorithm
to provide a strong encryption method.

5) Brute force attack
In the proposed algorithm, the strength of large prime

numbers depends on the multiplication of n prime numbers p1,
p2,… pn. Thus, it is difficult to break the large prime number
into multiple primes as compared to the existing algorithms.
Furthermore, the multiple prime numbers increase the level of
difficulty to break the security of the algorithm. In addition,
the use of the addition noises makes it more difficult to break.

6) Mathematical attack
This kind of attack occurs when the attacker determines the

values of p and q. In our proposed algorithm, it is reduced as
the algorithm uses multiple numbers of primes, and it is hard
to derive any of those primes from the multiplication result.

F. Results of NIST Statistical Tests
The randomness of this novel proposal is evaluated by

the well-known NIST test suite. Table VII shows the test
results of the proposed algorithm from the NIST statistical

tests, demonstrating that the best statistical performance was
obtained with this algorithm.

VII. Conclusion
It has been said that homomorphic encryption is the change
point of cryptography, as it protects data regardless of its
situation, whether the data are in transit or at rest. This
helped CSPs to use this new technique for data protection.
This paper is proposed a new FHE scheme based on prime
modular operation. The scheme performs encryption and
decryption on plaintext values regardless of the written
language of the plaintext English, Kurdish, Arabic, or any
other languages as well as special characters. In addition,
the scheme encrypts repeated characters of the plaintext into
different ciphertext values which increases the security of
the ciphertext. The randomness of the proposal scheme is
evaluated by the well-known NIST test suite (widely used as
a standard battery of tests to test randomness). The results of
the proposed algorithm in the NIST statistical tests show that
it produces the best statistical performance through passing

TABLE VII
NIST SP 800-22 Test Results for the NAZUZ Algorithm

Tests P-value Result
Frequency (Monobits) 0.997743 Success
Block frequency 0.999936 Success
Cumulative sums (Cusum) 0.983782 Success
Runs 0.982544 Success
Longest run of ones 0.993900 Success
Rank 0.999594 Success
Discrete Fourier transform 0.074478 Success
Non-overlapping template matching 0.999975 Success
Overlapping template matching 0.856322 Success
Universal statistical 0.999620 Success
Approximate entropy 0.999961 Success
Random excursions 0.997529 Success
Random excursions variant 0.837424 Success
Serial 0.999995 Success
Linear complexity 0.999438 Success

 ARO p-ISSN: 2410-9355, e-ISSN: 2307-549X

http://dx.doi.org/10.14500/aro.10590 47

all the tests. Moreover, the proposed scheme demonstrates
good security for the stored data on the cloud.

References
Acar A, Aksu H., Uluagac A.S. and Conti, M., 2018. A survey on homomorphic
encryption schemes: Theory and implementation. ACM Computing Surveys,
51(4), pp.1-35.

Alattas, R. and Elleithy, K., 2013. Cloud Computing Algebra Homomorphic
Encryption Scheme Based on Fermat’s Little Theorem. The American Society
of Engineering Education, Northfield, VT, USA.

Armknecht, F., Boyd, C., Carr, C., Gjøsteen, K., Jaschke, A., Reuter, C. and
Strand, M., 2015. A guide to fully homomorphicencryption. IACR Cryptology
ePrint Archive, 2015, 1192.

Cheon, J., Choe, H., Lee, D. and Son, Y., 2019. Faster linear transformations in
HElib, revisited. IEEE Access, 7, pp.50595-50604.

CyberScout., 2018. Data Breach Reports. Identity Theft Resource Center,
Berkeley, CA, USA.

Dan, B., Eu-Jin, G. and Kobbi, N. 2005. Evaluating 2-DNF formulas on
ciphertexts. In: Proceedings of Theory of Cryptography Conference. Vol. 3378.
Springer, Berlin. pp.325-341.

dos Santos, L.C., Bilar, G.R. and Pereira, F.D., 2015. Implementation of the
Fully Homomorphic Encryption Scheme Over Integers with Shorter Keys. In:
2015 7th International Conference on New Technologies, Mobility and Security
(NTMS), Paris, France.

Elgamal, T., 1985. A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Transactions on Information Theory, 31(4),
pp.469-472.

Fellows, M. and Koblitz, N., 1994. Combinatorial cryptosystems galore! In:
Finite Fields: Theory, Applications, and Algorithms. American Mathematical
Society, Providence, Rhode Island. pp.51-61.

Gentry, C., 2009. A Fully Homomorphic Encryption Scheme, PhD. Stanford
University, United States.

Gentry, C., 2009. Fully Homomorphic Encryption Using Ideal Lattices. In:
Proceedings of the 41st Annual ACM Symposium on Symposium on Theory of
Computing STOC ’09, Bethesda, Maryland, USA.

Goldwasser, S. and Micali, S., 1984. Probabilistic encryption. Journal of
Computer and System Sciences, 28(2), pp.270-299.

Gonzales, D., Kaplan, J., Saltzman, E., Winkelman, Z. and Woods, D., 2017.
Cloud-trust a security assessment model for infrastructure as a service (IaaS)
clouds. IEEE Transactions on Cloud Computing, 5(3), pp.523-536.

Hashem, I., Yaqoob, I., Anuar, N., Mokhtar, S., Gani, A. and Khan, S.U., 2015.
The rise of “big data” on cloud computing: Review and open research issues.
Information Systems, 47, pp.98-115.

Hayward, R. and Chiang, C., 2015. Parallelizing fully homomorphic encryption
for a cloud environment. Journal of Applied Research and Technology, 13(2),
pp.245-252.

Hoffstein, J., Pipher, J. and Silverman, J., 1998. NTRU: A ring-based public key
cryptosystem. In: Lecture Notes in Computer Science. Springer Science+Business
Media, Berlin, Germany. pp.267-288.

Ji, J. and Shieh, M., 2019. Efficient comparison and swap on fully homomorphic
encrypted data. In: 2019 IEEE International Symposium on Circuits and Systems
(ISCAS), Sapporo, Japan, pp.1-4.

Jubrin, A.M., Izegbu, I. and Adebayo, O.S., 2019. Fully homomorphic
encryption: An antidote to cloud data security and privacy concems. In: 2019
15th International Conference on Electronics, Computer and Computation
(ICECCO), Abuja, Nigeria, pp.1-6.

Li, J., Song, D., Chen, S. and Lu, X., 2012. A Simple Fully Homomorphic
Encryption Scheme Available in Cloud Computing. In: 2012 IEEE 2nd
International Conference on Cloud Computing and Intelligence Systems,
Hangzhou, China.

Li, L., Lu, R., Choo, K.R., Datta A. and Shao J., 2016. Privacy-preserving-
outsourced association rule mining on vertically partitioned databases. IEEE
Transactions on Information Forensics and Security, 11(8), pp.1847-1861.

Li, R., Ishimaki, Y. and Yamana H., 2019. Fully homomorphic encryption with
table lookup for privacy-preserving smart grid. In: 2019 IEEE International
Conference on Smart Computing (SMARTCOMP), Washington, DC, USA,
pp.19-24.

Mert, A.C., Öztürk E. and Savaş, E., 2020. Design and Implementation of
Encryption/Decryption Architectures for BFV Homomorphic Encryption Scheme.
Vol. 28. IEEE Transactions on Very Large Scale Integration Systems, pp.353-362.

Mohammed, M.A. and Abed, F.S., 2019. An improved fully homomorphic
encryption model based on N-primes. Kurdistan Journal of Applied Research,
4(2), pp.40-49.

Mohammed, M.A. and Abed, F.S., 2020. A symmetric-based framework for
securing cloud data at rest. Turkish Journal of Electrical Engineering and
Computer Sciences, 28(1), pp.347-361.

Paillier, P., n.d. Public-key cryptosystems based on composite degree residuosity
classes. Advances in Cryptology Eurocrypt, 99, pp.223-238.

Regev, O., 2005. On Lattices, Learning with Errors, Random Linear Codes, and
Cryptography. In: Proceedings of the 37th annual ACM Symposium on Theory
of Computing STOC ‘05, Baltimore, Maryland, USA.

Rivest, R., Shamir, A. and Adleman, L., 1983. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 26(1),
pp.96-99.

Rivest, R.L.; Adleman, L. and Dertouzos, M.L., 1978. On data banks and privacy
homomorphisms. In: Foundations of Secure Computation. Academia Press,
Cambridge, Massachusetts. pp.169-179.

Sagheer, A.M., 2012. Elliptic Curves Cryptographic Techniques. In: 2012 6th
International Conference on Signal Processing and Communication Systems,
Gold Coast, QLD, pp.1-7.

Sangani, K., 2011. Sony security laid bare. Engineering and Technology, 6(8),
pp.74-77.

Shihab, H. and Makki, S., 2018. Design of fully homomorphic encryption by
prime modular operation. Telfor Journal, 10(2), pp.118-122.

Smart, N. and Vercauteren, F., 2010. Fully homomorphic encryption with
relatively small key and ciphertext sizes. Public Key Cryptography, 2010,
pp.420-443.

Tan, B.H.M., Lee, H.T., Wang, H., Ren, S.Q. and Khin, A.M.M., 2020. Efficient
private comparison queries over encrypted databases using fully homomorphic
encryption with finite fields. IEEE Transactions on Dependable and Secure
Computing, p.1.

Tebaa, M. and El Hajii, S., 2014. Secure cloud computing through homomorphic
encryption. Computing Research Repository, 5, 1409.

van Dijk, M., Gentry, C., Halevi, S. and Vaikuntanathan, V., 2010. Fully
homomorphic encryption over the integers. Advances in Cryptology Eurocrypt,
2010, pp.24-43.

Wang, B., Zhan, Y. and Zhang, Z., 2018. Cryptanalysis of a symmetric fully
homomorphic encryption scheme. IEEE Transactions on Information Forensics
and Security, 13(6), pp.1460-1467.

Xiao, L., Bastani, O. and Yen, I., 2012. An Efficient Homorphic Encryption
Protocol for Multi-user Systems. IACR Cryptology ePrint Archive, Lyon, France.

Yao, A., 1982. Protocols for Secure Computations. In: 23rd Annual Symposium
on Foundations of Computer Science (sfcs 1982), Washington, DC.

