Assessment the Natural Radioactivity of Radionuclides (²²⁶Ra, ²³²Th, ⁴⁰K, and ¹³⁷Cs) in Wheat Grain

Zakariya A. Hussein, Najeba F. Salih and Shalaw Z. Sedeeq

Department of Physics, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region - F.R. Iraq

Abstract—This paper investigates the activity concentration of radionuclides (²²⁶Ra, ²³²Th, ⁴⁰K, and ¹³⁷Cs) in the wheat grain samples using a high-purity germanium detector. Thirty-six wheat grain samples were collected from different locations of Koya City, Iraqi Kurdistan region. Average activity concentrations of ²²⁶Ra, ²³²Th, and ⁴⁰K in wheat grain are found to be 0.407 \pm 0.097 Bq.kg⁻¹, 0.36 \pm 0.14 Bq.kg⁻¹, and 109.25 \pm 2.214 Bq.kg⁻¹ for ²²⁶Ra, ³³²Th, and ⁴⁰K, respectively. The measured activity concentrations for the radionuclides are compared with the reported data from other countries. In addition, the fallout radionuclide of 137Cs has no detection of in the wheat grain samples. The radium equivalent activity Ra_{eq}, internal and external hazard indices H_{in} and H_{ex}, and annual gonadal dose equivalent are calculated for the measured samples. The total ingestion dose is 113.19 µSv.y⁻¹, which is below the world average value of 290 µSv.y⁻¹.

Index Terms—Natural Radioactivity, Wheat Grain, Radionuclides, ²²⁶Ra, ¹³⁷Cs.

I. INTRODUCTION

Natural sources of ionizing radiation have continual property of emission of nuclear particles or Gamma-rays, therefore, the exposure to human beings by those sources of radiation is inescapable. The primordial radionuclides comprise the natural series such as ²³⁸U, ²³²Th, and nonseries ⁴⁰K which are ordinarily long lived and with a half-life more than one hundred million years (Al-Hamzawi, 2017a, UNSCEAR, 2000). The radionuclide radiation could be a serious problem to the living tissues, because can cause damage them just when the radiation energy is absorbed in that tissues, and food ingestion is the most common pathway to transfer radionuclides to people, therefore, the detection of radioactive materials is absolutely important in the process of people and environment protection (Harb, et al., 2014).

ARO-The Scientific Journal of Koya University Vol. IX, No.1 (2021), Article ID: ARO.10736, 8 pages DOI: 10.14500/aro.10736 Received 04 October 2020; Accepted: 30 April 2021

Regular research paper: Published: 28 June 2021

Corresponding author's e-mail: zakariya.hussein@koyauniversity.org Copyright © 2021 Zakariya A. Hussein, Najeba F. Salih and Shalaw Z. Sedeeq. This is an open-access article distributed under the Creative Commons Attribution License.

Uranium and its isotopes are considered most serious pollution due to its radiological and toxicological activity which is a threat to the human and the environment, the ingestion of food is considered the main pathways of uranium entrance into the human body (Zakariya, 2019). Human beings are exposed to both external and internal radiation. The internal exposure comes from the intake of terrestrial radionuclides through inhalation or ingestion pathway. The inhalation exposure is related to the existence of dust particles in the air which comprise the radionuclides from the decay series of 238U and 232Th and non-series 40K as well. Plants acquire the main source of natural background radiation (terrestrial radionuclides) through the roots and leaves whereas humans and animals acquire radionuclides through consumption of these plants, there are two different mechanisms for the transferring of radionuclides to plants, either through root uptake or directly through aerial deposition (Khan, et al., 2011).

The levels of radionuclides in plants vary typically from a few tens of Becquerel (Bq) to several hundred of Becquerel per kilogram (Wang, et al., 1997). The radionuclides that exist in the fertilizers are uranium and thorium decay series as well as potassium. Besides, the concentration of radionuclides in fertilizers differs from different countries and depending on the origin of the components. Measurement and assessment of natural radioactivity is necessary because of its immediate effect on the human beings safety. In the most countries of the world, the study of naturally occurring radiation and environmental radioactivity was carried out (UNSCEAR, 2000). During the past decades, the agricultural activities in Iraqi Kurdistan region widely grew up, especially wheat planting due to the application of different types of fertilizers, pesticides, and some other chemicals to improve soil properties, enhance the quality of the crop products and to get more gain in terms of crop quantity as well. In other words, their concentration could be increased as contaminants over the time (Brigden, et al., 2002). From many countries, to establish a baseline data to the natural radioactivity levels, measurement of natural radionuclides in environmental elements has been carried out (Zakariya, 2019).

Therefore, this research was carried out to investigate the levels of radioactivity due to the natural radionuclides of ²²⁶Ra, ²³²Th, ⁴⁰K, and ¹³⁷Cs in wheat grain of Koya City, Iraqi Kurdistan, and also to estimate the radiological hazard parameters of wheat grain samples.

II. RESEARCH METHODOLOGY

A. Study Area

This study was conducted at Koya (Koysinjaq) in Erbil governorate from the south part of Iraqi Kurdistan region, as shown in Fig. 1. Koya district is about 582 m high from sea level, and it's geographical coordinates are 36.0751° N and 44.6199° E. Furthermore, Koya is a mountainous area, and it is surrounded by many villages which have affected the lifestyle of the people that living there. In general, it is considered as a good agricultural region. The intensive farming of wheat is distributed at the plain of Erbil, south of Koysinjaq district (Zakaria, et al., 2013, Hussein, 2015). The proper location and weather of this district (rainy winter and hot summer) are two helpful parameters in growing up the agricultural activities there. Especially, wheat planting has attracted a lot of attention of the farmers due to the facility in planting and it's well growing in that region (Salih, et al., 2020a). So that, wheat production can be considered as a dominant agricultural activity in that district and the largest area of agricultural lands is devoted for wheat planting (86.4%, 171,750 donums). As well as, it is estimated that wheat covers the most portion of farmlands in the world (Servitzoglou, et al., 2018). Therefore, this study was done to estimate the concentration levels of natural radionuclides and the radiological hazards in wheat grains resulting from consumption of wheat flour in Koya district.

B. Radioactivity in Wheat Plant

One of the most important food crops in the world is wheat. Annually, the largest agricultural area is devoted to wheat plantation. Wheat is a stable daily food in many different forms. In Kurdistan region, an ample amount of wheat is consumed in the form of flat bread which is locally called Nan. It is known that the major fraction of the radioactivity is retained by root part of the wheat plant. Some fraction of the radioactivity is up taken by the grain part of the wheat from the soil (Chen, et al., 2005). A part of the radionuclides which present in the fertilized soils could be taken by the plants through root uptake. Then, they can be transferred to the human body by food ingestion. The radiation dose rate taken by the human body through the different organisms

Fig. 1. Map of Iraq with Erbil governorate from north of Iraq and location under the study (Koysinjaq) (Google Maps).

depends on several factors; the rate of food consumption, the soil characteristics which the particular crop has grown on it, the health and how old is the user (Tsukada, et al., 2002). Depending on their requirement, the plants may take up the nutritious ions then they are transferred to particular tissues according to the function of the element in plant metabolic process. The primordial radionuclides could also be transported along with nutrients and may have the same chemical behavior as the indispensable nutrient. The distribution of ²³⁸U and ²³²Th in various parts of the wheat plant there is a decreasing trend as; root> shoot> husk> grains, radionuclides have the lowest concentration in the wheat grains and about 50% of Ra is observed to pile up in the roots and nearly 22% in the shoots and husk. From the figure, it is also could be seen that the higher concentration of ⁴⁰K is in the shoots and it follows a decreasing trend as shoot> root> husk>grain (Pulhani, et al., 2005).

C. Wheat Grain Sampling

A total of 36 samples of mature wheat grains obtained from the wheat plants grown were collected at harvesting time during, among the center of Koya district and it's five subdistricts (Ashti sub-district, Taq taq sub-district, Segirdkan sub-district, Shorsh sub-district, and Siktan sub-district) within 36 villages where the local growers use a great area of land for the cultivation of wheat plant. The sample locations are shown in Fig. 2. To make a representative sample from each location, 6 points were selected across each wheat plantation field, and the area of each point was 2 m \times 2 m (IAEA, 1989). The wheat grain samples were labeled and transferred into a polythene bag. Thereafter, the samples were transported into the laboratory of research at Koya University. After then, the samples were carefully cleaned from wheat roots, wheat leafs, and any kind of debris. Then, the samples were crushed using a powder grinder machine (Silver Crest, model No.: SL-8859) and passed through a 1 mm mesh to get homogenized samples. To remove moisture and for adequate drying, the samples were placed in an electrical oven at 100°C for 10 h (Alshahri, 2016). A very sensitive balance was used to measure the mass of the dried samples, each sample about 1 ± 0.02 Kg of dry weight. For measurements, the samples were packed into standard size containers (Marinelli beakers) and tightly sealed then stored for a month to reach secular equilibrium (Zakariya, 2015). Finally, after ensuring that the radioactive equilibrium of the decay products of ²²⁶Ra and ²³²Th series reached by storage for 30 days (Cevik, et al., 2007). The stored samples were transported into the counting room (Nuclear Physics Laboratory - Koya University) for measurement and analysis.

D. EFFICIENCY CALIBRATION

The efficiency of a detector is ratio of the number of pulses recorded by the detector to the number of gammaray photons emitted by the source. Efficiency is the most important characteristic of the detectors, so that, a precise efficiency calibration of a gamma-ray spectrometry system is necessary for the analysis of radionuclides available in a sample (Mostajabboddavati, et al., 2006). The calibrations of efficiency calibration for the system were performed using standard sources from the International Energy Agency (IAEA) as a function of gamma-ray energies. The detector has a relative efficiency of 73.8% at 1.33 MeV for 60Co, and its resolution (FWHM) was 1.18 keV at 122 keV for ⁵⁷Co, and at 1332 keV of 60Co was 1.97 keV, the radioactivity measurements were carried out for 36,000 s (Essiett, et al., 2015, Salih, et al., 2020). The efficiency calibration of the gamma-ray spectrometry study was performed using ²²⁶Ra (186.1, 295, 351.9, 609, 665, 1120, and 1764 keV), 60Co (1175.2 and 1332.5 keV), and ¹³⁷Cs (661.7 keV). The relative efficiency curve of the detector was made of the different energy values covering the energy range from 186 keV to 1332.5 keV. The efficiency calibration curve of high-purity germanium detector is shown in Fig. 3.

E. Calculation of the Activity Concentration of Radionuclide and Hazard Indices

After storing the samples for a month and under the assumption that secular equilibrium was achieved between ²²⁶Ra and ²³²Th and their decay products, the activity concentration of 226Ra was calculated from the average concentrations of the ²¹⁴Pb and ²¹⁴Bi decay products and that for ²³²Th was calculated from the average concentrations of ²⁰⁸Tl and ²²⁸Ac decay products in the sample that is agree with AL-harbiI and El-Taher, 2013.

Activity concentration of radionuclides

The activity concentration of the interested radionuclides ²²⁶Ra, ²³²Th, ⁴⁰K, and ¹³⁷Cs in a unit of Bq.kg⁻¹ has been calculated using the relation (Murtadha, et al., 2017, Salih, et al., 2020).

Activity concentration
$$\left(\frac{Bq}{kg}\right) = \frac{Net \ count}{\varepsilon \times I_{\gamma} \times t \times m}$$
 (1)

Where, Is is the emission probability per decay of the specific peak, ε is the absolute gamma peak efficiency for the detector at a particular photopeak, t is the counting time in seconds, and m is the mass of the sample in kilogram.

Hazard indices

The exposure to radiation arising from the primordial radionuclides of ²²⁶Ra, ²³²Th, and ⁴⁰K in the wheat grains can be determined in terms of some parameters, as given below; Radium equivalent activity (Ra_{eo})

The radium equivalent activity (Ra_{eq}), which is a single index, used to describe the gamma output from different mixtures of ²²⁶Ra, ²³²Th, and ⁴⁰K in the material. It was calculated from this equation (Nisar, 2015; Al-Hamed, et al., 2017).

$$Ra_{ea} = A_{Ra} + 1.43A_{Th} + 0.077A_K \tag{2}$$

Where, A_{Ra} , A_{Th} , and A_{K} are activity concentrations of ²²⁶Ra, ²³²Th, and ⁴⁰K, respectively.

Internal hazard indices (H_{in})

Internal hazard index of the gamma-ray specific activity concentrations of ²²⁶Ra, ²³²Th, and ⁴⁰K is calculated using Equation (3) given by (Ismail et al, 2020, Mehra, et al., 2007).

$$H_{in} = \frac{A_{Ra}}{185} + \frac{A_{Th}}{259} + \frac{A_K}{4810} \le 1$$
(3)

External hazard indices (H_{ex})

The external hazard index is a description that quantifies the exposure factor and is an estimation of the hazard of the

Fig. 2. Sampling locations of wheat grain samples on the map of the Koysinjaq district (Google Maps).

natural gamma radiation due to the terrestrial radionuclides of 226 Ra, 232 Th, and 40 K. It can be calculated using Equation (4) (Taiwo, et al., 2014).

$$H_{ex} = \frac{A_{Ra}}{370} + \frac{A_{Th}}{259} + \frac{A_K}{4810} \le 1$$
(4)

Ingestion dose (E_{ING})

Annual ingestion dose: The annual ingestion dose (E_{ING}) for human was coming from consumption of grain, due to the ingestion of radionuclides. The concentration of naturally occurring radionuclides of ²²⁶Ra, ²³²Th, and ⁴⁰K in foodstuffs and the consumption rate of food and water by human beings affect the annual ingestion dose rates (UNSCEAR, 2000). The annual ingestion dose for Koya inhabitants (E_{ING}) coming from the consumption of wheat was calculated using the following equation given by (Canbazoglu and Dogru, 2013, Salih, 2018).

$$IAED = \sum i(Ii \times Ai, r) \times FDC_r$$
(5)

Where, i represents a food category (grain, vegetable, fruits, etc.); Ii and Ai, r represent the annual consumption rate of plant crops per capita (kg/year) and the activity concentration of radioactive nuclide r in food category i (Bq/kg), respectively, and FDCr is the dose conversion factor for the ingestion of radioactive nuclides in adults were obtained from the ICRP 2012 reported as 0.28, 0.23, and 0.006 μ Sv/Bq for calculations of the effective dose due to ²²⁶Ra, ²³²Th, and ⁴⁰K, respectively (Murtadha, et al., 2017). Annual gonadal dose equivalent (AGDE)

Gamma radiation affects various organs of the human body depending on the type of the organs and the duration of exposure. The most sensitive organs interested by UNSCEAR, 2010, are the bone surface, bone marrow, lungs, thyroids, female's breast, and the gonads. Therefore, the AGDE due to the natural radionuclides of ²²⁶Ra, ²³²Th, and ⁴⁰K in the collected samples is calculated using the following formula (Mamont-Ciesla, et al., 1982).

Fig. 3. Efficiency calibration curve for the high-purity germanium detector.

$$AGDE(\mu Sv.y - 1) = 3.09A_{Ra} + 4.18A_{Th} + 0.314A_{K} \quad (6)$$

III. RESULTS AND DISCUSSION

Fig. 4 shows the activity concentrations in (Bq.kg-1) of the radionuclide ¹³⁷Cs and ²²⁶Ra, ²³²Th, and ⁴⁰K for 36 investigated wheat grain samples. The radionuclide ¹³⁷Cs was not detected in the all measured wheat grain samples. The activity concentration of 226 Ra varies from 0.245 \pm 0.116 Bq.kg⁻¹ (WS₁₀- Ella Allah village) to 0.746 \pm 0.086 Bq.kg⁻¹ (WS₁₅- Kani lala village) with an average value of 0.407 ± 0.097 Bq.kg⁻¹. The activity concentration of ²³²Th was below minimum detectable activity in the samples of WS₃, WS₅, WS₈, WS₂₂, WS₂₇, WS₂₉, WS₃₂, and WS₃₅ and it was not detected of two samples (WS₁₃ and WS₃₄). This activity ranged from below minimum detectable activity BMDA to 0.814 \pm 0.367 Bq.kg⁻¹ (WS₁₆ – Talabani gawra) with an average value of 0.36 ± 0.14 Bq.kg⁻¹. Furthermore, the activity concentration of ⁴⁰K was found in all samples with the minimum value of 72.04 \pm 1.561 Bq.kg⁻¹ (WS₂ – Pebazok) and the maximum value of 136.1 ± 2.659 Bq.kg⁻¹ (WS₃₁ – Sinawa), with average value of 109.25 \pm 2.214 Bq.kg⁻¹. The activity concentration of ⁴⁰K has been high because it is naturally high abundance in environmental samples. Moreover, ²²⁶Ra detection in wheat grain samples was expected, because it is a daughter product in the decay series of ²³⁸U which is typically found in environmental samples. Moreover, the activity concentration of ²³²Th was not detected or BMDA below minimum detectable activity in some wheat grain samples, but it does not imply absolutely that the absence of ²³²Th in these samples. In fact, many researchers in their studies have reported BMDA or non-detection for ²³²Th in wheat grains (Changizi et al., 2013, Abojassim et al., 2015, Hosseini et al., 2006). The obtained results showed the activity concentrations of the radionuclides (226Ra <232Th <40K) which is in accordance with the information presented by (Changizi et al., 2013). The soilto-wheat grain transfer factors of ⁴⁰K are considerably higher than those for ²²⁶Ra and ²³²Th because of the high solubility of ⁴⁰K in water and its high mobility in soil (Kumar, et al., 2008). The noticeably high recorded values of ⁴⁰K in the wheat grain samples within the present study are similar findings recorded by Akhtar and Tufail, 2006, Alshahri, 2016. The average values of activity concentrations of ²²⁶Ra, ²³²Th, and ⁴⁰K for the wheat grain samples in this study were too lower than the worldwide average values recommended by the United Nations Scientific Committee on the Effects of Atomic Radiation Sources as 32 Bq/kg for ²²⁶Ra, 45 Bq/kg for ²³²Th, and 412 Bq/kg for ⁴⁰K (UNSCEAR, 2000).

Furthermore, Fig. 4 shows the variations of concentration levels of ²²⁶Ra, ²³²Th, and ⁴⁰K according to the different wheat grain samples. These variations may be due to the different concentration of the radionuclides ²²⁶Ra, ²³²Th, and ⁴⁰K in the soils of wheat plantation fields which could be absorbed by wheat plants (El-Taher and Makhluf, 2010). Overall, the obtained results indicated that radioactivity levels in the

Fig. 4. A activity concentration levels of 226Ra, 232Th, and 40K of the related wheat grain samples.

wheat grain samples collected from the wheat plantation fields of Koya district are not at the range of health risk.

Furthermore, there is study in Iraq, aiming at clarifying the radiation hazard indices and ingestion effective dose in wheat flour samples collected from Iraqi markets was conducted by (Abojassim et al., 2015), by used NaI (Tl) detector was used to radiometric analysis for 12 different types of flours those were available in Iraqi markets. The specific activities were varied from 1.086 ± 0.0866 to 12.532 ± 2.026 for ²³⁸U, from 0.126 ± 0.066 to 4.298 ± 0.388 for ²³²Th, and from 41.842 ± 5.875 to 264.729 ± 3.843 for ⁴⁰K. The average values of radium equivalent and internal hazard index in wheat flour samples were found to be 19.6347 Bq.kg⁻¹ and 0.0708, respectively.

Comparisons between the natural radioactivity levels in wheat grain samples of the present study with some other studies among worldwide listed in Table I.

Table II shows the values of radium equivalent activity Ra_e of the wheat grain samples. The results of Ra_e for the measured wheat grain samples were ranged from 6.71 to 11.9 Bq.kg⁻¹ with average value of 9.33 Bq.kg⁻¹ that is less than the permissible limit (370 Bq.kg⁻¹) (UNSCEAR, 2000), this result indicates that the collected wheat grain samples among the wheat farming lands of Koya district have no radiation hazards. The values of other parameters such as internal and external hazard indices \boldsymbol{H}_{in} and \boldsymbol{H}_{ex} and AGDE due to the specific activities of ²²⁶Ra, ²³²Th, and ⁴⁰K are presented in Table II, the values of H_{in}, H_{ev}, and AGDE were ranged from 0.019 to 0.03 with average value of 0.026, from 0.018 to 0.032 with average value of 0.025, and from 26.1 μ Sv.y⁻¹ to 46.97 μ Sv.y⁻¹ with average value of 37.06 μ Sv.y⁻¹, respectively, the lowest values of H_{in}, H_{ex}, and AGDE of the wheat grain sample were found in Pebazok village. Whereas, the highest values of the wheat grain sample were found in Siktan village. The obtained results were compared to the recommended permissible limits. This study indicated that the average values of H_{in} and H_{ex} of wheat grain samples were found to be lower than unity (<1), this reveals that the radiation hazards due to the wheat grain samples among the

Fig. 5. The average $E_{ING(Ra-226)}$, $E_{ING(Th-232)}$, $E_{ING(K-40)}$, and $E_{ING(Total)}$ in μ Sv. y⁻¹ of the wheat grain samples.

TABLE I
Comparison between the Natural Radioactivity Levels in Wheat Grain
SAMPLES UNDER STUDY AND SOME OTHER STUDIES AMONG THE WORLDWIDE
Kurdistan

Country	-	ncentrations of and ⁴⁰ K (Bq.kg	Reference	
	²²⁶ Ra	²³² Th	⁴⁰ K	_
	(Bq.kg ⁻¹)	(Bq.kg ⁻¹)	(Bq.kg ⁻¹)	
Egypt	1.352	1.142	111.98	(AL-harbiI and El- Taher, 2013)
Iran	1.67	0.5	91.73	(Changizi, et al., 2013a)
Saudi Arabia	22.7±3.2	22.4 ± 2.5	242±19	(Alshahri, 2016)
India	$0.7{\pm}0.09$	0.7 ± 0.01	88.7±7.8	(Pulhani et al., 2005)
Kazakhstan	1.1 ± 0.176	0	99.4±2	(Akhtar et al., 2005)
Macedonia	0.6±0.173	0.316±0.165	240±.1	(Aleksandra et al., 2017)
France	0.57 ± 0.057	< 0.035	146.3±7.3	(Akhtar et al., 2005)
Belgium	0.1±0.05	0.15 ± 0.05	115±22	(Lindahl et al., 2011)
Iraq, Kurdistan region	0.407±0.097	0.36±0.14	109.25± 2.214	The present study

 $E_{ING(Total)}$

114.404

87.366

80.738

106.406

105.768

116.832

121.063

100.487

104.914

108.854

102.487

141.597

92.908

133.206

120.434

112.649 132.820

121.858

122.518

124.863

139.500

101.598

93.2719

123.347

134.917

113.370

98.0787

126.629 108.775

102.070

146.817 101.324

114.475

107.142

106.147

105.496

80.738

141.597

113.198

TABLE II THE RADIUM EQUIVALENT ACTIVITY RA_{EO}, INTERNAL HAZARD INDEX (H_{IN}), EXTERNAL HAZARD INDEX (H,,), AND ANNUAL GONADAL DOSE EQUIVALENT OF THE WHEAT GRAIN SAMPLES

OF THE WHEAT GRAIN SAMPLES				Sample code	Annual Ingestion Dose E _{ING} (µSv. y ⁻¹)				
Sample code	Ra _{eq} (Bq.kg ⁻¹)	Hazard indices		AGDE (µSv.y ⁻¹)	-	E _{ING(Ra-226)}	E _{ING(K-40)}		
		H_{in}	H _{ex}		WC	11.459	E _{ING(Th-232)} 20.881	82.064	
WS ₁	8.968	0.0253	0.0242	35.038	WS_1 WS_2	9.845	20.881 17.447	82.064 60.074	
WS,	6.719	0.0191	0.0181	26.109	WS ₂ WS ₃	8.823	0.000	71.915	
WS ₃	6.968	0.0197	0.0188	28.092		8.823 12.400	14.384	79.620	
WS ₄	8.477	0.0241	0.0228	33.348	WS ₄ WS ₅	9.953	0.000	95.815	
WS5	9.217	0.0258	0.0248	37.221		9.933 7.478	4.949	95.815 104.404	
WS ₆	10.147	0.0281	0.0273	40.840	WS_6 WS_7	14.176	4.949 3.650	104.404	
WS ₇	10.228	0.0290	0.0276	40.994	WS ₇ WS ₈	9.092	0.000	91.395	
WS ₈	8.777	0.0246	0.0236	35.458		9.092 9.710			
WS ₉	8.633	0.0242	0.0233	34.252	WS ₉	6.832	11.229 21.066	83.973 80.955	
WS ₁₀	8.702	0.0241	0.0234	34.114	WS ₁₀	7.020	8.074	80.933 87.392	
WS ₁₁	8.703	0.0242	0.0235	34.804	WS ₁₁				
WS ₁₂	11.231	0.0316	0.0303	44.029	WS ₁₂	13.261	24.098	104.237	
WS ₁₃	7.6559	0.0223	0.0206	30.605	WS ₁₃	16.731	0.000	76.176	
WS ₁₄	10.813	0.0300	0.0291	42.596	WS ₁₄	8.177	22.458	102.569	
WS ₁₅	9.334	0.0272	0.0252	36.542	WS ₁₅	20.067	14.725	85.641	
WS ₁₆	8.813	0.0245	0.0237	34.310	WS ₁₆	7.747	25.181	79.720	
WS ₁₇	11.045	0.0308	0.0298	43.910	WS ₁₇	10.275	14.137	108.407	
WS18	9.544	0.0270	0.0257	37.288	WS ₁₈	12.616	21.932	87.309	
WS ₁₉	10.068	0.0280	0.0271	39.842	WS ₁₉	8.231	17.137	97.149	
WS ₂₀	10.092	0.0282	0.0272	39.751	WS_{20}	9.468	19.829	95.564	
WS ₂₁	11.087	0.0313	0.0299	43.524	WS ₂₁	14.257	21.840	103.403	
WS ₂₂	8.786	0.0248	0.0237	35.433	WS ₂₂	10.786	0.000	90.811	
WS ₂₂ WS ₂₃	7.610	0.0218	0.0205	30.228	WS ₂₃	13.046	6.125	74.100	
WS ₂₄	9.830	0.0274	0.0265	38.517	WS ₂₄	8.608	23.510	91.228	
WS ₂₅	11.010	0.0309	0.0297	43.542	WS ₂₅	11.647	17.447	105.821	
WS ₂₆	9.215	0.0256	0.0248	36.330	WS ₂₆	7.289	18.437	87.642	
WS ₂₆ WS ₂₇	8.179	0.0236	0.0220	32.770	WS ₂₇	15.897	0.000	82.180	
WS ₂₇ WS ₂₈	10.702	0.0301	0.0220	42.843	WS ₂₈	12.723	6.248	107.656	
WS ₂₈ WS ₂₉	9.549	0.0266	0.0257	38.614	WS ₂₉	8.957	0.000	99.817	
WS ₂₉ WS ₃₀	8.497	0.0200	0.0237	33.799	WS ₃₀	8.150	10.363	83.556	
WS ₃₀ WS ₃₁	11.901	0.0237	0.022)	46.971	WS ₃₁	13.154	20.169	113.493	
WS ₃₁ WS ₃₂	8.950	0.0249	0.0241	36.231	WS ₃₂	7.343	0.000	93.980	
WS ₃₂ WS ₃₃	9.561	0.0249	0.0241	38.244	WS ₃₃	15.548	3.279	95.648	
WS ₃₃	9.227	0.0273	0.0238	37.183	WS ₃₄	12.078	0.000	95.064	
WS ₃₄	9.328	0.0261	0.0249	37.723	WS ₃₅	8.581	0.000	97.566	
WS ₃₅	9.328 8.457	0.0260	0.0251	37.725 33.349	WS ₃₆	12.858	12.466	80.171	
WS ₃₆ Minimum values	6.719	0.0241	0.0228	26.109	Minimum	7.020	0.000	60.074	
	6.719 11.901	0.0191	0.0181		Maximum	20.067	25.181	113.493	
Maximum values				46.971	Average	10.952	11.141	91.104	
Average values	9.334	0.0263	0.0252	37.068	Average	10.752	11.141	71.104	

TABLE III The annual effective ingestion dose E_{ING} due to the intake of 226 RA, ²³²TH, AND ⁴⁰K BY THE CONSUMPTION OF WHEAT GRAINS

studied area are insignificant. Moreover, the average value of AGDE was lower than the permitted limit of 300 µSv.y⁻¹ as given by UNSCEAR, 2000.

The annual effective ingestion dose due to the consumption of wheat grains was calculated based on annual intake of 134.5 kg.y⁻¹(dry weight) of wheat grains by adults in Iraq, Kurdistan region, as given by Azeez, et al., 2019. The ingestion dose due to the intake of each of natural radionuclides ²²⁶Ra, ²³²Th, and ⁴⁰K is presented in Table III. The calculated values were ranged from 7.02 to 20.06 µSv. y⁻¹ with the average value of 10.95 μ Sv. y⁻¹ of E_{ING} (²²⁶Ra), from 0 to 25.18 $\mu Sv.~y^{\text{-1}}$ with average value of 11.14 $\mu Sv.~y^{\text{-1}}$ of E_{ING} (²³²Th), and from 60.07 to 113.49 μ Sv. y⁻¹ with a mean value of 91.1 μ Sv. y⁻¹ of E_{ING} (⁴⁰K). The total ingestion dose E_{ING} (total) due to the summation of E_{ING} ⁽²²⁶Ra), E_{ING} ⁽²³²Th), and $E_{_{\rm ING}}(^{40}{\rm K})$ ranges from 80.7 to 141.59 $\mu Sv.~y^{-1}$ with average value of 113.19 µSv. y⁻¹ which is twice smaller than the worldwide average value of 260 µSv. y⁻¹ as recommended by UNSCEAR, 2000. Radionuclide absorption from soil by plants depends on the soil characteristics which include pH content, clay content, soil texture, cation exchange capacity, dominant clay minerals, exchangeable cations, and organic matter content. In addition, the uptake of radionuclides is affected by the plant type and type of radionuclides - the radionuclide is heavy or light element (Konoplev, et al., 1993). Thus, this study revealed that the radiation hazard due to the total internal dose by the intake of ²²⁶Ra, ²³²Th, and ⁴⁰K of the consumption of wheat grains is insignificant. In Fig. 5, the results show that the average ingestion dose due to the intake of ⁴⁰K (91.1 µSv. y⁻¹) is more than average ingestion dose for both ²²⁶Ra (11.14 µSv. y⁻¹) and ²³²Th (10.95 µSv. y⁻¹), but the results value of average ingestion dose ingestion dose for ²²⁶Ra and ²³²Th is so near together because the half-life for both have patents is very long.

IV. CONCLUSIONS

This research aimed to measure the natural radioactivity levels wheat grain samples from the wheat plantation fields of Koya district, the average of concentration of radionuclides of 226Ra, 232Th, and 40K in the wheat grain samples was found to be lower than the worldwide average values recommended by UNSCEAR, but no detection of ¹³⁷Cs in the wheat grain samples. The total annual ingestion dose due to the intake of natural radionuclides of ²²⁶Ra, ²³²Th, and ⁴⁰K by the consumption of wheat grains was equal half of the world average value of 260 μ Sv.y⁻¹ as given by UNSCEAR, therefore, the accumulation of primordial radionuclides in the wheat grains was produced from the wheat plantation fields of Koya district does not have a significant health risk. The obtained results of the this study would be a useful data for making a baseline of artificial and natural radioactivity and heavy metal concentration levels in soils of the studied area. These baseline data will help us to assess any variations in the radioactivity levels due to any unexpected events such as nuclear reactor accidents and/or nuclear weapon tests or due to the anthropogenic activities within the study area.

References

Abojassim, A.A., AL-Alasadi, L.A., Shitake, A.R., AL-Tememie, F.A. and Husain, A.A., 2015. Assessment of annual effective dose for natural radioactivity of gamma emitters in biscuit samples in Iraq. *Journal of Food Protection*, 78(9), pp.1766-1769.

Akhtar, N. and Tufail, M., 2006. Natural radioactivity intake into wheat grown on fertilized farms in two districts of Pakistan. *Radiation Protection Dosimetry*, 123(1), pp.103-112.

Alescandra, A.A., Elizebeta, D.S., Radmila, C.N., Hajurlei, M.Z., Biljana, D., Riste, U. and Dean, J., 2017. Evaluation of doses of radiation due to natural radioactivity in wheat as animal feed in the surrounding of the city of Skopje (Macedonia). *IOSR Journal of Pharmacy*, 7(6), pp.20-23.

AL-Hamzawi, A.A., 2017a. Natural radioactivity measurements in vegetables at Al-Diwaniyah Governorate, Iraq and evaluation of radiological hazard. *Journal of Al-Nahrain University*, 20(4), pp.51-55.

AL-harbiI, A. and EL-Taher, A., 2013. A study on transfer factors of radionuclides from soil to plant. *Life Science Journal*, 10(2), pp.532-539.

Alshahri, F., 2016. Evaluation of radionuclides contamination in wheat flour and bread using gammaray spectrometry. *Life Science Journal*, 13(3), pp.34-42.

Azeez, H.H., Mansour, H.H. and Ahmad, S.T., 2019. Transfer of natural radioactive nuclides from soil to plant crops. *Applied Radiation and Isotopes*, 147, pp.152-158.

Brigden, S. and Santill, O., 2002. *Heavy Metal and Radionuclide Contamination* of Fertilizer Products and Phosphogypsum Waste Produced by the Lebanese Chemical Company. Greenpeace Research Laboratories, Department of Biological Sciences, University of Exeter, Exeter EX4 4PS, UK.

Canbazoglu, C. and Dogru, M., 2013. A preliminary study on ²²⁶ Ra, ²³² Th, ⁴⁰ K and ¹³⁷ Cs activity concentrations in vegetables and fruits frequently consumed by inhabitants of Elazığ Region, Turkey. *Journal of Radioanalytical and Nuclear Chemistry*, 295(2), pp.1245-1249.

Cevik, U., Damla, N. and Nezar, S., 2007. Radiological characterization of Cayırhan coal-fired power plant in Turkey. *Fuel Journal*, 86(16), pp.2509-2513.

Changizi, V., Shafiei, E. and Zareh, M.R., 2013. Measurement of ²²⁶Ra, ²³²Th, 1³⁷Cs and ⁴⁰K activities of wheat and corn products in ilam province-Iran and resultant annual ingestion radiation dose. *Iranian Journal of Public Health*, 42(8), pp.903-914.

Chen, S.B., Zhu, Y.G. and Hu, Q.H., 2005. Soil to plant transfer of ²³⁸U, ²²⁶Ra and ²³²Th on a uranium mining-impacted soil from Southeastern China. *Journal of Environmental Radioactivity*, 82(2), pp.223-236.

EL-Taher, A. and Makhluf, S., 2010. Natural radioactivity levels in phosphate fertilizer and its environmental implications in Assuit governorate, Upper Egypt. *Indian Journal of Pure and Applied Physics*, 48, pp.697-702.

Essiett, A.A., Essien, I.E. and Bede, M.C., 2015. Measurement of surface dose rate of nuclear radiation in coastal areas of Akwa Ibom state Nigeria. *International Journal of Physics*, 3, pp.224-229.

Harb, S., EL-Kamel, A.H., EL-Mageed, A.I.A., Abbady, A. and Rashed, W., 2014. Radioactivity levels and soil-to-plant transfer factor of natural radionuclides from protectorate area in Aswan, Egypt. *World Journal of Nuclear Science and Technology*, 4, pp.7-15.

Hosseini, T., Fathivand, A., Abbasisar, F., Karimi, M. and Barati, H., 2006. Assessment of annual effective dose from ²³⁸U and ²²⁶Ra due to consumption of foodstuffs by inhabitants of Tehran city, Iran. *Radiation Protection Dosimetry*, 121(3), pp.330-332.

Hussein, Z.A., 2015. Measurement of indoor radon concentration in dwellings of koya using nuclear track detectors. *International Journal of Science and Research*, 4(1), pp.2465-2467.

Hussein, Z.A., 2015. Measurement of indoor radon concentration in dwellings of Koya using nuclear track detectors. *International Journal of Science and Research*, 4(1), pp.2465-2467.

Hussein, Z.A., 2019. Assessment of natural radioactivity levels and radiation hazards of soils from Erbil governorate, Iraqi Kurdistan. *ARO-The Scientific Journal of Koya University*, 7(1), pp.34-39.

Hussein, Z.A., 2019. Assessment of natural radioactivity levels and radiation hazards of soils from Erbil Governorate, Iraqi Kurdistan. *The Scientific Journal of Koya University*, 7(1), pp.34-39.

IAEA., 1989. A Guidebook: Measurement of Radionuclides in Food and the Environment. IAEA, Vienna, Austria.

Ismail, H.A., Hussein, Z.A. and Yaba, S.P., 2020. Investigation a relation between radioactivity concentrations of 40 Potassium (40K) in tooth and the various ethnic groups and its impacts on the rate of tooth damage. *Environmental Nanotechnology, Monitoring and Management*, 14, p.100385.

Khan, H.M., Ismail, M., Khan, K. and Akhter, P., 2011. Measurement of radionuclides and gamma-ray dose rate in soil and transfer of radionuclides from soil to vegetation, vegetable of some Northern area of Pakistan using γ -ray spectrometry. *Water, Air and Soil Pollution*, 219, pp.129-142.

Konoplev, A., Viktorova, N., Virchenko, E., Popov, V., Bulgakov, A. and Desmet, G., 1993. Influence of agricultural countermeasures on the ratio of different chemical forms of radionuclides in soil and soil solution. *Science of the Total Environment*, 137, pp. 147-162.

Kumar, A., Singhal, R., Preetha, J., Rupali, K., Narayanan, U., Suresh, S., Mishra, M.K. and Ranade, A., 2008. Impact of tropical ecosystem on the migrational behavior of K-40, Cs-137, Th-232 U-238 in perennial plants. *Water, Air, and Soil Pollution*, 192(4), pp.293-302.

Lindahl, P., Maquet, A., Hult, M., Gasparro, J., Marissens, G. and de Orduna, R.G., 2011. Natural radioactivity in winter wheat from organic and conventional agricultural systems. *Journal of Environmental Radioactivity*, 102(2), pp.163-169.

Mamont, C.A.K., Gwiazdowski, B., Biernacka, M. and Zak, A., 1982. Radioactivity of building materials in Poland. In: Vohra, G., Pillai, K.C. and Sadavisan, S., Eds. *Natural Radiation Environment*. Halsted Press, New York, p.551.

Mehra, R., Singh, S., Singh, K. and Sonkawade, R., 2007. 226Ra, 232Th and 40K analysis in soil samples from some areas of Malwa region, Punjab, India using gamma ray spectrometry. *Environmental Monitoring and Assessment*, 134(3), pp.333-342.

Mostajabboddavati, M., Hassanzadeh, S. and Faghihian, H., 2006. Efficiency calibration and measurement of self-absorption correction for environmental gamma-spectroscopy of soil samples using Marinelli beaker. *Journal of Radioanalytical and Nuclear Chemistry*, 268(3), pp.539-544.

Murtadha, S.H.A., Mohamad, S.J. and Salih F.N., 2017. Estimation of annual effective dose due to natural radioactivity in ingestion of vegetables from Cameron Highlands, Malaysia. *Environmental Technology and Innovation*, 8(5), pp.96-102.

Nisar, A., Mohamad, S.J., Muhammad, B. and Muhammad, R., 2015. An overview on measurements of natural radioactivity in Malaysia. *Journal of Radiation Research and Applied Sciences*, 8, pp.136-141.

Pulhani, V.A., Dafauti, S., Hegde, A.G., Sharma, R.M. and Mishra, U.C., 2005. Uptake and distribution of natural radioactivity in wheat plants from soil. *Journal of Environmental Radioactivity*, 79(3), pp.331-346.

Salih, F.N., Zakariya, A.H. and Shalaw, Z.S., 2020. Environmental radioactivity levels in agricultural soil and wheat grains collected from wheat of farming lands of Koya district, Kurdistan region Iraq. *Radiation Protection and Environment*, 24(4), pp.1-11.

Salih, F.N., 2018. Determination of ²²⁶Ra, ²³²Th and ⁴⁰K in teeth by use of gamma spectroscopy. In: *Isotopes in Environmental and Health Studies*. Taylor and Francis, United Kingdom, pp.1-13.

Servitzoglou, N., Stoulos, S., Katsantonis, D., Papageorgiou, M. and Siountas, A., 2018. Natural radioactivity studies of phosphate fertilizers applied on greek farm soils used for wheat cultivation. *Radiation Protection Dosimetry*,181(3), pp.190-198.

Taiwo, A.O., Adeyemo, D.J., Sadiq, U. and Bappah, I.A., 2014. Determination of external and internal hazard indices from natural occurring radionuclide around a superphosphate fertilizer factory in Nigeria. *Archives of Applied Science Research*, 6(1), pp.23-27.

Tsukada, H., Hasegawa, H. and Hisamatsu, S., 2002. Distributions of alkali and alkaline earth metals in several agricultural plants. *Radioprotection Collogues*, 37, pp.535-540.

UNSCEAR., 2000. United Nations Scientific Committee on the Effects of Atomic Radiation Sources, Effects and Risks of Ionizing Radiation. Report to the General Assembly with Scientific Annexes, United Nations, New York.

Wang, C.J., Lai, S.Y., Wang, J.J. and Lin, Y.M., 1997. Transfer of radionuclides from soil to grass in Northern Taiwan. *Applied Radiation and Isotopes*, 48(2), pp.301-303.

Zakaria, S., AL-Ansari, N., Mustafa, Y., Knutsson, S., Ahmed, P. and Ghafour, B., 2013. Rainwater Harvesting at Koysinjaq (Koya), Kurdistan Region, Iraq. *Journal of Earth Sciences and Geotechnical Engineering*, 3(4), pp.25-46.