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 Abstract–Hundreds of thousands of servers from data 
centers are operated to provide users with pay-as-you-
go infrastructure as a service, platform as a service, and 
software as a service. Many different types of virtual machine 
(VM) instances hosted on these servers oftentimes need to 
efficiently communicate with data movement under current 
bandwidth capacity. This motivates providers to seek for a 
bandwidth scheduler to satisfy objectives, namely assuring 
the minimum bandwidth per VM for the guaranteed deadline 
and eliminating network congestion as much as possible. 
Based on some rigorous mathematical models, we formulated 
a cloud-based bandwidth scheduling algorithm which enables 
dynamic and fair bandwidth management by categorizing 
the total bandwidth into several categories and adjusting the 
allocated bandwidth limit per VM for both upstream and 
downstream traffics in real time. The simulation showed that 
paradigm was able to utilize the total assigned bandwidth 
more efficiently compared to algorithms such as bandwidth 
efficiency persistence proportional sharing (PPS), PPS, and 
PS at the network level.

Index Terms–Cloud infrastructure, Cloud scheduler, Pay-as-
you-go, Makespan.

I. Introduction
The increasingly growing demands from a large number 
of active cloud users have put forward many performance 
challenges for both processing and bandwidth orchestration 
in a cloud architecture. As a result, maintaining and 
troubleshooting the connection among various virtual 

machines (VMs) along many communication paths calls for a 
performance-guaranteed bandwidth scheduling strategy. Many 
modern datacenters (DCs) that support large-scale processing 
workflows require hundreds of thousands cloud-based VMs 
to be established and these VMs need to exchange data 
frequently (Saurabh, et al., 2011). According to the reported 
by Environmental Protection Agency (EPA) in 2007, these 
high-performance computing DCs consumed approximately 
7.2 billion US dollars within 1 year (Jonathan, 2007 and 
Massoud and Inkwon, 2010). In 2013, every 60 s, 204 million 
emails were sent; 5 million searches were made on Google 
engine; 1.8 million “Likes” were posted on Facebook; 35,000 
tweets were sent on Twitter; $272 thousands of commodities 
were sold on Amazon; and finally for sound marketing, 
15,000 tracks were downloaded through iTunes according to 
Natural Resources Defense Council (Pierre and Josh, 2014) 
and the U.S. EPA (Richard, et al., 2008). The high volume 
of incoming and outgoing traffics requires cloud providers 
to dedicate an efficient network bandwidth scheduler that 
considers both the network proportional fairness and low 
risk of bandwidth congestion. As Garg stated that if cloud 
providers do not strive to improve resource utilization to 
meet the ever-increasing demands under limited resources, 
they might increase the cost for cloud users to maintain their 
profits which eventually pricing themselves out of existence 
(Saurabh, et al., 2009). Idle servers are usually shut down 
to save the power and allocated bandwidth (Giorgio, et al., 
2013). Statistics shows that the average resources utilization 
rate in modern DCs can be as low as 20% with many idle 
servers. We propose a bandwidth scheduler to enhance the 
bandwidth utilization rate per (VMs) through dynamic 
classification of the total allocated bandwidth into percentage 
classes and providing the minimum assurance best effort 
bandwidth per VM for both up streaming and down streaming 
traffics to guaranteed deadline. Then, readjusting the limited 
assigned bandwidth per VM based on the necessity of 
available workloads. The submitted user jobs are formulated 
as general directed acyclic graph (DAG)-structured workflows 
with module dependency. The simulation results based on 
CloudSim (Tarun, et al., 2012) showed that our approach 
significantly enhanced the rates of bandwidth utilization 
per VM compared with other algorithms such as bandwidth 
efficiency persistence proportional sharing (BEPPS), PPS, 
and PS at the network level (Xiang and Nirwan, 2013).
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II. Related Work
Many performance metrics including job makespan, energy 
cost, and bandwidth fairness have been considered in many 
cloud computing research. Researchers are trying to find an 
equilibrium point between high bandwidth utilization and 
high-resource utilization for cloud resources. For instance, 
a concept of providing bandwidth control as a service 
was proposed by classifying the network connections into 
groups and adjusting the weights over the links connecting 
different VMs (Anthony, 2016). However, BEPPS at 
network level was presented to increase the provider’s 
profits through disbanding the unfair bandwidth utilization 
(Xiang and Nirwan, 2013). The bandwidth allocated for 
the communicating VM pairs which utilizes the bottleneck 
link will be increased. Furthermore, the downlink spectrum 
efficiency was enhanced by incorporating coalitions of 
remote radio head (RRH) (Zhuofu, et al., 2016). Each 
RRH can be attached or dispatched per coalition for better 
utilization. A prototype system was proposed with a single 
joint optimization function considering both efficiency of 
energy and spectral efficiency. Orthogonal frequency division 
multiplexing-based networks were used to improve the 
functionality of RE (Dingzhu, et al., 2017). Data replication 

was used to reduce the network delays while achieving the 
quality of service (QoS) (Dejene, et al., 2015).

III. Cloud Conceptual Framework
Cloud tenants submit their job requests either as a single 
independent task or as a DAG-structured workflow to the 
cloud meta-scheduler. The cloud scheduler applies four 
main duties after applying topological sorting for the DAG: 
First, detecting any anomalous behaviors via cloud snooping 
module; second, pricing the providers in case of deadline 
violation; third, initiating the minimum assurance best effort 
per VM for the guaranteed deadline and monitoring the 
allocated bandwidth through sending and receiving status 
requests to and from the cloud bandwidth controller; and 
finally, based on bandwidth and computing capacities, the 
scheduler maps the workflow tasks to the appropriate VMs. 
Cloud bandwidth controller readjusts the inner allocated 
bandwidth per VM when the level of workloads increases. 
Based on the bandwidth availability, the cloud bandwidth 
controller will assign new percentage values to the current 
bandwidth allocated to enhance the system utilization rates. 
Fig. 1 demonstrates our prototype architecture.

Fig. 1. The proposed cloud framework.
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IV. Mathematical Model
For decades, researches have considered the efficiency as 
one of the major parameters when it comes to establishing a 
fair data transporter. Nowadays, increasing cloud provider’s 
interests through bargaining both the overhead of cloud-
based bandwidth and workflow’s execution time become 
researcher’s primary concern. According to Dara, et al., 2009 
and Anshul, et al., 2009, the cost consumed by idle resources 
is about 70% of the total aggregate cost exhausted by fully 
operated resources. As these servers are fully interconnected 
through high dedicated bandwidth, the idle resources will 
make those high dedicated bandwidths unproductive (Yogesh, 
et al., 2016 and Dinh-Mao, et al., 2017). These challenges 
motived us to formulate a conceptual framework with the 
aim of achieving bandwidth proportionality fairness among 
fully interconnected VMs. This heuristic is based on two 
main ideas; first, the total bandwidth allocated is categorized 
to classes with different bandwidth capabilities. Second, a 
minimum assurance bandwidth is assigned per VM and will 
be adjusted by cloud bandwidth controller depending on the 
workloads. Mathematically, we have provided the model for 
executing a single module mi over a VM Vmj from time 0 
to time n in equation (1) and the running time for executing 
a batch of modules mapped onto node Vj in equation (2). 
Where, ϑ (ui) is the total aggregate data input for the module 
ui and ξi (.) is the complexity of the same assigned module. 
C_(vm_mk∈vj ) is the normalized computing power of virtual 
Vmk to execute module ui.

 Texe (mi, vmj)=∑(α(T)×δi(T)/P(vj)τ0,τn) (1)
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 is the running time of a batch of modules 
Mm mapped over server j’s Vth VM starts at time τ0 and ends 
at time τn. CP(Wi) is the critical path that exists in workflow 
i. C(DCd [τ0,τn]) is the normalized computing power of 
datacenter DCd during time τ0 to τ1.

V. DAG - Scientific Workflow
DAG as defined in Maria and Rajkumar, 2017 includes dual 
major parameters, namely vertices |va| and the edges |Ea|, 
among these modules. The first parameter consists of an 
array of the batch of module applications {a1, a2, a3,…, aq} 
which initiates with a1 and terminates with aq. The second 
parameter represents the weights from a module to others. 
There are various types of scientific workflows where 
researchers conduct them to improve the QoS specified 
in service level agreement. A tremendous advantage of 
scheduling cloud images as workflows is the dependency and 
parallelism which embedded in the structure of workflows. 
Some required conditions are as follows: First, the modules 
should be dispatched collectively as a group which increases 
the execution efficiency. Second, none of prepared modules 
can start its execution unless it receives the total aggregated 
input from its preceding modules. Third, the complexity 
function of each module will be added to its total input 

data size. Finally, when a specific module executed through 
specific computing resource, the outcome result will be 
transferred to the module’s succeeding module. However, 
the running time for executing a workflow Wi over cloud 
server vj from time 0 to time n is given in equation (3) and 
the total cost of running the entire workflows mapped onto 
cloud DCs is given in equation (4). Table 1 illustrates the 
sample workflows with their sizes and edges that have been 
conducted in our paradigm’ simulation.
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Where, tst is the initial startup times, Idle (vj) is the idle 
time for node vj, and tsh is the shutdown times. C(DCd[τ0,τn]) 
is the normalized computing power of datacenter d during 
times τ0, τn.

VI. Cloud Bandwidth Controller
One of the major cloud bandwidth controller (CBC) duties is 
to map the allocated total aggregated bandwidth into group 
of percentage classes for dynamic bandwidth management. 
Each class has specific characteristics in terms of inner 
VM connections. At the first glance, when the scheduling 
of DAG - scientific workflows initiates to be processed 
over cloud-based VM infrastructure, CBC assigns the 
minimum assurance best effort bandwidth per VM where 
each connection is fully utilized within limited incoming 
and outgoing traffics. Right after the network becomes 
oversubscribed, the CBC will adjust the preassigned allocated 
bandwidth per VM. Equations 5 and 6 formulate the cloud 
bandwidth controller and efficiency, respectively.

 CBC=Tς⁄min(ass(βvi,vj,τ0,τn)) (5)
  EFF=Total Bandwidth Allocated⁄min(assurance Best 

Effort Bandwidth Per VM) (6)
Where, (βvi,vj,τ0,τn) is the allocated bandwidth from vi to vj 

from time 0 to time n. Illustration (2) explains how the cloud 
bandwidth controller works during the module execution 
time. As the process launches at period 1–10, the available 
bandwidth would be free and the VMs will be assigned fixed 
bandwidth limits. At time 15 s, when the network’s load 
becomes heavier, the CBC will readjust those channels that 

TABLE I
Scientific Workflow Configuration

Workflow ID Workflow size |Vq| Workflow edge |Eq|
1-ᴦ C 15 32
2-C 25 43
3-C 34 55
4-C 57 90
5-C 78 113
6-C 84 126
7-T 108 144
8-T 125 157
9-T 160 232
10-T 230 303
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would otherwise enter congestion status. The system becomes 
oversubscribed at time 25 s and the CBC will assign new 
bandwidth values per VM to accommodate the current need.

VII. Problem Formulation
As many tenants share the same underlying cloud 
infrastructure, the problem arises when the network 
bandwidth may not be allocated efficiently and results in 
low performance. This results in unpredictable bandwidth 
utilization and needs to be addressed through allocating 
more bandwidth to big jobs and allocates less bandwidth 
to small jobs while assuring the bandwidth availability and 
eliminating network congestion.

Definition 1: Given a DAG-structured workflow Gt=(Vt,Et) 
and underlying heterogeneous cloud hardware Gm=(Vm,Em), 
where each computing server is allocated with a minimum 
bandwidth for the guaranteed deadline, we concentrate on 
finding a workflow mapping schedule that the fairness is 
increased under the certain MEED constraint and avoid 
congestion.
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Where, Fvs,vd, with source and destination server as 
vs,vd, is the fairness for all allocated bandwidth. KConnvs,vd is 
the entire connections between the source and destination 
servers. MEED is the minimum end-to-end delay that cannot 
be violated.

VIII. Performance Evaluation

A. Experimental Setup
For this testbed evaluation, several workflows with different 

workloads have been estimated using the well-known open 
source Java-based CloudSim toolkit (Tarun, et al., 2012). 
However, these workflows are scheduled over heterogeneous 
cloud-based data centers where each one includes 100 
computing servers. The CPU frequencies are ranged from 
0.8 GHz to 2.5 GHz with the random access memory. 
Furthermore, various VMs with different instance types 
have been assigned to each computing server to serve the 

user’s needs on different cost types. For the cloud provider’s 
interest, we set the unit price for each module execution as 
$0.6/h and the VM’s initiating time and eliminating time to 
100 and 8 s, respectively. To evaluate network bandwidth 
efficiency, we have compared our paradigm with algorithms, 
namely BEPPS, PS, and PPS, at network level (Xiang and 
Nirwan, 2013).

B. Experimental Results
To visualize the full coverage of bandwidth efficiency 

persistence propositional at network layer, five performance 
metrics have been used in this experiment. They include 
bandwidth utilization rate, incoming bandwidth limits, 
outgoing bandwidth limits, and provider’s interest. Since we 
have evaluated 10 different workflows scheduled over 10 
heterogeneous cloud data centers, it is not feasible to plot 
all 20 workflows under all different data centers. Selected 
experiments have been presented as shown in Figs. 3-12. 
Based on server’s capabilities in terms of workflow module 
execution, we have selected six DCs from the total of 10 DCs 
to evaluate bandwidth utilization rate in Fig. 3. According 
to Fig. 3, our paradigm achieved the highest utilization 
rates, especially in DCs 4, 5, and 6 compared to the other 
algorithms BEPPS, PS, and PPS. Our lowest difference rate in 
datacenter 1 is 0.22 compared to PPS, 0.35 compared to PS, 
and 0.16 compared to BEPPS, whereas the highest difference 
rate can be observed in datacenter 6 which is 0.15 compared 
to PPS, 0.18 compared to PS, and 0.11 compared to BEPPS. 
We have repeated the same scenario for assigned workflows 
in Fig. 4. Among the six workflows, the highest utilization 
rates achieved in both workflows 3 and 4 are 0.99. The 
lowest bandwidth utilization rates are seen in workflows 5 
and 6. The diversity in both workflows 3 and 4 is exaggerated 
compared to workflows such as 1, 5, and 6. The worst case 
can be observed compared with algorithm PS. The highest 
rates are 0.7 and 0.72, whereas the lowest rates are 0.12 
and 0.15. We also have evaluated the cloud interest over six 
workflows and DCs as demonstrated in Figs. 5 and 6. First, 
we have calculated the interest per DCs in diagram (5) and 
our heuristic gains the highest payoff compared to methods 
BEPPS, PS, and PPS. In datacenter 2, our algorithm is 
supreme to earn approximately $563, whereas the minimum 
revenue is achieved in datacenter 4 which is $294. The test 
scenario is repeated for algorithm PS which accomplished 
the worst case, especially in datacenter 1 with profit of $230. 

Fig. 2. Allocated bandwidth during different times.
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Our technique has achieved the highest output in workflows 
3 and 4 which are $397 and $470, respectively. For both 
metrics incoming and outgoing bandwidth limits, we have 
evaluated a total of 10 workflows under one datacenter as 
well as 10 DCs for a single scheduled workflow as illustrated 
in Figs. 7-10. For incoming and outgoing bandwidth limits 
versus DCs, the total bandwidth allocated is used as baseline 
for the comparison as shown in Figs. 7 and 9, respectively. 
It can be seen that the other two algorithms, namely PS and 
PPS, violated the baseline bandwidth, whereas our paradigm 
maintained the workload under deadline as shown in Fig. 7. 

The main reason is that our heuristic allocated bandwidth 
fairly per VM. In terms of assigned workflows metric, 
the best fairness case can be observed within our pattern, 
whereas the BEPPS is achieved better fairness compared to 
the other two algorithms PS and PPS. However, for outgoing 
bandwidth limit metric, the values of our algorithm have 
changed over each datacenter consecutively as in Fig. 9. 
PS algorithm is inferior to others, especially under DCs ID 

Fig. 3. Bandwidth utilization versus datacenters.

Fig. 4. Bandwidth utilization versus workflows scheduling.

Fig. 5. Cloud provider profit versus datacenters.

Fig. 6. Cloud provider profit versus workflows scheduling.

Fig. 7. Downstream traffics versus datacenters.

Fig. 8. Downstream traffics versus workflow scheduling.
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= 2 and 6. Furthermore, CBC heuristic attains steady rates 
when the workflows are scheduled over datacenter ID = 2. 
The other two algorithms PS and PPS have the same rates 
over most workflows. Moreover, we also have integrated 
the evaluation for the module application completion time 
(Makespan) against batch of workflows and eight different 
DCs. In Fig. 11, our paradigm executed the scheduled 
workflows in less time compared to BEPPS, PS, and PPS. 
We can observe that the other three algorithms either have 
violated the tenant’s deadlines or close to violate them. Our 
objective’s bandwidth fairness technique is based on utilizing 
cloud resources more efficient while executing modules 
applications within tenant’s deadline. However, in Fig. 12, 
CBC heuristic achieved better completion time, especially in 
datacenter 2, 4, and 6. The worst case can be seen for PS 
algorithm in both figures. It required more times to complete 
the execution process.

IX. Conclusion
Cloud providers would like to execute as many tasks as 
possible from multiple tenants for high system throughput 
and resource utilization. Efficiently allocating and utilizing 

bandwidth resources among communicating VMs are a critical 
task to achieve the throughput and efficiency. A bandwidth 
scheduler was proposed in this paper to meet objectives of 
assuring the minimum bandwidth per VM for the guaranteed 
deadline and reducing network congestion as much as possible. 
Our approach exploited the idea of dynamic bandwidth 
utilization by categorizing the total allocated bandwidth into 
percentage values and regulating the bandwidth per VM based 
on upstream and downstream traffics. The simulation results 
have shown that our heuristic preserved a considerable amount 
of bandwidth through utilizing the allocated bandwidth more 
efficiently compared to algorithms such as BEPPS, PS, and 
PPS at network level (Xiang and Nirwan, 2013).
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