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Abstract–Nowadays, the main barriers facing organic solar cells 
(OSCs) from being commercialized and widely applied are their 
weak thermal stability and reproducibility problems. To tackle 
these problems, researchers usually consider various strategies 
which include modification in the devices architectural design, 
utilizing low energy gap materials, functionalizing their active 
layers, and the use of various optimization procedures. In this 
research work, we are specifically focused on the utilization of a 
small molecular organometallic, tris(hydroxyquinoline)gallium 
(Gaq3), as a secondary acceptor dopant, aiming at improving 
thermal stability, and reproducibility of OSCs. All-solution 
processed technique with the help of spin coater was used to deposit 
the active layer of the devices. Results showed that the addition 
of 29% molar fraction of Gaq3 into the devices active layer has 
considerably improved the thermal stability, photo-absorption, 
and reproducibly of the solar cells thanks to the excellent thermal 
stability and electron mobility of Gaq3 molecules. Our devices based 
on DH6T: PCBM:Gaq3 performed highest stable performance 
at 180°C, implying higher thermal stability compared to that of 
the reported P3HT: PCBM:F8BT and PTB7:PCBM: F8BT based 
solar cells. In spite of improved reproducibility, the efficiency of 
the devices was increased by 5.8 times compared to that of the 
control ones.

Index Terms—Active layer, dual acceptor, Gaq3 dopant, organic 
solar cell, reproducibility, Thermal stability.

I. IntroductIon

The detrimental effect on the environment and human life 
due to the long-term use of fossil fuels, oils, and natural 

gases demands the involvement of alternative clean and non-
harmful resources, such as solar energy, in the production 
of electricity. Photovoltaic (PV) technology is successfully 
utilized to convert sunlight energy into electricity by means 
of solar cells comprising various architectural designs and 
active materials (Elumalai et al., 2016; Mathew et al., 2014; 
Muhammad et al., 2018; Schmager et al., 2019; Zhao et al., 
2017a). The straightforward installation and low maintenance 
costs of solar electricity compared to that of other electricity 
sources make PV technology more convenient and attractive. 
It has been reported by the United Nations Development 
Programme in 2000 that the yearly potentiality of solar 
radiation flux is 1575–49837 exajoules (EJ), while the upper 
atmosphere of earth encounters 174,000 terawatts of solar 
energy flux (Johansson et al., 2012). This is much higher 
than the entire energy utilization around the globe, which 
was 559.8 EJ in 2012 (Ansari et al., 2018).

At present, the first and second generations of solar 
cells which are based on inorganic active materials are 
predominating the PV market, with power conversion 
efficiencies of up to 25%, but they are expensive enough 
to be able to compete with the classical energy sources. 
Alternately, the third generation solar cells, namely organic 
solar cells (OSCs), dye-sensitized solar cells, and perovskite 
solar cells (PSCs), have received great attention over the 
past years due to their solution processability, low cost, 
flexibility, and their large-scale applications (Elumalai et al., 
2016; Marinova et al., 2017; Mathew et al., 2014; Schmager 
et al., 2019). Third generation solar cells have now achieved 
a substantial decline in the production price of solar cells 
by 75% within less than a decade. The power conversion 
efficiency of OSCs has been significantly increased over the 
past decades from 1% in 1986 (Tang, 1986) to 5% in 2005 
(Xue et al., 2005), and more recently to up to 13% thanks 
to the molecular optimization and the use of non-fullerene 
acceptors in their active materials (Zhao et al., 2017a). 
However, the main problems of these devices are their 
limited thermal stability and short lifetime which considered 
to be a real obstacle in front of their commercialization and 
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their wide application. To compete OSCs with traditional 
non-OSCs, efficiencies of >15% and competitive stability are 
required. The unique features of organic materials making 
them attractive for OSCs are their optoelectronics tunability, 
light weight, flexibility, and high absorption coefficient (Liang 
et al., 2009; Muhammad and Sulaiman, 2011; Kaltenbrunner 
et al., 2012). The active layer of the device (the component 
which is responsible for solar energy absorption) is generally 
composed of two types of semiconducting materials which 
are n-type (electron acceptor) and p-type (electron donor). 
There should be a well-aligned energy band levels and 
viable miscibility between both donor (D) and acceptor 
(A) components to facilitate efficient charge transfer (CT) 
between the D-A moieties (Sehati et al., 2010; Treat et al., 
2011). When sunlight strikes the donor component, photo-
induced excitons (bounded electron-hole) are generated and 
are moved toward the boundary of D-A, where CT states are 
accumulated. Consequently, the bounded electrons and holes 
are dissociated into free charge carriers, whereby electrons 
are migrated from the lower unoccupied molecular orbital 
(LUMO) of the donor to that of the acceptor and holes are 
travelled from the higher occupied molecular orbital (HOMO) 
of the acceptor to that of the donor in a reverse direction 
(Sehati et al., 2010) (Fig. 1c). Finally, these free charges are, 
respectively, collected by the cathode and anode electrodes, 
thereby realizing a prototype OSC system (Fig. 1a).

It has been found in literature that various approaches and 
strategies were taken by researchers aiming at improving the 
overall performance of OSCs (Muhammad, 2014). Among 
these are bulk heterojunction, tandem and ternary structures 
which were developed to increase the D-A interfaces and 
hence improving the CT process compared to that of the 
bilayer D-A structure (Dennler et al., 2009; Peterson et al., 
2011; Mulherin et al., 2011; Ameri et al., 2009; Muhammad 

and Sulaiman, 2011b). However, the response of basic 
electrical parameters governing the performance of these 
devices has not yet been fully understood (Huajun et al., 2014; 
Street et al., 2013). Minxia et al. utilized different organic 
solvents to improve the performance of ternary OSCs (Minxia 
et al., 2015) and Peterson et al. included inorganic nanoparticle 
to enhance the performance of these devices (Peterson et al., 
2011). Thermal annealing process was also considered for the 
ternary OSCs based on two-donor incorporated OSCs having 
active layers of P3HT: PCBM:F8BT (Kim et al., 2009) and 
PTB7:PCBM: F8BT (Shang et al., 2015). Very recently, 
the concept of dual acceptor incorporated active layers has 
been also suggested to enhance the light absorption and CT 
properties of OSCs (Muhammad et al., 2017b; Zhao et al., 
2017b; Liu et al., 2016), whereas the use of non-fullerene 
based acceptors was found to show a prominent enhancement 
of efficiency (Zhao et al., 2017a). Besides, various newly 
synthesized materials and design approaches were reported to 
better tackle the stability problem and to achieve higher stable 
devices (Reddy et al., 2016; Cheng and Zhan, 2016; Song 
et al., 2005; Zhu et al., 2011; Hau et al., 2008).

Gaq3 is a well-known small molecular organometallic 
material with interesting optoelectronics properties, photonic 
response selectivity, and thermal stability (Muhammad 
et al., 2010; Muhammad and Sulaiman, 2011d; Muhammad 
et al., 2016; Hernández et al., 2009; Muhammad and 
Sulaiman, 2011a). The use of Gaq3 has been widely 
dedicated for organic light emitting diodes/displays, but its 
utilization was also extended for solution-processed OSCs 
(Muhammad et al., 2017b). Incorporation of small molecular 
materials into the active layer of OSCs is of current research 
interests (Liu et al., 2015; Ji et al., 2016) due to the distinct 
optoelectronics features offered by these materials. Benefited 
by thermal stability and electron mobility of Gaq3, and 

Fig. 1. The studied organic solar cells design (a), materials structure (b), higher occupied molecular orbital-lower unoccupied molecular orbital energy 
levels (c), and simulated equivalent circuit (d) of DH6T: PCBM:Gaq3 active layer.
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relatively close values of charge carrier mobility for α,ω-
dihexyl-sexithiophene (DH6T) donor and methano-fullerene 
(PC61BM) acceptor (Garnier et al., 1993; von Hauff et al., 
2005; Muhammad and Sulaiman, 2011a; Muhammad et al., 
2016), it is believed that the dispersion of a specified molar 
fraction of Gaq3 as a secondary acceptor dopant into the active 
layer of OSCs can have a great impact on the improvement 
of stability, reproducibility, and overall performance of 
these devices. Hence, in the current work, an optimum 
amount of Gaq3 is used to dope the active layer of OSCs 
comprising a dual acceptor, PCBM and Gaq3, that is aiming 
at maximizing the operation stability and reproducibility of 
the devices. The rest of the paper is organized as follows: In 
Section 2, the raw materials and methodology of the active 
layer preparation and characterization along with devices 
fabrication and assessment are given, whereas in Section 3 
the achieved results are analyzed and discussed in detail. 
Finally, the main conclusions are drawn and presented in 
Section 4.

II. MaterIals and Methods

The raw organic materials were purchased from Sigma-
Aldrich (Malaysia Branch) in powder form and used as 
received without further purification. The OSC design, 
the molecular structure of the materials, their HOMO and 
LUMO energy levels along with an equivalent circuit 
to represent OSCs are shown in Fig. 1a-d, respectively. 
Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic) 
acid (PEDOT: PSS) was coated onto the anode electrode, 
indium tin oxide (ITO) to facilitate enhanced hole transport 
and to block the free electrons moving toward ITO. DH6T 
was utilized as the donor component, whereas the acceptor 
molecules were PCBM and Gaq3, respectively. To choose an 
optimum amount of Gaq3 to be doped into the device active 
layer, optical absorption studies of DH6T: Gaq3 system was 
initially performed.

The ITO (sheet resistance ~10 Ω/sq) coated glass 
substrates (H. W. Sands Co., Ltd.) were cut into square 
shapes and patterned accordingly in a wet etching process 
using a bath of hydrochloric acid and distilled water (0.4:1) 
at temperature 60°C for 15 min. The PEDOT: PSS (from 
H. C. Starck, Baytron P VPAI 4033) was spin-coated onto 
the ITO at 3000 rpm for 20 s, then baked at 130°C for 
5 min to achieve a thickness of ~35 nm. Then, the active 
layer mixture of DH6T: PCBM:Gaq3, having concertation 
of 30 mg/ml, was dissolved in chlorobenzene and stirred 
overnight in the vials. Thin layer of DH6T: PCBM:Gaq3 
(about 200 nm) was spin-coated onto the PEDOT: PSS 
layer followed by thermal deposition of aluminum (~50 nm 
thick) under a vacuum of about 10-5 m bar. In this way, four 
identical devices were fabricated on a single substrate batch. 
The area of active layers was 14 mm2 (2 mm×7 mm) for 
each device. To investigate thermal stability, the devices 
were thermally annealed on a temperature controlled hot 
plate under air ambient for 20 min in the range from 140 
to 220°C with steps of 40°C, whereas the reproducibility 
strength was assessed based on the electrical records of the 

four identical devices of the same batch. To analysis the PV 
performance of the devices, current density-voltage (J–V) 
measurement was recorded using Keithley 236 instrument 
under standard illumination (100 mW/cm2) originated from 
an Oriel solar simulator-model 67005 with an AM 1.5 G 
filter. The absorption spectra of the films were recorded using 
Jasco V-570 UV-visible-NIR spectrophotometer, whereas 
KLA Tensor P-6 surface profilometer instrument was used 
to measure the thicknesses of films. Differential Scanning 
Calorimetry (Q200 thermal analyzer) was utilized to record 
the thermal profile of Gaq3. Finally, field emission scanning 
electronic microscopy technique (FESEM, Quanta 200F) and 
transmission electron microscopy (TEM LEO LIBRA-120) 
were utilized to capture the morphology and molecular 
distribution of the films. The light-activated current source 
(Jlight) depicts the amount of current generated in the cell when 
it is exposed to sunlight energy. From the electrical circuit, 
one can determine the net current as follows (Muhammad 
et al., 2017a):
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Where, Js is the saturation current of the diode under 
dark, KB is the Boltzmann’s constant, T is the temperature in 
Kelvin, q is electron unit charge, Rs and Rp are the series and 
parallel resistances of the device, respectively.

III. results and dIscussIon

The optimum amount of Gaq3 dopant to be added into the 
active layer system is selected based on the broadening 
strength of the absorption spectra of DH6T and its energy 
gap (Eg) reduction. The measurement of energy gap was 
carried out using the well-known Tauc’s equation as follows 
(Muhammad and Sulaiman, 2011d):

  α ν νh B h= −( E )g
n  (2)

where, α=2.303A/t, A is the absorbance and t is thickness 
(optical path) of the film/solution, h is Planck’s constant, 
v is the frequency of the absorbed photons, B is an energy-
independent constant, and Eg is the energy gap. The value 
of n in Equation 2 determines the type of optical transition 
during the photo-absorption process, n = 1/2, 3/2, 2, and 3 
for direct allowed, direct forbidden, indirect allowed, and 
indirect forbidden transitions, respectively. Extrapolation of 
the linear part of curves (αhν)2/3 versus hv at the point where 
(αhν)2/3=0 gives the value of Eg. The calculated energy gap of 
DH6T incorporated with molar fractions of Gaq3 is shown as 
inset of Fig. 2, whereas Fig. 2 shows the absorption spectra 
for DH6T: Gaq3 blends with a molar ratio of 0%, 12.4%, 
29.8%, and 41.4% for Gaq3.

One can notice from the figures that the addition of 
Gaq3 resulted in a clear redshift in the absorption spectrum 
of DH6T, that is, shifting toward higher wavelength and 
reducing its energy gap. These are ascribed to a larger π-π 
stacking overlap between molecules (Muhammad et al., 
2016). However, the addition of 41.4% molar fraction of 
Gaq3 was seen to increase Eg and to produce a blue shift in 
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the absorption spectrum. At Eg photons are absorbed by the 
molecules and electrons are jumped from the ground energy 
state (So) to the excited energy state (S1), thereby transferring 
photo-energy between the D-A moieties. Therefore, the blue-
shifted Eg at higher Gaq3 content is counted for the reduced 
π-π stacking. This can be understood as the increased spatial 
geometry due to Gaq3 content acts on increasing the tail-tail 
rotational defect (Sotgiu et al., 2002), which, in turn, leads 
to a reduced intermolecular interaction and decreased π-π 
orbital overlapping. To exactly identify the optimum amount 
of Gaq3 to be added in the next experimental steps during 
DH6T: PCBM:Gaq3 preparations, an empirical formula 
was derived, see Equation 3, by which the optimum molar 
fraction of Gaq3 was found to be 29% (Fig. 2).

  
E =E 1-x

1+Cx
+E x+Cx

1+Cxg g1 g2

2




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



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 (3)

Where, C is a numerical factor that was deduced to be 
0.74. The terms Eg1, Eg2, and x define the energy gap of 
DH6T (2.33 eV), Gaq3 (2.80 eV), and the molar percentage 
of Gaq3, respectively.

Fig. 3 shows the normalized absorption spectra of DH6T, 
PCBM, Gaq3, and their mixture with 29% molar fraction 
of Gaq3 in the DH6T: PCBM:Gaq3 active layer. Two 
characteristic absorption peaks at low and high wavelengths 
were detected for Gaq3 that is due to the orbital electronic 
transitions from p-π*and π-π*, respectively (Muhammad 
and Sulaiman, 2011d). The two peaks at 370 and 340 nm 
were assigned to DH6T and PCBM characteristic 
absorptions, respectively. These were found to be close 

enough to those reported in literature (Cook et al., 2007; 
Kwon and Seo, 2007). It is worth to notice that the 
absorption spectra of DH6T: PCBM were broadened 
compared to that of DH6T, implying an improved photo-
induced CT from DH6T to PCBM (Koeppe and Sariciftci, 
2006). Interestingly, the addition of 29% Gaq3 into the 
DH6T: PCBM active layer has led to a useful broadening 
in the absorption spectrum tailoring to about 720 nm, 
where a vibronic shoulder was appeared. This vibronic 
peak can be directly correlated to the crystalline nature of 
the films as a result of the enhanced conjugation stacking 
and interchain interaction (Jo et al., 2009).

Fig. 4 shows the current density-voltage (J-V) 
characteristics of the OSCs based on DH6T: PCBM active 
layer with and without the addition of 29% molar fraction 
of Gaq3 that were tested in dark and under illumination 
conditions. Noticeably, the addition of Gaq3 molecules 
has increased the potential barrier (Vf2) of the device in 
dark situation, meaning that a larger D-A boundary has 
been generated, that is, an increased p-n junction barrier. 
Consequently, a higher open circuit voltage (Voc) is expected 
under light condition (see the solid blue triangle data points). 
The results showed a pronounced enhancement in the 
photocurrent and output voltage of the devices when Gaq3 
is included. The short current density (Jsc) was increased 
from 0.63 mA to 1.26 mA and the Voc improved from 0.30 
V to 0.74 V. As such, the Jsc and Voc were increased by an 
order of about 2 and 2.5, respectively. These increments are 
thought to be originated from a complementary enhancement 
of the photo-absorption ranging from 300 nm to about 

Fig. 2. Variation in the absorption spectra and energy gap of DH6T on the addition of various molar fractions of Gaq3.
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750 nm, which was brought about by the inclusion of Gaq3 
(Fig. 3). Referring to Fig. 1c, one can see that the HOMO 
and LUMO levels of the DH6T: Gaq3:PCBM system are 

well aligned to facilitate a smooth migration of free electrons 
and holes, thereby reducing the probability of electron-hole 
recombination at the D-A boundaries.

Fig. 4. The J-V characteristics of DH6T: PCBM:Gaq3 based organic solar cells incorporating 29% of Gaq3.

Fig. 3. Normalized absorbance of DH6T, PCBM, Gaq3, and their mixture with 29% molar fraction of Gaq3 in the DH6T: PCBM:Gaq3 active layer.
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Information on thermal stability of the OSCs was 
investigated through subjecting the devices to different 
annealing temperatures, ranging from room temperature 
25°C to 220°C. The performance of solar cells was assessed 
at each thermal condition, and their parameters were 
determined accordingly. It is seen from Fig. 5 that the Jsc 
of the two-acceptor based solar cells was continuously 
increased by annealing temperatures up to 180°C but 
decreased by annealing at 220°C. On the contrary, the Voc 
was found to be decreased with the rise of temperature to 
140°C, and then a subsequent increase in Voc was observed 
until the temperature has reached 220°C. The same 
variation trend of the Jsc and Voc on thermal annealing was 
also observed for the ternary OSCs comprising two-donor 
components such as P3HT: PCBM:F8BT (Kim et al., 2009) 
and PTB7:PCBM: F8BT (Shang et al., 2015), except that 
the point of inversion in the monotonic change of Jsc for 
our devices was appeared at higher temperature of 180°C 
compared to that of the reported devices which were 
occurred at 120°C. This indicated a higher thermal stability 
for our devices compared to that of the P3HT: PCBM:F8BT 
and PTB7:PCBM: F8BT based ones, which can be due to the 
effect of Gaq3 inclusion. We have previously reported that 
glass transition temperature (Tg) for Gaq3 is about 182°C 

(Muhammad and Sulaiman, 2011a), which is close enough to 
the point of inversion in the Jsc variation versus temperature, 
pointing out to the reasonable contribution of Gaq3 in the 
improvement of thermal stability of our devices.

Table I presents the PV and intrinsic parameters of the 
studied OSCs, which were extracted by fitting Equation 
1 to the experimental J-V data. One can see that the series 
resistance (Rs) of the OSCs was decreased with the increase 
of temperature to up to 180°C, whereas it was slightly 
increased at 220°C. Comparably, it can be concluded that 
both Rs and Jsc are inversely proportioned each with other, 
which is in agreement with the theoretical reported results 
(Muhammad et al., 2017a). The decrease in Rs is thought 
to be the consequence of increased crystallinity in the 
DH6T molecules on annealing, thereby improving photo-
generated charge transport and percolation pathways in the 
devices active layer (Hwang et al., 2014). On the other 
hand, the decrease in Rp with annealing temperature to 
about 180°C is evidenced to the relative increase in charge 
carriers’ recombination. Noteworthy, the best performance 
for the OSCs based on DH6T: PCBM:Gaq3, that is, the dual 
acceptor based OSCs, was obtained at temperature of 180°C, 
which is at higher temperature compared to those reported 
for the dual donor based devices (Sariciftci, 2004; Shang 

Fig. 5. Plot of Jsc and Voc versus temperature for the organic solar cells based on DH6T: PCBM:Gaq3 active layer.

taBle I
the photovoltaIc and devIce paraMeters of organIc solar cells Based on dh6t: pcBM: gaq3 dual acceptors extracted froM experIMental and 

ModelIng results

Devices Annealing T (oC) Jsc. (mA/cm2) Voc. (V) n Rs (Ω) Rp (Ω) FF % η %
DH6T: PCBM 25 0.63 0.30 3.81 887 5502 26.2 0.06
DH6T: PCBM: Gaq3 25 1.31 0.77 3.76 573 6775 26.7 0.27
DH6T: PCBM: Gaq3 140 1.50 0.65 2.23 367 4730 28.7 0.28
DH6T: PCBM: Gaq3 180 1.55 0.66 1.94 310 4836 29.3 0.30
DH6T: PCBM: Gaq3 220 1.22 0.68 1.96 337 5814 26.5 0.22
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et al., 2015). This is another confirmation of high thermal 
stability for our devices thanks to the inclusion of small 
molecular Gaq3 acceptor. It is worth noting that the value 
of ideality factor (n) for the pristine devices is high and it 
gets reduced from 3.76 to 1.94 with the increase of annealing 
temperature to 180°C. The close values of ideality factor to 

about two indicate that the charge carriers’ recombination in 
these devices is governed by both of minority and majority 
carriers. It was generally observed that the efficiency of 
these devices was increased by order of 5.8 on the addition 
of Gaq3. Further enhancement in the efficiency, performance 
and stability of the OSCs can be achieved by taking the 

Fig. 6. Reproducibility comparison of the organic solar cells considering Jsc variation among four different batches annealed at different temperatures.

Fig. 7. The change in efficiency and fill factor for the studied organic solar cells in 120 h recorded within 6 consecutive days.
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fabricating process inside glove box followed by the device’s 
encapsulation. The current approach of using Gaq3 as the 
secondary acceptor can be generalized to the organic and 
PSCs aiming at improving their thermal stability and overall 
performance.

To reveal the impact of Gaq3 acceptor dopant on 
the reproducibility of the OSCs, the change in Jsc was 
considered among four devices that were fabricated on the 
same substrate (a single batch). The fabrication process of 
each device was analogous and was carried out for similar 
materials and under similar environmental conditions. Four 
different batches (comprising four devices each) annealed at 
various temperatures were tested for their Jsc parameter, as 
shown in Fig. 6. Results showed that the change in the Jsc 
is trivial among four devices of each batch with standard 
deviations (STDEV) ranging from 0.008 to about 0.009. This 
small deviation is a good indication of high reproducibility 
of the OSCs which was brought about by the high thermal 
stability of Gaq3 when it was used as a second acceptor in 
the OSCs.

To further elucidate the operational stability of the Gaq3 
incorporated OSCs, the J-V characteristics of the devices 
were recorded at different times within 6 consecutive days. 
Interestingly, it was noticed that the decrement in efficiency 
and fill factor of the devices over the studied time span are 
relatively small and almost similar performance was achieved 
for the devices, as shown in Fig. 7. The decrement rate was 
found to be −2.1E-4% and −0.011%/h for the efficiency and 
fill factor, respectively.

Fig. 8a-e shows the surface and interface morphologies 
capture by FESEM and TEM for the Gaq3, DH6T: Gaq3 and 
DH6T: PCBM:Gaq3 films within 1 µ (1000 nm) resolution. 
It was seen that the surface morphology of Gaq3 start 
growing nanorods at temperature 180°C (Fig. 8-b). This 
temperature is close enough to the Tg (182°C) of Gaq3, at 
which the material presents a rubbery state. We have seen 
previously that the OSCs showed the highest performance 

at this temperature, which might be due to the effect of 
Gaq3 distribution among DH6T: PCBM molecules. At 
a higher temperature of 255°C, the nanostructures were 
degraded and no longer fortified (Fig. 8-c), suggesting good 
thermal stability of Gaq3 to be used in OSCs. One can see 
from Fig. 8-d and 8-e that the donor-acceptor components 
present a clear spatial distribution of the DH6T, Gaq3 and 
PCBM moieties, whereas the inclusion of Gaq3 molecules, 
positioned themselves in nanoballs stacking the active layer 
matrix at room temperature.

Iv. conclusIons

In this study, 29% molar fraction of Gaq3 dopant was 
dispersed into the active layer of DH6T: PCBM to produce 
a solution-processed system having a dual acceptor to be 
used as the active layer of OSCs. It was concluded that the 
addition of Gaq3 resulted in a pronounced broadening in 
the absorption spectra of DH6T and DH6T: PCBM films. 
The results showed a pronounced enhancement in the 
photocurrent and output voltage of the devices when Gaq3 is 
included. The short current density (Jsc) was increased from 
0.63 mA to 1.26 mA, and the Voc improved from 0.30 V to 
0.74 V. As such, the Jsc and Voc were increased by order of 
about 2 and 2.5, respectively. An inflection temperature of 
180°C was noticed for Jsc which was higher than that of the 
P3HT: PCBM:F8BT and PTB7:PCBM: F8BT based solar 
cells at 140°C. This indicated higher thermal stability for 
our devices thanks to the effect of Gaq3 inclusion. It was 
generally observed that the efficiency of these devices was 
increased by an order of 5.8 on the addition of Gaq3. Four 
different batches (comprising four devices each) annealed 
at various temperatures were tested for their Jsc parameter. 
Results showed that the change in the Jsc is trivial among 
four devices of each batch with STDEV ranging from 0.008 
to about 0.009. This small deviation is a good indication 
of high reproducibility of the OSCs. The decrement rate of 

Fig. 8: Field emission scanning electronic microscopy images of Gaq3 film at room temperature 25°C (a), 180°C (b), 255°C (c), images of DH6T: Gaq3 
at room temperature 25°C (d and e) and TEM image of the active layer based on DH6T: PCBM:Gaq3.
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efficiency and fill factor of the devices over 120 h was found 
to be −2.1E-4% and −0.011%/h, respectively, which are 
small enough to conclude a stable operation of the devices. 
The surface morphology of Gaq3 start growing nanorods at 
temperature 180°C. This temperature is close enough to the 
Tg (182°C) of Gaq3, at which the material presents a rubbery 
state. The use of Gaq3 due to its good thermal stability can 
be potentially generalized to the other OSCs.
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