Magnetic and Electrical Properties of Electrodeposited Nickel Films

  • Musaab S. Sultan Department of Networks and Information Security, Technical College of Informatics,University of Akre for Applied Sciences, 42004, Kurdistan Region, Iraq https://orcid.org/0000-0002-7424-9736
Keywords: Ferromagnetic Nickel films, Electrodeposition, Elemental composition, Magnetic and Electrical properties

Abstract

Magnetic and electrical properties of nickel (Ni) thin films produced by the electrodeposition technique under a range of growth times (30, 40, and 60 s) are investigated thoroughly using Magneto-Optical Kerr Effect (MOKE) magnetometry and Magneto-Resistance setup, respectively. To deeply understand these properties, the elemental composition, surface morphology, and bulk crystalline structure are analyzed using energy dispersive X-ray spectroscopy (EDS) with high-resolution scanning electronmicroscopy (HRSEM), grazing incidence X-ra y reflectivity(GIXR), and X-ray diffraction measurements, respectively. EDSanalysis confirms that these samples are free from impurities andcontamination. An increase in coercive fields (~67 Oe) with widedistribution (58–85 Oe) across the film area and a slight variationin the shape of the loops are noticed by decreasing the film growthtime (30 s). This is attributed to the deviations in the film surfacemorphology (defects), as confirmed by HRSEM and GIXRmeasurements. The angular dependence of the coercivity is nearlyconstant for each sample and most angles, indicating the similarityin the reversal behavior in such films.The sample resistance is foundto be ~20.3 Ω and ~2.8 Ω for films with growth times of 40 s and 60 s,respectively. The co ercivity of the AMR profiles and MOKE loops isconsistent with each other, indicating that the magnetization at thesurface performs similarly to that of their bulks. This article givesan indication that Ni films produced by this technique under suchconditions are soft at longer deposition times and largely isotropic,which is more preferable in some magnetic applications.

Downloads

Download data is not yet available.

Author Biography

Musaab S. Sultan, Department of Networks and Information Security, Technical College of Informatics,University of Akre for Applied Sciences, 42004, Kurdistan Region, Iraq

Musaab S. Sultan is an Assistant Professor at the Department of Networks and Information Security, Technical College of Informatics, University of Akre for Applied Sciences. He got the B.Sc. degree in Physics, the M.Sc. degree in Solid State Microelectronics and the Ph.D. degree in Metallic Spintronic Systems (Nanowires & Nanomagnetism). His research interests are in fabrication and physical characterisation of ferromagnetic thin films and nanowires. Dr. Musaab is a member of Institute of Physics (IOP) Society in Iraq and London.

References

Alcer, D., and Atkinson, D., 2017. The role of mesoscopic structuring on the intermixing of spin-polarised conduction channels in thin-film ferromagnets for spintronics. Nanotechnology, 28(37), p.375703. DOI: https://doi.org/10.1088/1361-6528/aa7dcb

Allwood, D.A., Xiong, G., Cooke, M.D., and Cowburn, R.P., 2003. Magneto-optical Kerr effect analysis of magnetic nanostructures. Journal of Physics D: Applied Physics, 36, p.2175. DOI: https://doi.org/10.1088/0022-3727/36/18/001

Allwood, D.A., Xiong, G., Faulkner, C.C., Atkinson, D., Petit, D., and Cowburn, R.P., 2005. Magnetic domain-wall logic. Science, 309, p.1688. DOI: https://doi.org/10.1126/science.1108813

Aravamudhan, S., Singleton, J., Goddard, P.A., and Bhansali, S., 2009. Magnetic properties of Ni-Fe nanowire arrays: Effect of template material and deposition conditions. Journal of Physics D: Applied Physics, 42, p.115008. DOI: https://doi.org/10.1088/0022-3727/42/11/115008

Armstrong, H., 2010. Magnetoresistance Measurement System Instruction Manual V3.0. Durham University, Physics Department, Durham, England [Last accessed on 2023 Nov 28].

Atkinson, D., Eastwood, D.S., and Bogart, L.K., 2008. Controlling domain wall pinning in planar nanowires by selecting domain wall type and its application in a memory concept. Applied Physics Letters, 92(2), p.022510. DOI: https://doi.org/10.1063/1.2832771

Azzawi, S., Ganguly, A., Tokaç, M., Rowan-Robinson, R.M., Sinha, J., Hindmarch, A.T., Barman, A., and Atkinson, D., 2016. Evolution of damping in ferromagnetic/nonmagnetic thin film bilayers as a function of nonmagnetic layer thickness. Physical Review B, 93(5), p.054402. DOI: https://doi.org/10.1103/PhysRevB.93.054402

Bede REFS., 2007. (Version 4.5): User Manual, Bede PLC, Durham. Available from: https://jordanvalleyplc [Last accessed on 2023 Nov 28].Bowen, K.D., and Tanner, B.K., 2006.

X-Ray Metrology in Semiconductor Manufacturing. Taylor and Francis Group, LLC, United Kingdom.

Bowen, L., and Mendis, B., 2012. Electron Microscopy Facility. Physics Department, Durham University, U.K., in Private Communication.

Brundle, R.C., Evans, C.A. Jr., and Wilson, S., 1992. Encyclopaedia of Materials Characterization. Butterworth-Heinemann, a division of Reed publishing Inc., Oxford.

Bryan, M.T., Atkinson, D., and Allwood, D.A., 2006. Multimode switching induced by a transverse field in planar magnetic nanowires Applied Physics Letters, 88(3), p.032505. DOI: https://doi.org/10.1063/1.2162263

Chen, T.C., Kuo, C.Y., Mishra, A.K., Das, B., and Wu, JC., 2015. Magnetic domain wall motion in notch patterned permalloy nanowire devices. Physica B: Condensed Matter, 476, p.161. DOI: https://doi.org/10.1016/j.physb.2015.04.004

Coey, J.M.D., and Hinds, G., 2001. Magnetic electrodeposition. Journal of Alloys and Compounds, 326(1-2), pp.238-245. DOI: https://doi.org/10.1016/S0925-8388(01)01313-5

Cullity, B.D., and Graham, C.D., 2009. Introduction to Magnetic Materials. 2nd ed., John Wiley and Sons Inc., Hoboken, New Jersey.

Cullity, B.D., and Stock, S.R., 2001. Elements of X-Ray Diffraction. 3rd ed., Prentice-Hall Inc., Hoboken.

Daimon, H., and Kitakami, O., 1993. Magnetic and crystallographic study of Co electrodeposited alumite films. Journal of Applied Physics, 73(10), p.5391. DOI: https://doi.org/10.1063/1.353742

Das, B., Chen, T.C., Shiu, D.S., Lance, H., and Wu, J.C., 2016. Differential domain wall propagation in Y-shaped permalloy nanowire devices. World Science, 6(1), p.1650006. DOI: https://doi.org/10.1142/S2010324716500065

Das, B., Mandal, K., Sen, P., and Bandopadhyay, S.K., 2008. Effect of aspect ratio on the magnetic properties of nickel nanowires. Journal of Applied Physics, 103, p.013908. DOI: https://doi.org/10.1063/1.2828026

Donald, M.M., 2003. The Foundations of Vacuum Coating Technology. Noyes Publications William Andrew Publishing Norwich, New York.

Eastwood, D., 2009. Technical Note DSE4, Durham Longitudinal Focused MOKE: Operation Guide. Physics Department, Durham University, UK.

Eider, B., Cristina, B., Miriam, J., Manuel, V., and Agustina, A., 2016. Domain wall pinning in FeCoCu bamboo-like nanowires. Scientific Reports, 6, p.29702. DOI: https://doi.org/10.1038/srep29702

Elhoussine, F., Vila, L., Piraux, L., and Faini, G., 2005. Multiprobe perpendicular giant magnetoresistance measurements on isolated multilayered nanowires. Journal of Magnetism and Magnetic Materials, 290-291, pp.116-119. DOI: https://doi.org/10.1016/j.jmmm.2004.11.227

Ester, M.P., Cristina, B., del Real, R.P., and Manuel, V., 2015. Vortex domain wall propagation in periodically modulated diameter FeCoCu nanowire as determined by the magneto-optical Kerr effect. Nanotechnology, 26, p.461001. DOI: https://doi.org/10.1088/0957-4484/26/46/461001

Fernández-Pacheco, A., De Teresa, J.M., Córdoba, R., and Ibarra, M.R., 2008. Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition. Journal of Physics D: Applied Physics, 42, p 055005. DOI: https://doi.org/10.1088/0022-3727/42/5/055005

Fernández-Pacheco, A., De Teresa, J.M., Szkudlarek, A., Córdoba, R., Ibarra, M.R., Petit, D., O’Brien, L., Zeng, H.T., Lewis, E.R., Read, D.E., and Cowburn, R.P., 2009. Magnetization reversal in individual cobalt micro-and nanowires grown by focused-electron-beam-induced-deposition. Nanotechnology, 20(47), p.475704. DOI: https://doi.org/10.1088/0957-4484/20/47/475704

Ferré, R., Ounadjela, K., George, J.M., Piraux, L., and Dubois, S., 1997. Magnetization processes in nickel and cobalt electrodeposited nanowires. Physical Review B, 56(21), pp.14066-14075. DOI: https://doi.org/10.1103/PhysRevB.56.14066

Fert, A., and Piraux, L., 1999. Magnetic nanowires. Journal of Magnetism and Magnetic Materials, 200, pp.338-358. DOI: https://doi.org/10.1016/S0304-8853(99)00375-3

Ganguly, A., Azzawi, S., Saha, S., King, J.A., Rowan-Robinson, R.M., Hindmarch, A.T., Sinha, J., Atkinson, D., and Barman, A., 2015. Tunable magnetization dynamics in interfacially modified Ni81Fe19/Pt bilayer thin film microstructures. Scientific Reports, 5, p.17596. DOI: https://doi.org/10.1038/srep17596

Guo, Y., Qin, D.H., Ding, J.B., and Li, H.L., 2003. Annealing and morphology effects on the Fe0.39Co0.61 nanowire arrays. Applied Surface Science, 218(1-4), pp.107-113. DOI: https://doi.org/10.1016/S0169-4332(03)00557-9

Helmenstine, A.M., 2020. Table of Electrical Resistivity and Conductivity. ThoughtCo, New York. Available from: https://thoughtco.com/table-of-electrical-resistivity-conductivity-608499 [Last accessed on 2023 Nov 28].

Heyderman, L.J., Solak, H.H., David, C., Atkinson, D., Cowburn, R.P., and Nolting, F., 2004. Arrays of nanoscale magnetic dots: Fabrication by x-ray interference lithography and characterization. Applied Physics Letters, 85(21), p.4989. DOI: https://doi.org/10.1063/1.1821649

Jian, Q., Josep, N., Maria, M., Anna, R., Juan, S.M., and Mamoun, M., 2005. Differences in the magnetic properties of Co, Fe, and Ni 250-300 nm wide nanowires electrodeposited in amorphous anodized alumina templates. Chemistry of Materials, 17, pp.1829-1834. DOI: https://doi.org/10.1021/cm047870q

Jiles, D., 1998. Introduction to Magnetism and Magnetic Materials. 2nd ed., Chapman and Hall/CRC, New York.

Jin, C.G., Liu, W.F., Jia, C., Xiang, X.Q., Cai, W.L., Yao, L.Z., and Li, X.G., 2003. High-filling, large-area Ni nanowire arrays and the magnetic properties. Journal of Crystal Growth, 258, pp.337-341. DOI: https://doi.org/10.1016/S0022-0248(03)01542-2

Jordan Valley applications Staff., 2007. In: Lafford, T., Ryan, P., Wormington, M., Matney, K., Jacques, D., Bytheway, R., Bo, Q., Hofmann, F., and Trussell, R. (eds). Bede X-Ray Applications Manual. Jordan Valley Semiconductors Ltd., Texas.

Jordan Valley applications staff., 2008. Lafford, T., Ryan, P., Wormington, M., Matney, K., Jacques, D., Bytheway, R., Bo, Q., Hofmann, F., and Trussell, R. (eds). D1 Installation, Operation and Maintains Manual. Jordan Valley Semiconductors Ltd., Texas.

Kacel, T., Guittoum, A., Hemmous, M., Dirican, E., Öksuzoglu, R.M., Azizi, A., Laggoun, A., and Zergoug, M., 2018. Effect of thickness on the strctural, microstructural, electrical and magnetic properties of Ni films elaborated by pulsed electrodeposition on Si substrate. Surface Review and Letters, 25(2), p.1850058. DOI: https://doi.org/10.1142/S0218625X18500580

Kafil, M.R., Fernando, M.F.R., and Saibal, R., 2009. Magnetic properties of nickel nanowires: Effect of deposition temperature. Journal of Applied Physics, 105, p.083922. DOI: https://doi.org/10.1063/1.3109080

Kamrul, H.M., and Johurul, I.M., 2015. Effect of Substrate and Annealing on Electrical, Magnetic and Morphological Properties of Ni Thin Films. In: International Conference on Materials, Electronics and Information Engineering, ICMEIE.

Karahan, I.H., Bakkalo, O.F., and Bedir, M., 2007. Giant magnetoresistance of electrodeposited Cu-Co-Ni alloy film. Pramana-Journal of Physics, 68, pp.83-90. DOI: https://doi.org/10.1007/s12043-007-0009-5

Koohbor, M., Soltanian, S., Najafi, M., and Servati, P., 2012. Fabrication of CoZn alloy nanowire arrays: Significant improvement in magnetic properties by annealing process. Materials Chemistry and Physics, 131(3), pp.728-734. DOI: https://doi.org/10.1016/j.matchemphys.2011.10.043

Kunz, A., Reiff, S.C., Priem, J.D., and Rentsch, E.W., 2010. Controlling Individual Domain Walls in Ferromagnetic Nanowires for Memory and Sensor Applications. In: International Conference on Electromagnetics in Advanced Applications, p.248. DOI: https://doi.org/10.1109/ICEAA.2010.5653609

Lee, S.W., Jeong, M.C., Myoung, J.M., Chae, G.S., and Chung, I.J., 2007. Magnetic alignment of ZnO nanowires for optoelectronic device applications. Applied Physics Letters, 90(13), p.133115. DOI: https://doi.org/10.1063/1.2717575

Lihu, L., Haitao, L., Shenghua, F., Jianjun, G., Yaopeng, L., and Huiyuan, S., 2009. Fabrication and magnetic properties of Ni-Zn nanowire arrays. Journal of Magnetism and Magnetic Materials, 321, pp.3511-3514. DOI: https://doi.org/10.1016/j.jmmm.2009.06.062

Lodder, J.C., 2004. Methods for preparing patterned media for high-density recording. Journal of Magnetism and Magnetic Materials, 272-276, pp.1692-1697. DOI: https://doi.org/10.1016/j.jmmm.2003.12.259

Lupu, N., Lostun, M., and Chiriac, H., 2010. Surface magnetization processes in soft magnetic nanowires. Journal of Applied Physics, 107(9), p.09E315. DOI: https://doi.org/10.1063/1.3360209

Mark, W., 1993-2023. Web Elements. Available from: https://www.webelements.com [Last accessed on 2023 Nov 28].

Maruyama, K., Namikawa, K., Konno, M., and Maruyama, H., 1997. Magnetization process of iron surface observed by transverse Kerr magnetometry. Journal of Applied Physics, 81(8), pp.5675-5677. DOI: https://doi.org/10.1063/1.364901

Michelini, F., Ressier, L., Degauque, J., Baule`s, P., Fert, A.R., Peyrade, J.P., and Bobo, J.F., 2002. Permalloy thin films on MgO (001): Epitaxial growth and physical properties. Journal of Applied Physics, 92, pp. 7337-7340. DOI: https://doi.org/10.1063/1.1520723

Murakami, M., and Birukawa, M., 2008. Sputtering gases and pressure effects on the microstructure, magnetic properties and recording performance of TbFeCo films. Journal of Magnetism and Magnetic Materials, 320(5), pp.608-611. DOI: https://doi.org/10.1016/j.jmmm.2007.07.021

Nasirpouri, F., 2007. Template electrodeposition of magnetic nanowire arrays. Transworld Research Network, 661, p.37.Nazila, D., and Georges, J.K., 2007. Electroless fabrication of cobalt alloys nanowires within alumina template. Journal of Nanomaterials, 2007, p.46919.

Oliveira, A.B., de Silva, G.L., Rezende, S.M., and Azevedo, A., 2010. Magnetization reversal in single ferromagnetic rectangular nanowires. Journal of Physics: Conference Series, 200(7), p.072023. DOI: https://doi.org/10.1088/1742-6596/200/7/072023

Oliveira, A.B., Rezende, S.M., and Azevedo, A., 2008. Magnetization reversal in permalloy ferromagnetic nanowires investigated with magnetoresistance measurements. Physical Review B, 78(2), p.024423. DOI: https://doi.org/10.1103/PhysRevB.78.024423

Parlaka, U., Aközb, M.E., Tokdemir Öztürkb, S., and Erkovanc, M., 2015. Thickness dependent magnetic properties of polycrystalline nickel thin films. Acta Physica Polonica Series A, 127(4), pp.995-997. DOI: https://doi.org/10.12693/APhysPolA.127.995

Parratt, G.L, 1954. Surface studies of solids by total reflection of X-rays. Physical Review, 95, p.359. DOI: https://doi.org/10.1103/PhysRev.95.359

Peter, T.T., 2008. Utilising Electrochemical Deposition for Micro Manufacturing. Cardiff University, Whittles Publishing Ltd., Cardiff, UK.

Philip, S., Javier, G.F., Stefan, M., Michael, Z., Tim, B., Victor, V.M., de la Prida, V.M., Detlef, G., and Kornelius, N., 2016. Statistical magnetometry on isolated NiCo nanowires and nanowire arrays: A comparative study. Journal of Physics D: Applied Physics, 49(14), p.145005. DOI: https://doi.org/10.1088/0022-3727/49/14/145005

Pignard, S., Goglio, G., Radulescu, A., Piraux, L., Dubois, S., Declémy, A., and Duvail, J.L., 2000. Study of the magnetization reversal in individual nickel nanowires. Journal of Applied Physics, 87(2), pp.824-829. DOI: https://doi.org/10.1063/1.371947

Possin, E.G., 1970. A method for forming very small diameter wires. Review of Scientific Instruments, 41, pp.772-774. DOI: https://doi.org/10.1063/1.1684640

Qin, D.H., Wang, C.W., Sun, Q.Y., and Li, H.L., 2002. The effects of annealing on the structure and magnetic properties of CoNi patterned nanowire arrays. Applied Physics A, 74, pp.761-765. DOI: https://doi.org/10.1007/s003390100942

Rahman, I.Z., Razeeb, K.M., Kamruzzaman, M., and Serantoni, M., 2004. Characterisation of electrodeposited nickel nanowires using NCA template. Journal of Materials Processing Technology, 153-154, pp.811-815. DOI: https://doi.org/10.1016/j.jmatprotec.2004.04.168

Ren, Y., Liu, Q.F., Li, S.L., Wang, J.B., and Han, X.H., 2009. The effect of structure on magnetic properties of Co nanowire arrays. Journal of Magnetism and Magnetic Materials, 321(3), pp.226-230. DOI: https://doi.org/10.1016/j.jmmm.2008.08.111

Rheem, Y., Yoo, B.Y., Beyermann, W.P., and Myung, N.V., 2007a. Magnetotransport studies of a single nickel nanowire. Nanotechnology, 18, p.015202. DOI: https://doi.org/10.1088/0957-4484/18/1/015202

Rheem, Y., Yoo, B.Y., Beyermann, W.P., and Myung, N.V., 2007c. Magneto-transport studies of single ferromagnetic nanowire. Physica Status Solidi (A), 204(12), pp.4004-4008. DOI: https://doi.org/10.1002/pssa.200777135

Rheem, Y., Yoo, B.Y., Beyermann, W.P., and Myung, N.V., 2007d. Electro-and magneto-transport properties of a single CoNi nanowire. Nanotechnology, 18(12), p.125204. DOI: https://doi.org/10.1088/0957-4484/18/12/125204

Rheem, Y., Yoo, B.Y., Koo, B.K., Beyermann, W.P., and Myung, N.V., 2007b. Synthesis and magnetotransport studies of single nickel-rich NiFe nanowire. Journal of Physics D: Applied Physics, 40(23), p.7267. DOI: https://doi.org/10.1088/0022-3727/40/23/002

Rizwan, M.N., Bell, C., Kalyar, M.A., Makhdoom, A.R., Anwar-ul-Haq, M., and Gilory M., 2021. Structural, magnetic and electrical properties of nickelthin films deposited on Si (100) substrates by pulsed laser deposition. Journal of Ovonic Research, 17(3), pp.225-230. DOI: https://doi.org/10.15251/JOR.2021.173.225

Sharma, S., Barman, A., Sharma, M., Shelford, L.R., Kruglyak, V.V., and Hicken, R.J., 2009. Structural and magnetic properties of electrodeposited cobalt nanowire arrays. Solid State Communications, 149(39), pp.1650-1653. DOI: https://doi.org/10.1016/j.ssc.2009.06.025

Sultan, M.S., 2013. Experimental and Micromagnetic Study of Magnetisation Behaviour in Isolated Ferromagnetic Nanowires. PhD thesis submitted to Durham University.

Sultan, M.S., 2017a. Angular dependence of switching behaviour in template released isolated NiFe nanowires. Physics Letters A, 381(46), pp.3896-3903. DOI: https://doi.org/10.1016/j.physleta.2017.10.015

Sultan, M.S., 2017b. Surface morphology and magnetic properties of isolated cylindrical nickel nanowires. American Journal of Nanosciences, 3(3), pp.30-38. DOI: https://doi.org/10.11648/j.ajn.20170303.11

Sultan, M.S., 2017c. Electro-and magneto-transport behavior of template-released isolated ferromagnetic nanowires. IEEE Transactions on Magnetics, 53(12), pp.1-10. DOI: https://doi.org/10.1109/TMAG.2017.2740848

Sultan, M.S., 2018. Magnetic State of Template Released Isolated Nickel Nanowires. In: International Conference on Pure and Applied Science, Koya University, Kurdistan. DOI: https://doi.org/10.14500/icpas2018.nmt49

Sultan, M.S., Das, B., Sen, P., Mandal, K., and Atkinson, D., 2012. Template released ferromagnetic nanowires: Morphology and magnetic properties. Journal of Spintronics and Magnetic Nanomaterials, 1(1), pp.113-121. DOI: https://doi.org/10.1166/jsm.2012.1019

Sun, L., and Chen, Q., 2009. Magnetic field effects on the formation and properties of nickel nanostructures. European Journal of Inorganic Chemistry, 2009, pp.435-440. DOI: https://doi.org/10.1002/ejic.200801039

Sun, L., Hao, Y., Chien, C.L., and Searson, P.C., 2005. Tuning the properties of magnetic nanowires. IBM Journal of Research and Development, 49(1), pp.79-102. DOI: https://doi.org/10.1147/rd.491.0079

Thompson, S.M., 2008. The discovery, development and future of GMR: The nobel prize 2007. Journal of Physics D: Applied Physics, 41, p.093001. DOI: https://doi.org/10.1088/0022-3727/41/9/093001

Tian, F., Chen, J., Zhu, J., and Wei, D., 2008. Magnetism of thin polycrystalline nickel nanowires. Journal of Applied Physics, 103, p.013901. DOI: https://doi.org/10.1063/1.2825617

Tian, F., Zhu, J., Wei, D., and Shen, Y.T., 2005. Magnetic field assisting DC electrodeposition: General methods for high-performance Ni nanowire array fabrication. The Journal of Physical Chemistry B, 109, p.14852. DOI: https://doi.org/10.1021/jp051314h

Tokaç, M., Wang, M., Jaiswal, S., Rushforth, A.W., Gallagher, B.L., Atkinson, D., and Hindmarch, A.T., 2015. Interfacial contribution to thickness dependent in-plane anisotropic magnetoresistance. AIP Advances, 5(12), p.127108. DOI: https://doi.org/10.1063/1.4937556

Uehara, Y., and Ikeda, S., 2003. Dependence of magnetic properties on sputtering pressure for Fe-Al-O alloy films made by carousel-type sputtering. Japanese Journal of Applied Physics, 42(7A), pp.4297-4301. DOI: https://doi.org/10.1143/JJAP.42.4297

Vega, V., Bohnert, T., Martens, S., Waleczek, M., Montero-Moreno, J.M., Görlitz, D., Prida, V.M., and Nielsch, K., 2012. Tuning the magnetic anisotropy of Co-Ni nanowires: Comparison between single nanowires and nanowire arrays in hard-anodic aluminum oxide membranes. Nanotechnology, 23(46), p.465709. DOI: https://doi.org/10.1088/0957-4484/23/46/465709

Wormington, M., Panaccione, C., Matney, K.M., and Bowen, D.K., 1999. Characterization of structures from X-ray scattering data using genetic algorithms. Philosophical Transactions of the Royal Society of London-Series A, 357, pp.2827-2848. DOI: https://doi.org/10.1098/rsta.1999.0469

Yoo, B., Rheem, Y., Beyermann, W.P., and Myung, N.V., 2006. Magnetically assembled 30 nm diameter nickel nanowire with ferromagnetic electrodes. Nanotechnology, 17(10), pp.2512-2517. DOI: https://doi.org/10.1088/0957-4484/17/10/012

Published
2023-12-08
How to Cite
Sultan, M. S. (2023) “Magnetic and Electrical Properties of Electrodeposited Nickel Films”, ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 11(2), pp. 191-200. doi: 10.14500/aro.11211.