Theoretical Calculations for the Acidity of Cyanopolyynes HC2n+1N (n = 0–5) in Gas and Aqueous Phases Using Ab initio Methods

Keywords: Ab initio, Acidity, Cyanopolyynes, Density functional theory, Møller–Plesset perturbation

Abstract

Cyanopolyynes have been found in the interstellar medium, cold dust cloud Taurus Molecular Cloud-1, and the Titan’s atmosphere. Theoretical calculations are carried out to predict gas and aqueous phase acidities of a series of cyanopolyynes acids. Two levels of theory were used in this study, with the combination of density functional theory, and Møller–Plesset perturbation (MP2) theory, MP2 methods with two types of basis set, namely, Pople’s 6–311++g (d, p) basis set and Dunning’s aug-cc-pVTZ basis set. The calculations of these molecules reveal that pKa values varying from 12.25 to 17.25 and indicate that the acidity of these molecules in aqueous phase increases whereas the acidity in gas phase decreases with an increasing chain length of these acids.

Downloads

Download data is not yet available.

Author Biography

Hassan H. Abdallah, Department of Chemistry, College of Education, Salahaddin University-Erbil, Kurdistan Region
Hassan H. Abdallah is an Assistant Professor at Department of Chemistry, College of Education, Salahaddin University-Erbil.He has a Ph.D. degree in Quantum Chemistry. His research fields are, computational chemistry and drug design. 

References

Arnau, A., Tu˜non, I., Silla, E., and Andres, J.M., 1990. HCnN: The largest molecules in the interstellar medium. Journal of Chemical Education, 67, pp.905-906.

Bell, M., Feldman, P., Travers, M., McCarthy, M., Gottlieb, C., and Thaddeus, P., 1997. Detection of HC11N in the Cold Dust Cloud TMC-1. The Astrophysical Journal, 483(1), pp.L61-L64.

Botschwina, B., Horn, M., and Oswald, K., 1997. Coupled cluster calculations for HC7N, HC7NH+ and C7N, molecules of interest to astrochemistry. Molecular Physics, 92(3), pp.381-392.

Botschwina, P., 2003. Spectroscopic properties of interstellar molecules: Theory and experiment. Physical Chemistry Chemical Physics, 5(16), pp.3337-3348.

Botschwina, P., and Horn, M., 1997. Accurate equilibrium structure and electric dipole moment of HC9N: Predictions on the basis of large-scale coupled cluster calculations. Journal of Molecular Spectroscopy, 185(1), pp.191-193.

Botschwina, P., Heyl, Ä., Oswald, M., and Hirano, T., 1997. Ab initio anharmonic force fields and spectroscopic properties for HC5N and HC5NH+, molecules of interest to astrochemistry. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 53(8), pp.1079-1090.

Botschwina, P., Schulz, B., Horn, M., and Matuschewski, M., 1995. Ab initio calculations of stretching vibrational transitions for the linear molecules HCN, HNC, HCCF and HC3N up to high overtones. Chemical Physics, 190(2-3), pp.345-362.

Burk, P., and Koppel, I., 1993. Critical test of PM3 calculated gas-phase acidities. Theoretica Chimica Acta, 86(5), pp.417-427.

Burk, P., Koppel, I., Koppel, I., Yagupolskii, L., and Taft, R., 1996. Super acidity of neutral Bronsted acids in gas phase. Journal of Computational Chemistry, 17(1), pp.30-41.

Catalan, J., and Palomar, J., 1998. Gas-phase protolysis between a neutral Brønsted acid and a neutral Brønsted base. Chemical Physics Letters, 293, pp.511-514.

Charif, I., Mekelleche, S., Villemin, D., and Mora-Diez, N., 2007. Correlation of aqueous pKa values of carbon acids with theoretical descriptors: A DFT study. Journal of Molecular Structure: THEOCHEM, 818(1-3), pp.1-6.

Choho, K., Van Lier, G., Van de Woude, G., and Geerlings, P., 1996. Acidity of hydro fullerenes: A quantum chemical study. Journal of the Chemical Society, Perkin Transactions II, pp.1723-1732.

Contreras, R., Fuentealba, P., Galván, M., and Pérez, P., 1999. A direct evaluation of regional Fukui functions in molecules. Chemical Physics Letters, 304(5-6), pp.405-413.

Cossi, M., Barone, V., Cammi, R., and Tomasi, J., 1996. Ab initio study of solvated molecules: A new implementation of the polarizable continuum model. Chemical Physics Letters, 255(4-6), pp.327-335.

D’Souza, F., Zandler, M., Deviprasad, G., and Kutner, W., 2000. Acid base properties of fuller opyrrolidines: Experimental and theoretical investigations. The Journal of Physical Chemistry A, 104(29), pp.6887-6893.

Dewar, M., and Dieter, K., 1986. Evaluation of AM1 calculated proton affinities and deprotonation enthalpies. Journal of the American Chemical Society, 108(25), pp.8075-8086.

Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., 2009. Gaussian 09, Revision E.01. Gaussian, Inc., Wallingford CT.

Kass, S.R., 1990. Hydrocarbon acidities calculated with MINDO/3, MNDO, and AM1. Journal of Computational Chemistry, 11, pp.94-104.

Koppel, I.A., Taft, R.W., Anvia, F., Zhu, S.Z., Hu, L.Q., Sung, K.S., DesMarteau, D.D., Yagupolskii, L.M., and Yagupolskii, Y.L., 1994. The gas-phase acidities of very strong neutral Bronsted acids. Journal of the American Chemical Society, 116, pp.3047-3057.

Kunde, V., Aikin, A., Hanel, R., Jennings, D., Maguire, W., and Samuelson, R., 1981. C4H2, HC3N and C2N2 in Titan’s atmosphere. Nature, 292(5825), pp.686-688.

Liptak, M., Gross, K., Seybold, P., Feldgus, S., and Shields, G., 2002. Absolute pKa determinations for substituted phenols. Journal of the American Chemical Society, 124(22), pp.6421-6427.

McCarthy, M., and Thaddeus, P., 2001. Microwave and laser spectroscopy of carbon chains and rings. Chemical Society Reviews, 30(3), pp.177-185.

Mendoza, E., Lefloch, B., Ceccarelli, C., Kahane, C., Jaber, A.A., Podio, L., Benedettini, M., Codella, C., and Viti, S., 2018. A search for Cyanopolyynes in L1157-B1. Monthly Notices of the Royal Astronomical Society, 475(4), pp.5501-5512.

Miertus̃, S., and Tomasi, J., 1982. Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chemical Physics, 65(2), pp.239-245.

Miertuš, S., Scrocco, E., and Tomasi, J., 1981. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chemical Physics, 55(1), pp.117-129.

Moliner, V., Andrés, J., Arnau, A., Silla, E., and Tuñón, I., 1996. Rotational constants and dipole moments of interstellar polyynes: A comparative MP2 and density functional (BP86) study. Chemical Physics, 206(1-2), pp.57-61.

Pérez, P., Simón-Manso, Y., Aizman, A., Fuentealba, P., and Contreras, R., 2000. Empirical energy density relationships for the analysis of substituent effects in chemical reactivity. Journal of the American Chemical Society, 122(19), pp.4756-4762.

Qi, J., Chen, M., Wu, W., Zhang, Q., and Au, C., 2009. Parity alternation of interstellar molecules cyanopolyynes HCnN (n=1–17). Chemical Physics, 364(1-3), pp.31-38.

Rezende M.C., 2001. The acidity of carbon acids in aqueous solutions: Correlations with theoretical descriptors. Tetrahedron, 57, pp.5923-5930.

Rezende, M., 2001. A theoretical HSAB study of the acidity of carbon acids CH3Z. Journal of the Brazilian Chemical Society, 12(1), pp.73-80.

Scemama, A., Chaquin, P., Gazeau, M., and Bénilan, Y., 2002. Theoretical study of the structure and properties of polyynes and monocyano and dicyanopolyynes: Predictions for long chain compounds. The Journal of Physical Chemistry A, 106(15), pp.3828-3837.

Siggel, M.R., Thomas, T.D., and Saethre, L.J., 1988. Ab initio calculation of Broensted acidities. Journal of the American Chemical Society, 110, pp. 91-96.

Skomorowski, W., Gulania, S., and Krylov, A., 2018. Bound and continuum-embedded states of cyanopolyyne anions. Physical Chemistry Chemical Physics, 20(7), pp.4805-4817.

Smith, B., and Radom, L., 1995. Calculation of proton affinities using the G2 (MP2, SVP) Procedure. The Journal of Physical Chemistry, 99(17), pp.6468-6471.

Smith, B., and Radom, L., 1995. Gas-phase acidities: A comparison of density functional, MP2, MP4, F4, G2 (MP2, SVP), G2 (MP2) and G2 procedures. Chemical Physics Letters, 245(1), pp.123-128.

Smith, M.B., and March, J., 2007. March’s Advanced Organic Chemistry. 6th ed. John Wiley, New York, pp.359-364.

Woon, D., and Herbst, E., 2009. Quantum chemical predictions of the properties of known and postulated neutral interstellar molecules. The Astrophysical Journal Supplement Series, 185(2), pp.273-288.

Yang, W., and Mortier, W., 1986. The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. Journal of the American Chemical Society, 108(19), pp.5708-5711.

Published
2019-05-01
How to Cite
Abdallah, H. H. (2019) “Theoretical Calculations for the Acidity of Cyanopolyynes HC2n+1N (n = 0–5) in Gas and Aqueous Phases Using Ab initio Methods”, ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 7(1), pp. 27-33. doi: 10.14500/aro.10484.