Theoretical Study of Diels-Alder Reaction of But-3-en-2-one with Hexa-1,2,4-triene: A Density Functional Theory Study

  • Rezan J. Hassan (1) Department of Chemistry, College of Education, Salahaddin University-Erbil, Erbil 44001, Kurdistan Region. (2) Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil 44001, Kurdistan Region http://orcid.org/0000-0002-9658-6485
  • Hassan H. Abdallah Department of Chemistry, College of Education, Salahaddin University-Erbil, Erbil 44001, Kurdistan Region http://orcid.org/0000-0002-9198-0475
Keywords: Cycloaddition, density functional theory calculation, Diels-Alder reaction, mechanism

Abstract

The Diels-Alder reaction between but-3-en-2-one with hexa-1,2,4-triene was studied using density functional theory method at B3LYP-D3/6-311++G(d,p) level of theory. The geometries of the transition states were determined. Moreover, calculations of the vibrational frequencies permitted computation of the activation enthalpies and entropies. The computational results show that the cycloadducts from trans conformer have the lower relative energies (−46.48 and −47.50 kcal/mol) as compared to the cis conformer of cycloadducts (−44.45 and −45.87 kcal/mol). The global reactivity indices were analyzed at the ground state of reactants to predict the reactivity of the studied organic molecules in the cycloaddition reactions. The electronic chemical potential of hexa-1,2,4-trien found to be than but-3-en-2-one, which indicates that the net charge transfer will be from hexa-1,2,4-trien toward the electron-deficient but-3-en-2-one reactant.

Downloads

Download data is not yet available.

Author Biographies

Rezan J. Hassan, (1) Department of Chemistry, College of Education, Salahaddin University-Erbil, Erbil 44001, Kurdistan Region. (2) Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil 44001, Kurdistan Region

Rezan J. Hassan is an Assistant Lecturer at the Department of Chemistry, College of Science, Salahaddin University-Erbil. Currently she is a Ph.D. candidate at the Department of Chemistry, College of Education, Salahaddin University-Erbil.

Hassan H. Abdallah, Department of Chemistry, College of Education, Salahaddin University-Erbil, Erbil 44001, Kurdistan Region

Hassan H. Abdallah is a Professor in computational chemistry and drug design at the Department of Chemistry, College of Education, Salahaddin University-Erbil. He has got his Ph.D. and M.Sc. degrees from Bagdad University in Quantum Chemistry. Later he has got post doc positions in computational chemistry and drug design from USA and Malaysia. He has published more than 100 publications in peer reviewed journals and he has supervised many postgraduate students. His research interest is generally, computational chemistry and drug design and focusing more in pandemic viral diseases.

References

Baeza, A., 2018. Stereogenic Centers. Multidisciplinary Digital Publishing Institute, Basel, Switzerland.

Boger, D.L., and Weinreb, S.M., 2012. Hetero Diels-Alder Methodology in Organic Synthesis, Elsevier, Amsterdam, Netherlands.

Carey, F.A. and Sundberg, R.J., 2007. Advanced organic chemistry: part A: structure and mechanisms. Springer Science & Business Media

Ditchfield, R., Hehre, W.J., and Pople, J.A., 1971. Self-consistent molecularorbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules. The Journal of Chemical Physics, 54(2), pp.724-728.

Domingo, L.R., Chamorro, E., and Pérez, P., 2008. Understanding the reactivityNof captodative ethylenes in polar cycloaddition reactions. A theoretical study. The Journal of Organic Chemistry, 73(12), pp.4615-4624.

Džambaski, Z., Tzaras, D.I., Lee, S., Kokotos, C.G., and Bondzic, B.P., 2019. Enantioselective organocatalytic enamine C-H oxidation/diels-alder reaction. Advanced Synthesis and Catalysis, 361(8), pp.1792-1797.

Fringuelli, F., and Taticchi, A., 2002. The Diels-Alder Reaction: Selected Practical Methods. Wiley, Hoboken, New Jersey.

Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci,B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams, Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., and Fox, D.J., 2009, Gaussian 09 B.01, Gaussian, Inc., Wallingford, CT. Fukui, K., 1970. Formulation of the reaction coordinate. The Journal of Physical Chemistry, 74(23), pp.4161-4163.

Grimme, S., Antony, J., Ehrlich, S., and Krieg, H., 2010. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132(15), p.154104.

Jursic, B.S., and Zdravkovski, Z., 1994. Comparison of AM1 and PM3 semiempirical to ab initio methods in the study of Diels-Alder reactions of butadiene and cyclopentadiene with cyanoethylenes. Journal of Molecular Structure: THEOCHEM, 309(3), pp.249-257.

Kaka, K.N., Taher, S.G., Hamad, W.M., and Ibrahim, A.H., 2019. Synthesis of new series of pyrazoline, and study their kinetics and reaction mechanism. ARO-The Scientific Journal of Koya University, 7(2), pp.5-13.

Kal-Koshvandi, A.T., and Heravi, M.M., 2019. Applications of Dainshefsky’s dienes in the asymmetric synthesis of aza-diels-alder reaction. The Chemical Record, 19(2-3), pp.550-600.

Khabashesku, V.N., Kudin, K.N., and Margrave, J.L., 2001. Density functional theoretical studies of [2+2] cycloaddition of simple transient silenes and germenes to ethylene, formaldehyde, and thioformaldehyde, and vibrational analysis of spectra of reactants and cyclic products. Russian Chemical Bulletin, 50(1), pp.20-28.

Kohn, W., and Sham, L.J., 1965. Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A), pp.1133-1138.

Lee, C., Yang, W., and Parr, R.G., 1988. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), pp.785-789.

Legault, C. 2009, CYLview 1.0. Université de Sherbrooke, Sherbrooke. Lemal, D.M., 2017. Pathways for concerted [2 + 2] cycloaddition to cumulenes. The Journal of Organic Chemistry, 82(24), pp.13012-13019.

Mohammad, S.H., and Abdallah‎, H., 2019. Theoretical study for the [2+2] cycloaddition reaction mechanism of ketenes and their derivatives. Oriental Journal of Chemistry, 35, pp.1550-1556.

Mohammad-Salim, H., Hassan, R., Abdallah, H.H., and Oftadeh, M., 2020. The theoretical study on the mechanism of [3+ 2] cycloaddition reactions between α, β-unsaturated selenoaldehyde with nitrone and with nitrile oxide. Journal of the Mexican Chemical Society, 64(2), p.20.

Mohammad-Salim, H.A., Abdallah, H.H., Maiyelvaganan, K.R., Prakash, M., and Hochlaf, M., 2020. Mechanistic study of the [2+2] cycloaddition reaction of cyclohexenone and its derivatives with vinyl acetate. Theoretical Chemistry Accounts, 139(2), p.19.

Mohammad-Salim, H.A., and Abdallah, H.H., 2019. Theoretical study of the [4+2] cycloaddition reaction of trifluoroethylene with five-membered chalcogens heterocyclic compounds. 7(2), p.9.

Parr, R.G. and Weitao, Y., 1989, Density-Functional Theory of Atoms and Molecules. Oxford University Press, Oxford.

Parr, R.G., and Pearson, R.G., 1983. Absolute hardness: Companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105(26), pp.7512-7516.

Parr, R.G., and Weitao, Y., 1994. Density-Functional Theory of Atoms and Molecules. Oxford University Press, Oxford.

Parr, R.G., Szentpály, L.V., and Liu, S., 1999. Electrophilicity index. Journal of the American Chemical Society, 121(9), pp.1922-1924.

Pham, H.V., and Houk, K.N., 2014. Diels alder reactions of allene with benzene and butadiene: Concerted, stepwise, and ambimodal transition states. The Journal of Organic Chemistry, 79(19), pp.8968-8976.

Salim, H.A.M., Abdallah, H.H., and Ramasami, P., 2018a. Stereoselectivity and regioselectivity of the cycloaddition dimerization of allyl 3-(2-pyridyl) acrylate and allyl 3-(2-pyrryl) acrylate: DFT Calculations. IOP Conference Series: Materials Science and Engineering, 454, p.012049.

Salim, H.M., Abdallah, H.H., and Ramasami, P., 2018b. Mechanism and Thermodynamic Parameters of Paternὸ-Büchi Reaction of Benzene and Furan: DFT Study. Conference Paper, pp.415-419.

Siah, S.Y., Leung, P.H., and Mok, K.F., 1995. Palladium-complex-promoted asymmetric Diels-Alder reaction: Stereoselective synthesis of a new sulfinylsubstituted phosphine ligand containing three carbon, one phosphorus and one sulfur stereogenic centres. Journal of the Chemical Society, Chemical Communications, 17, pp.1747-1748.

Zhang, H., Liu, G., Guan, X., Gao, J., Qin, X., Jiang, G., Sun, D., Zhang, G., and Zhang, S., 2019. Asymmetric synthesis of triaryl-substituted chromans with multiple stereogenic centers by [4+ 2] cycloaddition reaction. European Journal of Organic Chemistry, 43, pp.7264-7268.

Published
2020-06-12
How to Cite
Hassan, R. J. and Abdallah, H. H. (2020) “Theoretical Study of Diels-Alder Reaction of But-3-en-2-one with Hexa-1,2,4-triene: A Density Functional Theory Study”, ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 8(1), pp. 74-78. doi: 10.14500/aro.10632.