Theoretical Study of the [4+2] Cycloaddition Reaction of Trifluoroethylene with Five-membered Chalcogens Heterocyclic Compounds
Abstract
[4+2] cycloaddition reaction has enormous significant in organic chemistry synthesis reactions and yet remains unexplored for the synthesis of fluorine-containing compounds. A density functional theory study of the stereo- and regioselectivity of the [4+2] cycloaddition reaction of trifluoroethylene with furan, thiophene, and selenophene was carried out in the gas phase. The B3LYP functional is used throughout in combination with 6-31G(d) basis set. The analysis of stationary points and the energetic parameters indicates that the reaction mechanism is concerted and confirms that the exo-adducts are thermodynamically and kinetically more favored than endo-adducts. The calculated branching ratio indicates that the exo-adducts have the higher percent yield than endoadducts and the yield of endo-adducts is increased only slightly on proceeding from furan, through thiophene, and onto selenophene. The analysis of the frontier molecular highest occupied molecular orbital (MO) and lowest unoccupied MO orbitals indicates that the exo-adducts are more stable due to their higher energy gab. The reaction energies were compared to the MP2/6-31G(d) and CCSD(T)/6-31G(d) calculations.
Downloads
References
Avalos, M., Babiano, R., Bravo, J.L., Cintas, P., Jiménez, J.L., Palacios, J.C. and Silva, M.A., 2000, Understanding diastereofacial selection in carbohydratebased domino cycloadditions: Semiempirical and DFT calculations. Chemistry A European Journal, 6(2), pp.267-77.
Baum, K., Archibald, T.G., Tzeng, D., Gilardi, R., Flippen-Anderson, J.L. and George, C., 1991. Synthesis and properties of 1,2-difluorodinitroethylene. The Journal of Organic Chemistry, 56(2), pp.537-539.
Chambers, R.D., Gilbert, A.F. ad Powell, R.L., 2000. Cycloaddition reactions of furan derivatives with trifluoroethene. Journal of Fluorine Chemistry, 104(2), pp.233-237.
Clyde-Watson, Z., Vidal-Ferran, A., J. Twyman, L.J., Walter, C.J., McCallien, D.W.J., Fanni, S., Bampos, N., Wylie, R.S. and Sanders, J.K.M., 1998. Reversing the stereochemistry of a diels alder reaction: Use of metalloporphyrin oligomers to control transition state stability. New Journal of Chemistry, 22(5), pp.493-502.
Cooley, J.H. and Williams, R.V., 1997. Endo and exo-stereochemistry in the diels-alder reaction: Kinetic versus thermodynamic control. Journal of Chemical Education, 74(5), p.582.
Cossío, F.P., Morao, I., Jiao, H. and Schleyer, P.V.R., 1999. In-plane aromaticity in 1,3-dipolar cycloadditions. Solvent effects, selectivity, and nucleus-independent chemical shifts. Journal of the American Chemical Society, 121(28), pp.6737- 6746.
Ditchfield, R., Hehre, W.J. and Pople, J.A., 1971. Self-consistent molecularorbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules. The Journal of Chemical Physics, 54(2), pp.724- 728.
Domingo, L.R., Asensio, A. and Arroyo, P., 2002. Density functional theory study of the lewis acid-catalyzed diels alder reaction of nitroalkenes with vinyl ethers using aluminum derivatives. Journal of Physical Organic Chemistry, 15(9), pp.660-666.
Domingo, L.R., Aurell, M.J. and Pérez, P., 2014. The mechanism of ionic diels alder reactions. ADFT study of the oxa-Povarov reaction. RSC Advances, 4(32), pp.16567-16577.
Domingo, L.R., Aurell, M.J., Pérez, P. and Contreras, R., 2002. Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in diels alder reactions. Tetrahedron, 58(22), pp.4417-4423.
Domingo, L.R., Chamorro, E. and Pérez, P., 2008. Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. The Journal of Organic Chemistry, 73(12), pp.4615-4624.
Essers, M., Mück-Lichtenfeld, C. and Haufe, G., 2002. Diastereoselective diels alder reactions of α-fluorinated α,β-unsaturated carbonyl compounds: Chemical consequences of fluorine substitution. The Journal of Organic Chemistry, 67(14), pp.4715-4721.
Fernández, I. and Bickelhaupt, F.M., 2014. Origin of the “endo rule” in DielsAlder reactions. Journal of Computational Chemistry, 35(5), pp.371-376.
Foster, R.W., Benhamou, L., Porter, M.J., Bučar, D.K., Hailes, H.C., Tame, C.J. and Sheppard, T.D., 2015. Irreversible endo-selective Diels-Alder reactions of substituted alkoxyfurans: Ageneral synthesis of endo-cantharimides. Chemistry A European Journal, 21(16), pp.6107-6114.
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B. and Fox, D.J., 2009, Gaussian 09 B.01, Wallingford, CT.
Fukui, K., 1970. Formulation of the reaction coordinate. The Journal of Physical Chemistry, 74(23), pp.4161-4163.
Gregoritza, M. and Brandl, F.P., 2015. The Diels-Alder reaction: Apowerful tool for the design of drug delivery systems and biomaterials. European Journal of Pharmaceutics and Biopharmaceutics, 97, pp.438-453.
Ho, G.M., Huang, C.J., Li, E.Y.T., Hsu, S.K., Wu, T., Zulueta, M.M.L., Wu, K.B. and Hung, S.C., 2016, Unconventional exo selectivity in thermal normal-electron-demand Diels-Alder reactions. Scientific Reports, 6, p.35147.
Hoffmann, R. and Woodward, R.B., 1968. Conservation of orbital symmetry. Accounts of Chemical Research, 1(1), pp.17-22.
Houk, K.N., Lin, Y.T. and Brown, F.K., 1986. Evidence for the concerted mechanism of the Diels-Alder reaction of butadiene with ethylene. Journal of the American Chemical Society, 108(3), pp.554-556.
Ito, H., Saito, A. and Taguchi, T., 1998. Asymmetric Diels-Alder reactions of 2-fluoroacrylic acid derivatives. Part 1: The construction of fluorine substituted chiral tertiary carbon. Tetrahedron: Asymmetry, 9(11), pp.1979-1987.
Ito, H., Saito, A., Kakuuchi, A. and Taguchi, T., 1999. Synthesis of 2-fluoro analog of 6-aminonorbornane-2,6-dicarboxylic acid: A conformationally rigid glutamic acid derivative. Tetrahedron, 55(44), pp.12741-12750.
Khabashesku, V.N., Kudin, K.N. and Margrave, J.L., 2001. Density functional theoretical studies of [2+2] cycloaddition of simple transient silenes and germenes to ethylene, formaldehyde, and thioformaldehyde, and vibrational analysis of spectra of reactants and cyclic products. Russian Chemical Bulletin, 50(1), pp.20-28.
Kohn, W. and Sham, L.J., 1965. Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A), p.A1133.
Lautens, M. and Edwards, L.G., 1989. Stereoselectivity in the homo Diels-Alder reaction. Tetrahedron Letters, 30(49), pp.6813-6816.
Lee, C., Yang, W. and Parr, R.G., 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), pp.785-789.
Legault, C., 2009, CYLview 1.0. Université de Sherbrooke, Sherbrooke. Lemal, D.M., 2017. Pathways for concerted [2+2] cycloaddition to cumulenes. The Journal of Organic Chemistry, 82(24), pp.13012-13019.
Leroy, J., Molines, H. and Wakselman, C., 1987. Facile synthesis of ethyl 3,3-difluoroacrylate from dibromodifluoromethane and Diels-Alder cycloaddition with furan. The Journal of Organic Chemistry, 52(2), pp.290-292.
Levandowski, B.J., Hamlin, T.A., Helgeson, R.C., Bickelhaupt, F.M. and Houk, K., 2018. Origins of the endo and exo selectivities in cyclopropenone, iminocyclopropene, and triafulvene Diels-Alder cycloadditions. The Journal of Organic Chemistry, 83(6), pp.3164-3170.
Liu, J., Niwayama, S., You, Y. and Houk, K.N., 1998. Theoretical prediction and experimental tests of conformational switches in transition states of Diels-Alder and 1,3-dipolar cycloadditions to enol ethers. The Journal of Organic Chemistry, 63(4), pp.1064-1073.
Lozynskyi, A., Zimenkovsky, B., Karkhut, A., Polovkovych, S., Gzella, A.K. and Lesyk, R., 2016. Application of the 2(5H)furanone motif in the synthesis of new thiopyrano[2,3-d]thiazoles via the hetero-Diels-Alder reaction and related tandem processes. Tetrahedron Letters, 57(30), pp.3318-3321.
McFarland, M., Albritton, D.L., Fehsenfeld, F.C., Ferguson, E.E. and Schmeltekopf, A.L., 1974. Energy dependence and branching ratio of the N2+ + O reaction. Journal of Geophysical Research (1896-1977), 79(19), pp.2925-2926.
Nickon, A., Kwasnik, H.R., Mathew, C.T., Swartz, T.D., Williams, R.O. and DiGiorgio, J.B., 1978. Synthesis and structure proof of C-2 and C-4 monofunctionalized brexanes and brendanes. The Journal of Organic Chemistry, 43(20), pp.3904-3916.
Nicolaou, K.C., Snyder, S.A., Montagnon, T. and Vassilikogiannakis, G., 2002. The Diels-Alder reaction in total synthesis. Angewandte Chemie International Edition, 41(10), pp.1668-1698.
Parr, R.G. and Pearson, R.G., 1983. Absolute hardness: Companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105(26), pp.7512-7516.
Parr, R.G. and Weitao, Y., 1989. Density-Functional Theory of Atoms and Molecules. Oxford University Press, Oxford.
Parr, R.G. and Weitao, Y., 1994. Density-Functional Theory of Atoms and Molecules. Oxford University Press, Oxford. Parr, R.G., Szentpály, L.V. and Liu, S., 1999. Electrophilicity index. Journal of the American Chemical Society, 121(9), pp.1922-1924.
Pavelyev, R.S., Vafina, R.M., Lodochnikova, O.A., Galiullina, A.S., Romanova, E.I., Balakin, K.V. and Shtyrlin, Y.G., 2016. Stereochemistry of hexachlorocyclopentadiene [4+2]-cycloaddition to 2-substituted 4,7-dihydro1,3-dioxepins. Tetrahedron Letters, 57(35), pp.3902-3907.
Rivero, U., Meuwly, M. and Willitsch, S., 2017a. A computational study of the Diels-Alder reactions between 2,3-dibromo-1,3-butadiene and maleic anhydride. Chemical Physics Letters, 683, pp.598-605.
Rivero, U., Meuwly, M. and Willitsch, S., 2017b. A computational study of the Diels-Alder reactions between 2, 3-dibromo-1, 3-butadiene and maleic anhydride. Chemical Physics Letters, 683, pp.598-605.
Rulíšek, L., Šebek, P., Havlas, Z., Hrabal, R., Čapek, P. and Svatoš, A., 2005. An experimental and theoretical study of stereoselectivity of Furan-Maleic anhydride and Furan-Maleimide Diels-Alder reactions. The Journal of Organic Chemistry, 70(16), pp.6295-6302.
Silva, M.A.A. and Goodman, J.M., 2002. Nitrone cyclisations: The development of a semi-quantitative model from ab initio calculations. Tetrahedron, 58(19), pp.3667-3671.
Szalai, M.L., McGrath, D.V., Wheeler, D.R., Zifer, T. and McElhanon, J.R., 2007. Dendrimers based on thermally reversible Furan-Maleimide Diels-Alder adducts. Macromolecules, 40(4), pp.818-823.
Teixeira, F., Rodríguez-Borges, J.E., Melo, A. and Cordeiro, M.N.D., 2009. Stereoselectivity of the aza-Diels-Alder reaction between cyclopentadiene and protonated phenylethylimine derived from glyoxylates. A density functional theory study. Chemical Physics Letters, 477(1), pp.60-64.
Woodward, R.B. and Katz, T.J., 1959. The mechanism of the Diels-Alder reaction. Tetrahedron, 5(1), pp.70-89.
Yuan, L. and Yu, H.T., 2014. Cascade cyclization of 1-(2-yl-3-phenylprop-2- enyl)-6-oxo-1,6-dihydropyridine-2-carbonitrile radical: Mechanistic insights from DFT study. Computational and Theoretical Chemistry, 1044, pp.1-9.
Copyright (c) 2019 Haydar A. Mohammad-Salim, Hassan H. Abdallah
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who choose to publish their work with Aro agree to the following terms:
-
Authors retain the copyright to their work and grant the journal the right of first publication. The work is simultaneously licensed under a Creative Commons Attribution License [CC BY-NC-SA 4.0]. This license allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors have the freedom to enter into separate agreements for the non-exclusive distribution of the journal's published version of the work. This includes options such as posting it to an institutional repository or publishing it in a book, as long as proper acknowledgement is given to its initial publication in this journal.
-
Authors are encouraged to share and post their work online, including in institutional repositories or on their personal websites, both prior to and during the submission process. This practice can lead to productive exchanges and increase the visibility and citation of the published work.
By agreeing to these terms, authors acknowledge the importance of open access and the benefits it brings to the scholarly community.