Investigating and Studying the Modifications of Nano and Micro-sized Amorphous Materials Under the Influence of a High Energy Radiation

Keywords: Glass, Morphology changes, Nanoring, Quasi melting, Transmission electron microscopy

Abstract

This research explored the behavior of glass when bombarded by high-energy radiation, especially electron beams inside transmission electron microscopy (TEM). Six types of glasses are investigated under e-beam. The work is conducted using three types of TEMs of energies of 120, 200, and 300 keV. The findings show that these microscopies have a significant impact on the glass, as various observations were documented. Using a wide electron beam, morphology changes combined with bubble formation are observed in the glass. These changes are rounding and smoothening of glass edges and surfaces. In addition, the findings show that there is no material loss due to irradiation as confirmed by the energy dispersive X-ray spectroscopy. The results also show that high silica glass is very sensitive, while high boron glass is found to be less sensitive to irradiation. Using a smaller size electron beam, on the other hand, resulted in the fabrication of a nanoring/nanocrater in glass. The possible applications of this research can be in the protection and packaging of three-dimensional electronic equipment and nanoscale pattern formation through roughening of the external glass contour through phase separation and the opposite through local changing of a part of the glass through the pseudo-melting and the stability of loaded and un-loaded glasses to the irradiation. Furthermore, by generating a nanoring or a nanocrater through e-beam, the lithography process is successfully performed, as the effect of the electron beam is solely at the irradiation region, while the regions outside the e-beam remain unaffected

Downloads

Download data is not yet available.

Author Biography

Mohammed F. Sabri, Department of Physics, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region - F.R. Iraq

Mohammed M. Sabri is an Assistant Professor at the Department of Physics, Faculty of Science and Health, Koya University. He got the B.Sc.degree in Materials Science from Department of Materials Science, School of Applied Sciences, University of Technology/Baghdad in 2001. He got the M.Sc. degree in Applied Physics from Department of Applied Physics, School of Applied Sciences, University of Technology/Baghdad in 2004 and the Ph.D. degree in Nano Materials from Department of Materials Science and Engineering, University of Sheffield, England, United Kingdom. His
research interests are in materials investigations, nano precipitation, glass and amorphous materials and electron microscopy. Dr. Mohammed is a member of NanoLab at Department of Materials Science and Engineering,
University of Sheffield, Sheffield, England, United Kingdom.

References

Abo Hussein, E.M., 2023. The impact of electron beam irradiation on some novel borate glasses doped V2O5; Optical, physical and spectral investigation. Inorganic Chemistry Communications, 147, pp.110232. DOI: https://doi.org/10.1016/j.inoche.2022.110232

Ahn, J.H., Eom, J.Y., Kim, J.H., Kim, H.W., Lee, B.C., and Kim, S.S., 2015. Synthesis of TiO2 nanoparticles induced by electron beam irradiation and their electrochemical performance as anode materials for Li-ion batteries. Journal of Electrochemical Science and Technology, 6(3), pp.75-80. DOI: https://doi.org/10.33961/JECST.2015.6.3.75

Ajayan, P.M., and Ijima, S., 1992. Electron irradiation-induced dynamical fluctuations in amorphous structures. Journal of Non-Crystalline Solids, 150, pp.423-428. DOI: https://doi.org/10.1016/0022-3093(92)90165-G

Ajayan, P.M., and Marks, L.D., 1989. Experimental evidence for quasi melting in small particles. Physical Review Letters, 63(3), pp.279-282. DOI: https://doi.org/10.1103/PhysRevLett.63.279

Bruns, S., Minnert, C., Petho, L., Michler, J., and Durst, K., 2023. Room temperature viscous flow of amorphous silica induced by electron beam irradiation. Advanced Science, 10, pp.2205237. DOI: https://doi.org/10.1002/advs.202205237

Butler, E.P., 1979. In situ experiments in the transmission electron microscope. Reports on Progress in Physics,42, pp.834-889. DOI: https://doi.org/10.1088/0034-4885/42/5/002

Bysakh, S., Shimojo, M., Mitsuishi, K., and Furuya, K., 2004. Mechanisms of nano-hole drilling dye to nano-probe intense electron beam irradiation on stainless steel. Journal of Vacuum Science and Technology B, 22(6), pp.2620-2627. DOI: https://doi.org/10.1116/1.1811626

Chen, L.T., Ren, X.T., Mao, Y.N., Mao, J.J., Zhang, X.Y., Wang, T.T., Sun, M.L., Wang, T.S., Smedskjaer, M.M., and Peng, H.B., 2021. Radiation effects on structure and mechanical properties of borosilicate glasses. Journal of Nuclear Materials, 552, pp.153025. DOI: https://doi.org/10.1016/j.jnucmat.2021.153025

Chen, X.Y., Zhang, S.G., Xia, M.X., and Li, J.G., 2015. Phase separation and crystallization induced by electron irradiation in nanoscale Fe56.5Mn11Cr8.5Ni4Si10C10metallic glass. Acta Metallurgica Sinica, 28, pp.1332-1335. DOI: https://doi.org/10.1007/s40195-015-0330-9

Dapor, M., 2013. Electron-beam Interactions with Solids. Vol. 186. Springer, Berlin, Heidelberg, pp.1-110.

DeNatale, J.F., Howitt, D.G., and Arnold, G.W., 1986. Radiation damage in Silicate glass. Radiation Effects, 98, pp.63-70. DOI: https://doi.org/10.1080/00337578608206098

Duan, B.H., Chen, L., Lv, P., Du, X., Zhang, L.M., and Wang, T.S., 2018. In situ TEM study on electron irradiation effect in SiO2-Na2O-B2O3 glasses. International Journal of Applied Glass Science, 10(2), pp.220-227. DOI: https://doi.org/10.1111/ijag.12975

Egerton, R.F., Li, P., and Malac, M., 2004. Radiation damage in the TEM and SEM. Micron, 35, pp.399-409. DOI: https://doi.org/10.1016/j.micron.2004.02.003

Ehrt, D., and Vogel, W., 1992. Radiation effects in glasses. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 65, pp.1-8. DOI: https://doi.org/10.1016/0168-583X(92)95006-D

Furuya, K., 2008. Nanofabrication by advanced electron microscopy using intense and focused beam. Science and Technology of Advanced Materials,9, pp.014110. DOI: https://doi.org/10.1088/1468-6996/9/1/014110

Gedeon, O., Jurek, K., and Drbohlav, I., 2007. Changes in surface morphology of silicate glass induced by fast electron irradiation. Journal of Non-Crystalline Solids, 353, pp.1946-1950. DOI: https://doi.org/10.1016/j.jnoncrysol.2007.01.058

Gedeon, O., Jurek, K., and Hulinsky, V., 1999. Fast migration of alkali ions in glass irradiated by electrons. Journal of Non-Crystalline Solids, 246, pp.1-8. DOI: https://doi.org/10.1016/S0022-3093(99)00083-6

Guigo, N., and Sbirrazzuoli, N., 2018. Thermal analysis of biobased polymers and composites. In: Handbook of Thermal Analysis and Calorimetry. Vol. 6. Elsevier, Netherlands, pp.399-429. DOI: https://doi.org/10.1016/B978-0-444-64062-8.00002-4

Hobbs, L.W., 1987. Electron‐beam sensitivity in inorganic specimens. Ultramicroscopy, 23, pp.339‐344.Hofmann, M., Weigel, C., Strehle, S., and Holz, M., 2023. DOI: https://doi.org/10.1016/0304-3991(87)90244-0

A Paradigm Change: Focused Electron Beam Nanostructuring of Glass. Research Square, North Carolina.Jbara, O., Cazaux, J., and Trebbia, P., 1995.

Sodium diffusion in glasses during electron irradiation. Journal of Applied Physics, 78, pp.868-875. DOI: https://doi.org/10.1063/1.360277

Jencic, I., Bench, M.W., Robertson, I.M., and Kirk, M.A., 1995. Electron‐beam‐induced crystallization of isolated amorphous regions in Si, Ge, GaP, and GaAs. Journal of Applied Physics, 78(2), pp.974-982. DOI: https://doi.org/10.1063/1.360764

Jiang, N., Hembree, G.G., Spence, J.C.H., Qiu, J., Garcia de Abajo, F.J., and Silcox, J., 2003. Nanoring formation by direct-write inorganic electron-beam lithography. Applied Physics Letters, 83(3), pp.551-553. DOI: https://doi.org/10.1063/1.1592895

Jiang, N., Qiu, J., and Silcox, J., 2004. Effects of high-energy electron irradiation on heavy-metal fluoride glass. Journal of Applied Physics, 96(11), pp.6230-6233. DOI: https://doi.org/10.1063/1.1814812

Jiang, N., Qiu, J., and Spence, J.C.H., 2005. Precipitation of Ge nanoparticles from GeO2 glasses in transmission electron microscope. Applied Physics Letter, 86, pp.143112-142113. DOI: https://doi.org/10.1063/1.1898423

Jiang, N., Qiu, J., Ellison, A., and Silcox, J., 2003. Fundamentals of high-energy electron-irradiation-induced modifications of silicate glasses. Physical Review B, 68(6), pp.064207. DOI: https://doi.org/10.1103/PhysRevB.68.064207

Jiang, Y.Z., Zhang, J.D., Wang, Z.J., Sun, Z., Deng, W.M., Zhao, Y.J., Lv, P., Zhang, L.M., Wang, T.S., and Chen, L., 2023. Composition dependence of element depth profiles in electron irradiated borosilicate glasses. Journal of Non-Crystalline Solids, 600, pp.121995. DOI: https://doi.org/10.1016/j.jnoncrysol.2022.121995

Klimenkov, M., Matz, W., Nepjiko, S.A., and Lehmann, M., 2001. Crystallization of Ge nanoclusters in SiO2 caused by electron irradiation in TEM. Nuclear Instruments and Methods in Physics Research B, 179, pp.209-214. DOI: https://doi.org/10.1016/S0168-583X(01)00452-9

Leay, L., and Harrison, M.T., 2019. Bubble formation in nuclear glasses: A review. Journal of Materials Research, 34, pp.905-920. DOI: https://doi.org/10.1557/jmr.2019.29

Li, S., Zhong, J., Cui, Z., Zhang, Q., Sun, M., and Wang, Y., 2019. Electron beam-induced morphology transformations of Fe2TiO5 nanoparticles. Journal of Materials Chemistry C, 7, pp.13829-13838. DOI: https://doi.org/10.1039/C9TC04561A

Liu, M., Xu, L., and Lin, X., 1994. Heating effect of electron beam bombardment. The Journal of Scanning Microscopies, 16(1), pp.1-5. DOI: https://doi.org/10.1002/sca.4950160102

Liu, Z.Q., Hashimoto, H., Song, M., Mitsuishi, K., and Furuya, K., 2004. Phase transformation from Fe4N to Fe3O4 due to electron irradiation in the transmission electron microscope. Acta Materialia, 52, pp.1669-1674. DOI: https://doi.org/10.1016/j.actamat.2003.12.011

Mackovic, M., Niekiel, F., Wondraczek, L., and Spiecker., 2014. Direct observation of electron-beam-induced densification and hardening of silica nanoballs by in situ transmission electron microscopy and finite element method simulations. Acta Materialia, 79, pp.363-373. DOI: https://doi.org/10.1016/j.actamat.2014.05.046

Marks, L.D., Ajayan, P.M., and Dundurs, J., 1986. Quasi-melting of small particles. Ultramicroscopy, 20, pp.77-82. DOI: https://doi.org/10.1016/0304-3991(86)90172-5

Martinez, I.G.G., Bachmatiuk, A., Bezugly, V., Kunstmann, J., Gemming, T., Liu, Z., Guniberti, G., and Rummeli, M.H., 2016. Electron-beam induced synthesis of nanostructures: A review. Nanoscale, 8, pp.11340-11362. DOI: https://doi.org/10.1039/C6NR01941B

Mauro, J.C., Ellison, A.J., and Pye, L.D., 2013. Glass: The nanotechnology connection. International Journal of Applied Glass Science, 4(2), pp.64-75. DOI: https://doi.org/10.1111/ijag.12030

Mayr, S.G., Ashkenazy, Y., Albe, K., and Averback, R.S., 2003. Mechanisms of radiation-induced viscous flow: Role of point defects. Physical Review Letters,90, pp.055505. DOI: https://doi.org/10.1103/PhysRevLett.90.055505

Mohammad, A., Al-Ahmari, A.M., AlFaify, A., and Mohammed, M.K., 2016. Effect of melt parameters on density and surface roughness in electron beam melting of gamma titanium aluminide alloy. Rapid Prototyping Journal, 23(3), pp.474-485. DOI: https://doi.org/10.1108/RPJ-12-2014-0187

Musterman, E.J., Dierolf, V., and Jain, H., 2022. Electron beam heating as a tool for fabricating lattice engineered crystals in glass. Optical Materials Express, 12(8), pp.3248-3261. DOI: https://doi.org/10.1364/OME.462724

Ollier, N., Rizza, G., Boizot, B., and Petite, G., 2006. Effects of temperature and flux on oxygen bubble formation in Li borosilicate glass under electron beam irradiation. Journal of Applied Physics, 99, pp.073511. DOI: https://doi.org/10.1063/1.2189026

Qiu, J., Shirai, M., Nakaya, T., Si, J., Jiang, X., Zhu, C., and Hirao, K., 2002. Space-selective precipitation of metal nanoparticles inside glasses. Applied Physics Letters, 81(16), pp.3040-3042. DOI: https://doi.org/10.1063/1.1509095

Rao, N.R., Rao, T.V., Rao, B.S., and Shanmukhi, P.S.V., 2021. Electron beam irradiation modification on chemical, thermal and crystalline properties of poly (L-lactic acid). Indian Journal of Pure and Applied Physics, 59, pp.715-722.

Rauf, I.A., 2008. Direct observation of the birth of a nanocrystalline nucleus in an amorphous matrix, Applied Physics Letters, 93, pp.143101-143103. DOI: https://doi.org/10.1063/1.2998256

Shelby, J.E., 1980. Effect of radiation on the physical properties of borosilicate glasses. Journal of Applied Physics, 51, pp.2561-2565. DOI: https://doi.org/10.1063/1.327980

Shelby, J.E., 2005. Introduction to Glass Science and Technology. 2nd ed. New York State College of Ceramics at Alfred University School of Engineering, Alfred, NY, USA.

Shen, Y., Zhao, X., Gong, R., Ngo, E., Maurice, J.L., Cabarrocas, P.R., and Chen, W., 2022. Influence of the electron beam and the choice of heating membrane on the evolution of Si nanowires’ morphology in in situ TEM. Materials, 15, pp.5244. DOI: https://doi.org/10.3390/ma15155244

Sidorov, A.I., Kirpichenko, D.A., Yurina, U.V., and Podsvirov, O.A., 2021. Structural changes in silica glass under the action of electron beam irradiation: The effect of irradiation dose. Glass Physics and Chemistry, 47(2), pp.118-125. DOI: https://doi.org/10.1134/S1087659621020140

Sigle, W., 2005. Analytical transmission electron microscopy. Annual Review of Materials Research,35, pp.239-314. DOI: https://doi.org/10.1146/annurev.matsci.35.102303.091623

Singh, S.P., and Karmakar, B., 2011. In situ electron beam irradiated rapid growth of bismuth nanoparticles in bismuth-based glass dielectrics at room temperature. Journal of Nanoparticle Research,13, pp.3599-3606. DOI: https://doi.org/10.1007/s11051-011-0468-y

Skuja, L., Hirano, M., Hosono, H., and Kajihara, K., 2005. Defects in oxide glasses. Physica Status Solidi, 2(1), pp.15-24. DOI: https://doi.org/10.1002/pssc.200460102

Sun, K., Wang, L.M., Ewing, R.C., and Weber, W.J., 2004. Electron irradiation induced phase separation in a sodium borosilicate glass. Nuclear Instruments and Methods in Physics Research B, 218, pp.368-374. DOI: https://doi.org/10.1016/j.nimb.2003.12.022

Ugurlu, O., Haus, J., Gunawan, A.A., Thomas, M.G., Maheshwari, S., Tsapatsis, M., and Mkhoyan, K.A., 2011. Radiolysis to Knock-on damage transition in zeolites under electron beam irradiation. Physical Review B,83, pp.113408. DOI: https://doi.org/10.1103/PhysRevB.83.113408

We, X., Varshneya, A.K., and Dieckmann, R., 2011. Sodium tracer diffusion in glasses of the type (Na2O)0.2(B2O3)y(SiO2)0.8-y. Journal of Non-Crystalline Solids, 357, pp.3661-3669. DOI: https://doi.org/10.1016/j.jnoncrysol.2011.06.026

Weber, W.J., Ewing, R.C., Angell, C.A., Arnold, G.W., Cormack, A.N., Delaye, J.M., Griscom, D.L., Hobbs, L.W., Navrotsky, A., Price, D.L., Stoneham, A.M., and Weinberg, M.C., 1997. Radiation effects in glasses used for immobilization of high-level waste and plutonium disposition. Journal of Materials Research,12, pp.1946-1978. DOI: https://doi.org/10.1557/JMR.1997.0266

Yoshida, N., and Tanaka, K., 1997. Ag migration in Ag-As-S glasses induced by electron-beam irradiation. Journal of Non-Crystalline Solids, 210, pp.119-129. DOI: https://doi.org/10.1016/S0022-3093(96)00608-4

Zheng, K., Wang, C., Cheng, Y.Q., Yue, Y., Han, X., Zhang, Z., Shan, Z., Mao, S.X., Ye, M., Yin, Y., and Ma, E., 2010. Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nature Communications, 1(24), pp.1-8. DOI: https://doi.org/10.1038/ncomms1021

Published
2023-09-24
How to Cite
Sabri, M. F. (2023) “Investigating and Studying the Modifications of Nano and Micro-sized Amorphous Materials Under the Influence of a High Energy Radiation”, ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 11(2), pp. 73-82. doi: 10.14500/aro.11290.