Investigating and Studying the Modifications of Nano and Micro-sized Amorphous Materials Under the Influence of a High Energy Radiation

Keywords: Glass, Morphology changes, Nanoring, Quasi melting, Transmission electron microscopy


This research explored the behavior of glass when bombarded by high-energy radiation, especially electron beams inside transmission electron microscopy (TEM). Six types of glasses are investigated under e-beam. The work is conducted using three types of TEMs of energies of 120, 200, and 300 keV. The findings show that these microscopies have a significant impact on the glass, as various observations were documented. Using a wide electron beam, morphology changes combined with bubble formation are observed in the glass. These changes are rounding and smoothening of glass edges and surfaces. In addition, the findings show that there is no material loss due to irradiation as confirmed by the energy dispersive X-ray spectroscopy. The results also show that high silica glass is very sensitive, while high boron glass is found to be less sensitive to irradiation. Using a smaller size electron beam, on the other hand, resulted in the fabrication of a nanoring/nanocrater in glass. The possible applications of this research can be in the protection and packaging of three-dimensional electronic equipment and nanoscale pattern formation through roughening of the external glass contour through phase separation and the opposite through local changing of a part of the glass through the pseudo-melting and the stability of loaded and un-loaded glasses to the irradiation. Furthermore, by generating a nanoring or a nanocrater through e-beam, the lithography process is successfully performed, as the effect of the electron beam is solely at the irradiation region, while the regions outside the e-beam remain unaffected


Download data is not yet available.

Author Biography

Mohammed F. Sabri, Department of Physics, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region - F.R. Iraq

Mohammed M. Sabri is an Assistant Professor at the Department of Physics, Faculty of Science and Health, Koya University. He got the in Materials Science from Department of Materials Science, School of Applied Sciences, University of Technology/Baghdad in 2001. He got the M.Sc. degree in Applied Physics from Department of Applied Physics, School of Applied Sciences, University of Technology/Baghdad in 2004 and the Ph.D. degree in Nano Materials from Department of Materials Science and Engineering, University of Sheffield, England, United Kingdom. His
research interests are in materials investigations, nano precipitation, glass and amorphous materials and electron microscopy. Dr. Mohammed is a member of NanoLab at Department of Materials Science and Engineering,
University of Sheffield, Sheffield, England, United Kingdom.


Abo Hussein, E.M., 2023. The impact of electron beam irradiation on some novel borate glasses doped V2O5; Optical, physical and spectral investigation. Inorganic Chemistry Communications, 147, pp.110232. DOI:

Ahn, J.H., Eom, J.Y., Kim, J.H., Kim, H.W., Lee, B.C., and Kim, S.S., 2015. Synthesis of TiO2 nanoparticles induced by electron beam irradiation and their electrochemical performance as anode materials for Li-ion batteries. Journal of Electrochemical Science and Technology, 6(3), pp.75-80. DOI:

Ajayan, P.M., and Ijima, S., 1992. Electron irradiation-induced dynamical fluctuations in amorphous structures. Journal of Non-Crystalline Solids, 150, pp.423-428. DOI:

Ajayan, P.M., and Marks, L.D., 1989. Experimental evidence for quasi melting in small particles. Physical Review Letters, 63(3), pp.279-282. DOI:

Bruns, S., Minnert, C., Petho, L., Michler, J., and Durst, K., 2023. Room temperature viscous flow of amorphous silica induced by electron beam irradiation. Advanced Science, 10, pp.2205237. DOI:

Butler, E.P., 1979. In situ experiments in the transmission electron microscope. Reports on Progress in Physics,42, pp.834-889. DOI:

Bysakh, S., Shimojo, M., Mitsuishi, K., and Furuya, K., 2004. Mechanisms of nano-hole drilling dye to nano-probe intense electron beam irradiation on stainless steel. Journal of Vacuum Science and Technology B, 22(6), pp.2620-2627. DOI:

Chen, L.T., Ren, X.T., Mao, Y.N., Mao, J.J., Zhang, X.Y., Wang, T.T., Sun, M.L., Wang, T.S., Smedskjaer, M.M., and Peng, H.B., 2021. Radiation effects on structure and mechanical properties of borosilicate glasses. Journal of Nuclear Materials, 552, pp.153025. DOI:

Chen, X.Y., Zhang, S.G., Xia, M.X., and Li, J.G., 2015. Phase separation and crystallization induced by electron irradiation in nanoscale Fe56.5Mn11Cr8.5Ni4Si10C10metallic glass. Acta Metallurgica Sinica, 28, pp.1332-1335. DOI:

Dapor, M., 2013. Electron-beam Interactions with Solids. Vol. 186. Springer, Berlin, Heidelberg, pp.1-110.

DeNatale, J.F., Howitt, D.G., and Arnold, G.W., 1986. Radiation damage in Silicate glass. Radiation Effects, 98, pp.63-70. DOI:

Duan, B.H., Chen, L., Lv, P., Du, X., Zhang, L.M., and Wang, T.S., 2018. In situ TEM study on electron irradiation effect in SiO2-Na2O-B2O3 glasses. International Journal of Applied Glass Science, 10(2), pp.220-227. DOI:

Egerton, R.F., Li, P., and Malac, M., 2004. Radiation damage in the TEM and SEM. Micron, 35, pp.399-409. DOI:

Ehrt, D., and Vogel, W., 1992. Radiation effects in glasses. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 65, pp.1-8. DOI:

Furuya, K., 2008. Nanofabrication by advanced electron microscopy using intense and focused beam. Science and Technology of Advanced Materials,9, pp.014110. DOI:

Gedeon, O., Jurek, K., and Drbohlav, I., 2007. Changes in surface morphology of silicate glass induced by fast electron irradiation. Journal of Non-Crystalline Solids, 353, pp.1946-1950. DOI:

Gedeon, O., Jurek, K., and Hulinsky, V., 1999. Fast migration of alkali ions in glass irradiated by electrons. Journal of Non-Crystalline Solids, 246, pp.1-8. DOI:

Guigo, N., and Sbirrazzuoli, N., 2018. Thermal analysis of biobased polymers and composites. In: Handbook of Thermal Analysis and Calorimetry. Vol. 6. Elsevier, Netherlands, pp.399-429. DOI:

Hobbs, L.W., 1987. Electron‐beam sensitivity in inorganic specimens. Ultramicroscopy, 23, pp.339‐344.Hofmann, M., Weigel, C., Strehle, S., and Holz, M., 2023. DOI:

A Paradigm Change: Focused Electron Beam Nanostructuring of Glass. Research Square, North Carolina.Jbara, O., Cazaux, J., and Trebbia, P., 1995.

Sodium diffusion in glasses during electron irradiation. Journal of Applied Physics, 78, pp.868-875. DOI:

Jencic, I., Bench, M.W., Robertson, I.M., and Kirk, M.A., 1995. Electron‐beam‐induced crystallization of isolated amorphous regions in Si, Ge, GaP, and GaAs. Journal of Applied Physics, 78(2), pp.974-982. DOI:

Jiang, N., Hembree, G.G., Spence, J.C.H., Qiu, J., Garcia de Abajo, F.J., and Silcox, J., 2003. Nanoring formation by direct-write inorganic electron-beam lithography. Applied Physics Letters, 83(3), pp.551-553. DOI:

Jiang, N., Qiu, J., and Silcox, J., 2004. Effects of high-energy electron irradiation on heavy-metal fluoride glass. Journal of Applied Physics, 96(11), pp.6230-6233. DOI:

Jiang, N., Qiu, J., and Spence, J.C.H., 2005. Precipitation of Ge nanoparticles from GeO2 glasses in transmission electron microscope. Applied Physics Letter, 86, pp.143112-142113. DOI:

Jiang, N., Qiu, J., Ellison, A., and Silcox, J., 2003. Fundamentals of high-energy electron-irradiation-induced modifications of silicate glasses. Physical Review B, 68(6), pp.064207. DOI:

Jiang, Y.Z., Zhang, J.D., Wang, Z.J., Sun, Z., Deng, W.M., Zhao, Y.J., Lv, P., Zhang, L.M., Wang, T.S., and Chen, L., 2023. Composition dependence of element depth profiles in electron irradiated borosilicate glasses. Journal of Non-Crystalline Solids, 600, pp.121995. DOI:

Klimenkov, M., Matz, W., Nepjiko, S.A., and Lehmann, M., 2001. Crystallization of Ge nanoclusters in SiO2 caused by electron irradiation in TEM. Nuclear Instruments and Methods in Physics Research B, 179, pp.209-214. DOI:

Leay, L., and Harrison, M.T., 2019. Bubble formation in nuclear glasses: A review. Journal of Materials Research, 34, pp.905-920. DOI:

Li, S., Zhong, J., Cui, Z., Zhang, Q., Sun, M., and Wang, Y., 2019. Electron beam-induced morphology transformations of Fe2TiO5 nanoparticles. Journal of Materials Chemistry C, 7, pp.13829-13838. DOI:

Liu, M., Xu, L., and Lin, X., 1994. Heating effect of electron beam bombardment. The Journal of Scanning Microscopies, 16(1), pp.1-5. DOI:

Liu, Z.Q., Hashimoto, H., Song, M., Mitsuishi, K., and Furuya, K., 2004. Phase transformation from Fe4N to Fe3O4 due to electron irradiation in the transmission electron microscope. Acta Materialia, 52, pp.1669-1674. DOI:

Mackovic, M., Niekiel, F., Wondraczek, L., and Spiecker., 2014. Direct observation of electron-beam-induced densification and hardening of silica nanoballs by in situ transmission electron microscopy and finite element method simulations. Acta Materialia, 79, pp.363-373. DOI:

Marks, L.D., Ajayan, P.M., and Dundurs, J., 1986. Quasi-melting of small particles. Ultramicroscopy, 20, pp.77-82. DOI:

Martinez, I.G.G., Bachmatiuk, A., Bezugly, V., Kunstmann, J., Gemming, T., Liu, Z., Guniberti, G., and Rummeli, M.H., 2016. Electron-beam induced synthesis of nanostructures: A review. Nanoscale, 8, pp.11340-11362. DOI:

Mauro, J.C., Ellison, A.J., and Pye, L.D., 2013. Glass: The nanotechnology connection. International Journal of Applied Glass Science, 4(2), pp.64-75. DOI:

Mayr, S.G., Ashkenazy, Y., Albe, K., and Averback, R.S., 2003. Mechanisms of radiation-induced viscous flow: Role of point defects. Physical Review Letters,90, pp.055505. DOI:

Mohammad, A., Al-Ahmari, A.M., AlFaify, A., and Mohammed, M.K., 2016. Effect of melt parameters on density and surface roughness in electron beam melting of gamma titanium aluminide alloy. Rapid Prototyping Journal, 23(3), pp.474-485. DOI:

Musterman, E.J., Dierolf, V., and Jain, H., 2022. Electron beam heating as a tool for fabricating lattice engineered crystals in glass. Optical Materials Express, 12(8), pp.3248-3261. DOI:

Ollier, N., Rizza, G., Boizot, B., and Petite, G., 2006. Effects of temperature and flux on oxygen bubble formation in Li borosilicate glass under electron beam irradiation. Journal of Applied Physics, 99, pp.073511. DOI:

Qiu, J., Shirai, M., Nakaya, T., Si, J., Jiang, X., Zhu, C., and Hirao, K., 2002. Space-selective precipitation of metal nanoparticles inside glasses. Applied Physics Letters, 81(16), pp.3040-3042. DOI:

Rao, N.R., Rao, T.V., Rao, B.S., and Shanmukhi, P.S.V., 2021. Electron beam irradiation modification on chemical, thermal and crystalline properties of poly (L-lactic acid). Indian Journal of Pure and Applied Physics, 59, pp.715-722.

Rauf, I.A., 2008. Direct observation of the birth of a nanocrystalline nucleus in an amorphous matrix, Applied Physics Letters, 93, pp.143101-143103. DOI:

Shelby, J.E., 1980. Effect of radiation on the physical properties of borosilicate glasses. Journal of Applied Physics, 51, pp.2561-2565. DOI:

Shelby, J.E., 2005. Introduction to Glass Science and Technology. 2nd ed. New York State College of Ceramics at Alfred University School of Engineering, Alfred, NY, USA.

Shen, Y., Zhao, X., Gong, R., Ngo, E., Maurice, J.L., Cabarrocas, P.R., and Chen, W., 2022. Influence of the electron beam and the choice of heating membrane on the evolution of Si nanowires’ morphology in in situ TEM. Materials, 15, pp.5244. DOI:

Sidorov, A.I., Kirpichenko, D.A., Yurina, U.V., and Podsvirov, O.A., 2021. Structural changes in silica glass under the action of electron beam irradiation: The effect of irradiation dose. Glass Physics and Chemistry, 47(2), pp.118-125. DOI:

Sigle, W., 2005. Analytical transmission electron microscopy. Annual Review of Materials Research,35, pp.239-314. DOI:

Singh, S.P., and Karmakar, B., 2011. In situ electron beam irradiated rapid growth of bismuth nanoparticles in bismuth-based glass dielectrics at room temperature. Journal of Nanoparticle Research,13, pp.3599-3606. DOI:

Skuja, L., Hirano, M., Hosono, H., and Kajihara, K., 2005. Defects in oxide glasses. Physica Status Solidi, 2(1), pp.15-24. DOI:

Sun, K., Wang, L.M., Ewing, R.C., and Weber, W.J., 2004. Electron irradiation induced phase separation in a sodium borosilicate glass. Nuclear Instruments and Methods in Physics Research B, 218, pp.368-374. DOI:

Ugurlu, O., Haus, J., Gunawan, A.A., Thomas, M.G., Maheshwari, S., Tsapatsis, M., and Mkhoyan, K.A., 2011. Radiolysis to Knock-on damage transition in zeolites under electron beam irradiation. Physical Review B,83, pp.113408. DOI:

We, X., Varshneya, A.K., and Dieckmann, R., 2011. Sodium tracer diffusion in glasses of the type (Na2O)0.2(B2O3)y(SiO2)0.8-y. Journal of Non-Crystalline Solids, 357, pp.3661-3669. DOI:

Weber, W.J., Ewing, R.C., Angell, C.A., Arnold, G.W., Cormack, A.N., Delaye, J.M., Griscom, D.L., Hobbs, L.W., Navrotsky, A., Price, D.L., Stoneham, A.M., and Weinberg, M.C., 1997. Radiation effects in glasses used for immobilization of high-level waste and plutonium disposition. Journal of Materials Research,12, pp.1946-1978. DOI:

Yoshida, N., and Tanaka, K., 1997. Ag migration in Ag-As-S glasses induced by electron-beam irradiation. Journal of Non-Crystalline Solids, 210, pp.119-129. DOI:

Zheng, K., Wang, C., Cheng, Y.Q., Yue, Y., Han, X., Zhang, Z., Shan, Z., Mao, S.X., Ye, M., Yin, Y., and Ma, E., 2010. Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nature Communications, 1(24), pp.1-8. DOI:

How to Cite
Sabri, M. F. (2023) “Investigating and Studying the Modifications of Nano and Micro-sized Amorphous Materials Under the Influence of a High Energy Radiation”, ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 11(2), pp. 73-82. doi: 10.14500/aro.11290.