Deep Learning for Cardiovascular Disease Detection

A Review Based on Cardiac Magnetic Resonance Imaging Data

Authors

  • Shivan H. Hussein (1) Department of Mathematics, College of Basic Education, University of Duhok, Duhok, Kurdistan Region - F.R., Iraq; (2) Department of Information Technology, Technical College of Informatics-Akre, Akre University for Applied Sciences, Duhok, Kurdistan Region - F.R., Iraq https://orcid.org/0009-0007-7144-7060
  • Najdavan A. Kako Department of Information Technology, Technical College of Duhok, Duhok Polytechnic University, Duhok, Kurdistan Region - F.R., Iraq https://orcid.org/0000-0003-2869-1256

DOI:

https://doi.org/10.14500/aro.11971

Keywords:

Cardiovascular diseases, Convolutional Neural Networks (CNN), Deep learning, Fully convolutional networks, Magnetic resonance imaging

Abstract

Despite improvements, cardiovascular diseases (CVD) remain the most significant killer globally, accounting for around 17.9 million lives annually. Advancement of cardiac imaging modalities has taken place with Magnetic Resonance Imaging (MRI) along with artificial intelligence (AI) for changing scenarios of early diagnosis and management in cardiovascular diseases. This work investigates the role and contribution of deep learning, especially Fully Convolutional Networks (FCNs) and Convolutional Neural Networks (CNNs), toward the improvement of accuracy and automation in cardiac MRI analysis. The integration of AI enables accurate segmentation, efficient clinical workflows, and scalable solutions for resource-limited environments. A review of publicly available datasets underlines challenges in data variability and generalizability and points to the need for standardized models and explainable AI approaches. This work, therefore, underlines the possibility of improved diagnostic efficiency and equity in healthcare delivery using AI-driven methodologies in cardiovascular diagnostics. Future directions will focus on refining model scalability, enhancing dataset diversity, and validating clinical applications to foster robust and adaptable solutions.

Downloads

Download data is not yet available.

Author Biographies

Shivan H. Hussein, (1) Department of Mathematics, College of Basic Education, University of Duhok, Duhok, Kurdistan Region - F.R., Iraq; (2) Department of Information Technology, Technical College of Informatics-Akre, Akre University for Applied Sciences, Duhok, Kurdistan Region - F.R., Iraq

Shivan H. Hassan is a teaching assistant at the Department of Mathematics, College of Basic Education, University of Duhok. He earned a Bachelor's degree in Computer Science from the University of Duhok and is currently a Master's student at Akre University of Applied Sciences, Technical College of Informatics – Akre, Department of Information Technology.

Najdavan A. Kako, Department of Information Technology, Technical College of Duhok, Duhok Polytechnic University, Duhok, Kurdistan Region - F.R., Iraq

Najdavan A. Kako is an Assistant Professor at the Department of Information Technology, Technical College of Duhok, Duhok Polytechnic University. He got the B.Sc. degree in Information Technology and Computer Science, the M.Sc. degree in Computer Engineering, and the Ph.D. degree in Information Technology. His research interests are deep learning, medical imaging, and computer vision.

References

Abualkishik, A.Z., Almajed, R., and Almutairi, S.A., 2022. Early detection of cardiovascular diseases using deep learning feature fusion and MRI image analysis fusion. Practice and Applications, 8(2), pp.16-24.

Agibetov, A., Kammerlander, A., Duca, F., Nitsche, C., Koschutnik, M., Donà, C., Dachs, T.M., Rettl, R., Stria, A., Schrutka, L., Binder, C., Kastner, J., Agis, H., Kain, R., Auer-Grumbach, M., Samwald, M., Hengstenberg, C., Dorffner, G., Mascherbauer, J., and Bonderman, D., 2021. Convolutional neural networks for fully automated diagnosis of cardiac amyloidosis by cardiac magnetic resonance imaging. Journal of Personalized Medicine, 11(12), p.1268.

Ahmadi-Hadad, A., De Rosa, E., Serafino, L.D., and Esposito, G.M., 2024. Artificial intelligence as a tool for diagnosis of cardiac amyloidosis: Asystematic review. Journal of Medical and Biological Engineering, 44, pp.499-513.

Alghamdi, A., Hammad, M., Ugail, H., Abdel-Raheem, A., Muhammad, K., Khalifa, H.S., and Abd El-Latif, A.A., 2024. Detection of myocardial infarction based on novel deep transfer learning methods for urban healthcare in smart cities. Multimedia Tools and Applications, 83(5), pp.14913-14934.

Amal, S., Safarnejad, L., Omiye, J.A., Ghanzouri, I., Cabot, J.H., and Ross, E.G., 2022. Use of multi-modal data and machine learning to improve cardiovascular disease care. Frontiers in Cardiovascular Medicine, 9, p.840262.

Amerini, I., 2021. Deep Learning for Multimedia Forensics. Now Publishers, Boston. Ammar, A., Bouattane, O., and Youssfi, M., 2021. Automatic cardiac cine MRI segmentation and heart disease classification. Computerized Medical Imaging and Graphics, 88, p.101864.

Arshad, S.M., Potter, L.C., Chen, C., Liu, Y., Chandrasekaran, P., Crabtree, C., Tong, M.S., Simonetti, O.P., Han, Y., and Ahmad, R., 2024. Motion-robust free-running volumetric cardiovascular MRI. Magnetic Resonance in Medicine, 92(3), pp.1248-1262.

Baccouch, W., Oueslati, S., Solaiman, B., and Labidi, S., 2023. A comparative study of CNN and U-Net performance for automatic segmentation of medical images: Application to cardiac MRI. Procedia Computer Science, 219(2022), pp.1089-1096.

Baskaran, L., Al’Aref, S.J., Maliakal, G., Lee, B.C., Xu, Z., Choi, J.W., Lee, S.E., Sung, J.M., Lin, F.Y., Dunham, S., Mosadegh, B., Kim, Y.J., Gottlieb, I., Lee, B.K., Chun, E.J., Cademartiri, F., Maffei, E.,...&., Shaw, L.J., 2020. Automatic segmentation of multiple cardiovascular structures from cardiac computed tomography angiography images using deep learning. PLoS One, 15(5), p.e0232573.

Bengio, Y., Babu, M.D., Tamilselvan, S., Tarun, V., and Harivishnu, S.K., 2024. Detection of cardiovascular disease using machine learning and deep learning. Tec Empresarial, 19(1), pp.3248-3262.

Bernard, O., Lalande, A., Zotti, C., Cervenansky, F., Yang, X., and Heng, P.A., 2018. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved? IEEE Transactions on Medical Imaging, 37(11), pp.2514-2525.

Bhan, A., Mangipudi, P., and Goyal, A., 2023. An assessment of machine learning algorithms in diagnosing cardiovascular disease from right ventricle segmentation of cardiac magnetic resonance images. Healthcare Analytics, 3, p.100162.

Campbell-Washburn, A.E., Varghese, J., Nayak, K.S., Ramasawmy, R., and Simonetti, O.P., 2024. Cardiac MRI at low field strengths. Journal of Magnetic Resonance Imaging, 59(2), pp.412-430.

Catapano, F., Moser, L.J., Francone, M., Catalano, C., Vliegenthart, R., Budde, R.P., Salgado, R., Paar, M.H., Pirnat, M.,...&., Alkadhi, H., 2024. Competence of radiologists in cardiac CT and MR imaging in Europe: Insights from the ESCR Registry. European Radiology, 34(9), pp.5666-5677.

Cervantes-Sanchez, F., Cruz-Aceves, I., Hernandez-Aguirre, A., Cervantes-Sanchez, F., and Cervantes-Sanchez, S.E., 2019. Automatic segmentation of coronary arteries in X-ray angiograms using multiscale analysis and artificial neural networks. Applied Sciences (Switzerland), 9(24), p.5507.

Chen, C., Qin, C., Qiu, H., Tarroni, G., Duan, J., Bai, W., and Rueckert, D., 2020. Deep learning for cardiac image segmentation: A review. Frontiers in Cardiovascular Medicine, 7, p.25.

Chibueze, K.I., Didiugwu, A.F., Ezeji, N.G., and Ugwu, N.V., 2024. A CNN based model for heart disease detection. Scientia Africana. 23(3), pp.429-442.

Cundari, G., Galea, N., Mascio, D.D., Gennarini, M., Ventriglia, F., Curti, F., Dodaro, M., Rizzo, G., Catalano, C., Giancotti, A., and Manganaro, L., 2024. The new frontiers of fetal imaging: MRI insights into cardiovascular and thoracic structures. Journal of Clinical Medicine, 13(16), p.4598.

Daudé, P., Ancel, P., Gouny, S.C., Jacquier, A., Kober, F., Dutour, A., Bernard, M., Gaborit, B., and Rapacchi, S., 2022. Deep-learning segmentation of epicardial adipose tissue using four-chamber cardiac magnetic resonance imaging.

Diagnostics (Basel), 12(1), p.126.

Doolub, G., Khurshid, S., Theriault-Lauzier, P., Lapalme, A.N., Tastet, O., So, D., Langlais, E.L., Cobin, D., and Avram, R., 2024. Revolutionising acute cardiac care with artificial intelligence: Opportunities and challenges. Canadian Journal

of Cardiology, 40(10), pp.1813-1827.

El-Rewaidy, H., Fahmy, A.S., Pashakhanloo, F., Cai, X., Kucukseymen, S., Csecs, I., Neisius, U., Haji-Valizadeh, H., Menze, B., and Nezafat, R., 2021.

Multi-domain convolutional neural network (MD-CNN) for radial reconstruction of dynamic cardiac MRI. Magnetic Resonance in Medicine, 85(3), pp.1195-1208.

El-Taraboulsi, J., Cabrera, C.P., Roney, C., and Aung, N., 2023. Deep neural network architectures for cardiac image segmentation. Artificial Intelligence in the Life Sciences, 4, p.100083.

Erdem, K., Yildiz, M.B., Yasin, E.T., and Köklü, M., 2023. Adetailed analysis of detecting heart diseases using artificial intelligence methods. Intelligent Methods in Engineering Sciences, 2, pp.115-124.

Germain, P., Labani, A., Vardazaryan, A., Padoy, N., Roy, C., and El Ghannudi, S., 2024. Segmentation-free estimation of left ventricular ejection fraction using 3D CNN is reliable and improves as multiple cardiac MRI cine orientations are combined. Biomedicines, 12(10), p.2324.

Girum, K.B., Skandarani, Y., Hussain, R., Grayeli, A.B., Créhange, G., and Lalande, A., 2021. Automatic myocardial infarction evaluation from delayed-enhancement cardiac MRI using deep convolutional networks. Lecture Notes in Computer Science, 12592, pp.378-384.

Han, D., 2023. Cardiovascular disease predictive modeling with machine learning feature importance. American Research Journal of Cardiovascular Diseases, 5(1), pp.1-6.

Honi, D.G., and Szathmary, L., 2024. A one-dimensional convolutional neural network-based deep learning approach for predicting cardiovascular diseases. Informatics in Medicine Unlocked, 49, p.101535.

Huang, H., Chen, Z., Huang, Y., Luo, G., Chen, C., and Song, Y., 2024. Automatic Diagnosis of Cardiac Magnetic Resonance Images Based on Semi-Supervised Learning. Elsevier, pp.1-13.

Hussain, N.M., Rehman, A.U., Ben Othman, M.T., Zafar, J., Zafar, H., and Zafar, H., 2022. Accessing artificial intelligence for fetus health status using hybrid deep learning algorithm (AlexNet-SVM) on cardiotocographic data. Sensors, 22(14), p.5103.

Inomata, S., Yoshimura, T., Tang, M., Ichikawa, S., and Sugimori, H., 2023. Estimation of left and right ventricular ejection fractions from cine-MRI using 3D-CNN. Sensors, 23(14), p.6580.

Iqbal, T., Khalid, A., and Ullah, I., 2024. Explaining decisions of a light-weight deep neural network for real-time coronary artery disease classification in magnetic resonance imaging. Journal of Real-Time Image Processing, 21(2),p. 31.

Jafari, M., Shoeibi. A., Khodatars, M., Ghassemi, N., Moridian, P., Alizadehsani, R., Khosravi, A., Ling, S.H., Delfan, N., Zhang, Y.D., Wang, S.H., Gorriz, J.M., Alinejad-Rokny, H., and Acharya, U.R., 2023. Automated diagnosis of cardiovascular diseases from cardiac magnetic resonance imaging using deep learning models: Areview. Computers in Biology and Medicine, 160, p.106998.

Jeyachandra, R., Malar, R.J., Sundararaj, G.K., Geetha, T., and Renuka, S., 2023. Heart disease prediction using CNN based on deep learning algorithm. International Journal of Advanced Trends in Engineering and Management, 3(1), pp.13-27.

Jiménez-Partinen, A., Molina-Cabello, M.A., Thurnhofer-Hemsi, K., Palomo, E.J., Rodríguez-Capitán, J., Molina-Ramos, A.I., and Jiménez-Navarro, M., 2024. CADICA: Anew dataset for coronary artery disease detection by using invasive coronary angiography.

Kako, N.A., and Abdulazeez, A.M., 2022. Peripapillary atrophy segmentation and classification methodologies for glaucoma image detection: A review. Current Medical Imaging, 18(11), pp.1140-1159.

Khalifa, M., and Albadawy, M., 2024. AI in diagnostic imaging: Revolutionising accuracy and efficiency. Computer Methods and Programs in Biomedicine Update, 5, p.100146.

Khozeimeh, F., Sharifrazi, D., Izadi, N.H., Joloudari, J.H., Shoeibi, A., Alizadehsani, R., Tartibi, M., Hussain, S., Sani, Z.A.,...&., Islam, M.S., 2022. RF-CNN-F: Random forest with convolutional neural network features for coronary artery disease diagnosis based on cardiac magnetic resonance. Scientific Reports, 12(1), p.11178.

Lalande, A., Chen, Z., Decourselle, T., Qayyum, A., Pommier, T., Lorgis, L., De La Rosa, E., Cochet, A., Cottin, Y., Ginhac, D., Salomon, M., Couturier, R., and Meriaudeau, F., 2020. Emidec: Adatabase usable for the automatic evaluation of myocardial infarction from delayed-enhancement cardiac MRI. Data, 5(4), p.89.

Li, Y.L., Leu, H.B., Ting, C.H., Lim, S.S., Tsai, T.Y., Wu, C.H., Chung, I.F., and Liang, K.H., 2024. Predicting long-term time to cardiovascular incidents using myocardial perfusion imaging and deep convolutional neural networks. Scientific Reports, 14, p.3802.

Liu, D., Jia, Z., Jin, M., Liu, Q., Liao, Z., Zhong, J., Ye, H., and Chen, G., 2020. Cardiac magnetic resonance image segmentation based on convolutional neural network. Computer Methods and Programs in Biomedicine, 197, p.105755.

Liu, T., Tian, Y., Zhao, S., Huang, X., and Wang, Q., 2020. Residual convolutional neural network for cardiac image segmentation and heart disease diagnosis. IEEE Access, 8, pp.82153-82161.

Lupague, R.M., Mabborang, R.C., Bansil, A.G., and Lupague, M.M., 2023. Integrated machine learning model for comprehensive heart disease risk assessment based on multi-dimensional health factors. European Journal of Computer Science and Information Technology, 11(3), pp.44-58.

Lyu, Q., Shan, H., Xie, Y., Kwan, A.C., Otaki, Y., Kuronuma, K., Li, D., and Wang, G., 2021. Cine cardiac MRI motion artifact reduction using a recurrent neural network. IEEE Transactions on Medical Imaging, 40(8), pp.2170-2181.

Madan, N., Lucas, J., Akhter, N., Collier, P., Cheng, F., Guha, A., Zhang, L., Sharma, A., Hamid, A., Ndiokho, I., Wen, E., Garster, N.S., Scherrer-Crosbie, M., and Brown, S.A., 2022. Artificial intelligence and imaging: Opportunities in cardio-oncology. American Heart Journal Plus: Cardiology Research and Practice, 15, p.100126.

Metan, J., Prasad, A.Y., Ananda Kumar, K.S., Mathapati, M., and Patil, K.K., 2021. Cardiovascular MRI image analysis by using the bio inspired (sand piper optimized) fully deep convolutional network (Bio-FDCN) architecture for an automated detection of cardiac disorders. Biomedical Signal Processing and Control, 70, p.103002.

Milosevic, M., Jin, Q., Singh, A., and Amal, S., 2024. Applications of AI in multi-modal imaging for cardiovascular disease. Frontiers in Radiology, 3, p.1294068.

Mishra, J.S., Gupta, N.K., and Sharma, A., 2024. Enhanced heart disease prediction using machine learning techniques. Journal of Intelligent Systems and Internet of Things, 12(2), pp.19-33.

Ogunpola, A., Saeed, F., Basurra, S., Albarrak, A.M., and Qasem, S.N., 2024. Machine learning-based predictive models for detection of cardiovascular diseases. Diagnostics (Basel), 14(2), p.144.

Ohta, Y., Yunaga, H., Kitao, S., Fukuda, T., and Ogawa, T., 2019. Detection and classification of myocardial delayed enhancement patterns on MR images with deep neural networks: A feasibility study. Radiology: Artificial Intelligence, 1(3), pp.1-7.

Oscanoa, J.A., Middione, M.J., Alkan, C., Yurt, M., Loecher, M., Vasanawala, S.S., and Ennis, D.B., 2023. Deep learning-based reconstruction for cardiac MRI: A review. Bioengineering, 10(3), p.334.

Penso, M., Moccia, S., Scafuri, S., Muscogiuri, G., Pontone, G., Pepi, M., and Caiani, E.G., 2021. Automated left and right ventricular chamber segmentation in cardiac magnetic resonance images using dense fully convolutional neural network. Computer Methods and Programs in Biomedicine, 204, p.106059.

Qiao, M., Wang, Y., Guo, Y., Huang, L., Xia, L., and Tao, Q., 2020. Temporally coherent cardiac motion tracking from cine MRI: Traditional registration method and modern CNN method. Medical Physics, 47(9), pp.4189-4198.

Qiu, X., 2024. Nurse-led intervention in the management of patients with cardiovascular diseases: A brief literature review. BMC Nursing, 23(1), p.6.

Radau, P., Lu, Y., Connelly, K., Paul, G., Dick, A.J., and Wright, G.A., 2022. Evaluation framework for algorithms segmenting short axis cardiac MRI. The MIDAS Journal.

Rajiah, P.S., François, C.J., and Leiner, T., 2023. Cardiac MRI: State of the art. Radiology, 307(3), p.e223008.

Reza-Soltani, S., Alam, L.F., Debellotte, O., Monga, T.S., Coyalkar, V.R., Tarnate, V.C., Ozoalor, C.U., Allam, S.R., Afzal, M., Shah, G.K., and Rai, M., 2024. The role of artificial intelligence and machine learning in cardiovascular imaging and diagnosis. Cureus, 16(9), p.e68472.

Sadr, H., Salari, A., Ashoobi, M.T., and Nazari, M., 2024. Cardiovascular disease diagnosis: A holistic approach using the integration of machine learning and deep learning models. European Journal of Medical Research, 29(1), p.455.

Schmidt, A.F., Bourfiss, M., Alasiri, A., Puyol-Anton, E., Chopade, S., Van Vugt,M., Van Der Laan, S.W., Gross, C., Clarkson, C., Henry, A.,...&., Finan, C., 2023. Druggable proteins influencing cardiac structure and function: Implications for heart failure therapies and cancer cardiotoxicity. Science Advances, 9(17), p.eadd4984.

Schulz, A., Mittelmeier, H., Wagenhofer, L., Backhaus, S.J., Lange, T., Evertz, R., Kutty, S., Kowallick, J.T., Hasenfu, G., and Schuster, A., 2024. Assessment of the cardiac output at rest and during exercise stress using real-time cardiovascular magnetic resonance imaging in HFPEF-patients. International Journal of Cardiovascular Imaging, 40(4), pp.853-862.

Shaaf, Z.F., Abdul Jamil, M.M., Ambar, R., Alattab, A.A., Yahya, A.A., and Asiri, Y., 2023. Detection of left ventricular cavity from cardiac MRI images using faster R-CNN. Computers, Materials and Continua, 74(1), pp.1819-1835.

Shaaf, Z.F., Jamil, M.M., Ambar, R., Alattab, A.A., Yahya, A.A., and Asiri, Y., 2022. Automatic left ventricle segmentation from short-axis cardiac MRI images based on fully convolutional neural network. Diagnostics (Basel), 12(2), p. 414.

Shaaf, Z.F., Jamil, M.M., and Ambar, R., 2023. A convolutional neural network model to segment myocardial infarction from MRI images. International Journal of Online and Biomedical Engineering, 19(2), pp.150-162.

Simantiris, G., and Tziritas, G., 2020. Cardiac MRI segmentation with a dilated CNN incorporating domain-specific constraints. IEEE Journal on Selected Topics in Signal Processing, 14(6), pp.1235-1243.

Thoutireddy, S., and Bai, A., 2021. Areview on cardiovascular disease detection using machine learning algorithms. Solid State Technology, 63(5), p. 2-6.

Tilborghs, S., Bogaert, J., and Maes, F., 2022. Shape constrained CNN for segmentation guided prediction of myocardial shape and pose parameters in cardiac MRI. Medical Image Analysis, 81, p.102533.

Tobon-Gomez, C., Geers, A.J., Peters, J., Weese, J., Pinto, K., Karim, R., Ammar, M., Daoudi, A., Margeta, J., Sandoval, Z., Stender, B., Zheng, Y., Zuluaga, M.A.,...&., Rhode, K.S., 2015. Benchmark for algorithms segmenting the left atrium from 3D CT and MRI datasets. IEEE Transactions on Medical Imaging, 34(7), pp. 1460-1473.

Toledo, M.A.F., Lima, D.M., Krieger, J.E., and Gutierrez, M.A., 2021. Study of CNN capacity applied to left ventricle segmentation in cardiac MRI. SN Computer Science, 2(6), p.480.

Vernikouskaya, I., Bertsche, D., Metze, P., Schneider, L.M., and Rasche, V., 2024. Multi-network approach for image segmentation in non-contrast enhanced cardiac 3D MRI of arrhythmic patients. Computerized Medical Imaging and Graphics, 113, p.102340.

Wu, B., Fang, Y., and Lai, X., 2020. Left ventricle automatic segmentation in cardiac MRI using a combined CNN and U-net approach. Computerized Medical Imaging and Graphics, 82, p.101719.

Xu, W., Shi, J., Lin, Y., Liu, C., Xie, W., Liu, H., Huang, S., Zhu, D., Su, L., Huang, Y., Ye, Y., and Huang, J., 2023. Deep learning-based image segmentation model using an MRI-based convolutional neural network for physiological evaluation of the heart. Frontiers in Physiology, 14, p.1148717.

Yang, R., Yu, J., Yin, J., Liu, K., and Xu, S., 2022. An FA-SegNet image segmentation model based on fuzzy attention and its application in cardiac MRI segmentation. International Journal of Computational Intelligence Systems, 15(1), p.24.

Yong, B., Wang, C., Shen, J., Li, F., Yin, H., and Zhou, R., 2021. Automatic ventricular nuclear magnetic resonance image processing with deep learning. Multimedia Tools and Applications, 80(26-27), pp.34103-34119.

Zakariah, M., and AlShalfan, K., 2020. Cardiovascular disease detection using MRI data with deep learning approach. International Journal of Computer and Electrical Engineering, 12(2), pp.72-82.

Zhang, Q., Fotaki, A., Ghadimi, S., Wang, Y., Doneva, M., Wetzl, J., Delfino,J.G., O’Regan, D.P., Prieto, C., and Epstein, F.H., 2024. Improving the efficiency and accuracy of cardiovascular magnetic resonance with artificial intelligence-review of evidence and proposition of a roadmap to clinical translation. Journal of Cardiovascular Magnetic Resonance, 26(2), p.101051.

Published

2025-07-09

How to Cite

Hussein, S. H. and Kako, N. A. (2025) “Deep Learning for Cardiovascular Disease Detection: A Review Based on Cardiac Magnetic Resonance Imaging Data”, ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 13(2), pp. 1–17. doi: 10.14500/aro.11971.

Issue

Section

Review Articles
Received 2024-12-25
Accepted 2025-05-23
Published 2025-07-09

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.