Microstrip Passive Components for Energy Harvesting and 5G Applications
A Comprehensive Review
Abstract
This review paper provides a comprehensive overview of microstrip passive components for energy harvesting and 5G applications. The paper covers the structure, fabrication and performance of various microstrip passive components such as filters, couplers, diplexers and triplexers. The size and performance of several 5G and energy harvester microstrip passive devices are compared and discussed. The review highlights the importance of these components in enabling efficient energy harvesting and high-speed communication in 5G networks. Additionally, the paper discusses the latest advancements in microstrip technology and identifies key research challenges and future directions in this field. Overall, this review serves as a valuable resource for researchers and engineers working on microstrip passive components for energy harvesting and 5G applications.
Downloads
References
Abouelnaga, T.G., and Mohra, A.S., 2017. Reconfigurable 3/6 dB Novel branch line coupler. Open Journal of Antennas and Propagation, 5, pp.7-22. DOI: https://doi.org/10.4236/ojapr.2017.51002
Afzali, B., Abbasi, H., Shama, F., and Heydari, R.D., 2021. A microstrip bandpass filter with deep rejection and low insertion loss for application at 2.4 GHz useful wireless frequency. AEU-International Journal of Electronics and Communications, 138, p.153811. DOI: https://doi.org/10.1016/j.aeue.2021.153811
Alhalabi, H., Issa, H., Pistono, E., Kaddour, D., Podevin, F., Baheti, A., Abouchahine, S., and Ferrari, P., 2018. Miniaturized branch-line coupler based on slow-wave microstrip lines. International Journal of Microwave and Wireless Technologies, 10(10), pp.1103-1106. DOI: https://doi.org/10.1017/S1759078718001204
Arriola, W.A., Lee, J.Y., and Kim, I.S., 2021. Wideband 3 dB branch line coupler based on λ/4 open circuited coupled lines. IEEE Microwave and Wireless Components Letters, 21(9), pp.486-488. DOI: https://doi.org/10.1109/LMWC.2011.2138687
Bukuru, D., Song, K., and Xue., 2015. Compact wide-stopband planar diplexer based on rectangular dual spiral resonator. Microwave and Optical Technology Letters, 57(1), pp.174-178. DOI: https://doi.org/10.1002/mop.28811
Capstick, M.H., 1994. Simple fast synthesis method for microstrip lowpass filters. Electronics Letters, 30(18), pp.1496-1497.Capstick, M.H., 1999. Microstrip lowpass-bandpass diplexer topology. Electronics Letters, 35(22), pp.1958-1960. DOI: https://doi.org/10.1049/el:19941044
Chen, C.F., Huang, T.Y., Chou, C.P., and Wu, R.B., 2006. Microstrip diplexers design with common resonator sections for compact size, but high isolation. IEEE Transactions on Microwave Theory and Techniques, 54(5), pp.1945-1952. DOI: https://doi.org/10.1109/TMTT.2006.873613
Chen, C.F., Tseng, B.H., Wang, G.Y., and Li, J.J., 2018.Compact microstrip eight-channel multiplexer with independently switchable passbands. IET Microwave, Antennas and Propagation, 12(6), pp.1026-1033. DOI: https://doi.org/10.1049/iet-map.2017.0767
Chen, C.F., Zhou, K.W., Chen, R.Y., Wang, Z.C., and He, Y.H., 2019. Design of a microstrip diplexer-integrated filtering power divider. IEEE Access, 7, pp.106514-106520. DOI: https://doi.org/10.1109/ACCESS.2019.2933053
Chen, D., Zhu, L., Bu, H., and Cheng, C.H., 2015. A novel planar diplexer using slot line-loaded microstrip ring resonator. IEEE Microwave and Wireless Components Letters, 25(11), pp.706-708. DOI: https://doi.org/10.1109/LMWC.2015.2479836
Chen, F.C., Qiu, J.M., Hu, H.T., Chu, Q.X., and Lancaster, M.J., 2015. Design of microstrip lowpass-bandpass triplexer with high isolation. IEEE Microwave and Wireless Components Letters, 25(12), pp.805-807. DOI: https://doi.org/10.1109/LMWC.2015.2496797
Chen, J.X., Zhan, Y., Qin, W., Bao, Z.H., and Xue, Q., 2015. Novel narrow-band balanced Bandpass filter using rectangular dielectric resonator. IEEE Microwave and Wireless Components Letters, 25(5), pp.289-291. DOI: https://doi.org/10.1109/LMWC.2015.2409805
Chi, P.L., 2012. Miniaturized ring coupler with arbitrary power divisions based on the composite right/left-handed transmission lines. Microwave and Wireless Component Letters, 22(4), pp.170-172. DOI: https://doi.org/10.1109/LMWC.2012.2189376
Chinig, A., Zbitou, J., Errkik, A., Elabdellaoui, L., Tajmouati, A., Tribak, A., and Latrach, M., 2015. A new microstrip diplexer using coupled stepped impedance resonators. International Journal of Electronics and Communication Engineering, 9(1), pp.41-44.
Chinig, A., Zbitou, J., Errkik, A., Tajmouati, A., Abdellaoui, L.E., and Latrach, M., 2015. Microstrip diplexer using stepped impedance resonators. Wireless Personal Communications, 84(4), pp.2537-2548. DOI: https://doi.org/10.1007/s11277-015-2718-2
Deng, P.H., and Tsai, J.T., 2013. Design of microstrip lowpass-bandpass diplexer. IEEE Microwave and Wireless Components Letters, 23(7), pp.332-334. DOI: https://doi.org/10.1109/LMWC.2013.2262264
Elden, S., and Gorur, A.K., 2021. Design of a compact lowpass-bandpass diplexer with high isolation. Progress in Electromagnetics Research Letters, 97, pp.21-26. DOI: https://doi.org/10.2528/PIERL21012701
Fadaee, M.D., Shama, F., Feali, M.S., and Gilan, M.S., 2023. A miniaturized wide stopband low-pass filter using T and modified L shapes resonators. ARO-the Scientific Journal of Koya University, 11, pp.116-120. DOI: https://doi.org/10.14500/aro.11157
Feng, W., Gao, X., and Che, W., 2014. Microstrip diplexer for GSM and WLAN bands using common shorted stubs. IET Electronics Letters, 50(20), pp.1486-1488. DOI: https://doi.org/10.1049/el.2014.2500
Feng, W., Zhang, Y., and Che, W., 2017. Tunable dual-band filter and diplexer based on folded open loop ring resonators. IEEE Transactions on Circuits and Systems, 64(9), pp.1047-1051. DOI: https://doi.org/10.1109/TCSII.2016.2634555
Heng, Y., Guo, X., Cao, B., Wei, B., Zhang X., Zhang, G., and Song, X., 2014. A narrowband superconducting quadruplexer with high isolation. IEEE Trans Applied Superconductivity, 24(2), pp.21-26. DOI: https://doi.org/10.1109/TASC.2014.2304886
Heshmati, H., and Roshani, S., 2018. A miniaturized lowpass bandpass diplexer with high isolation. AEÜ International Journal of Electronics and Communications, 87, pp.87-94. DOI: https://doi.org/10.1016/j.aeue.2018.02.004
Hsu, K.W., Hung, W.C., and Tu, W.H., 2016. Design of four-channel diplexer using distributed coupling technique. Microwave and Optical Technology Letters, 58(1), pp.166-170. DOI: https://doi.org/10.1002/mop.29516
Jamshidi, M., Yahya, S.I., Nouri, L., Dezaki, H.H., Rezaei, A., and Chaudhary, M.A., 2023. A super-efficient GSM triplexer for 5G-enabled IoT in sustainable smart grid edge computing and the metaverse. Sensors, 23(7), p.3775. DOI: https://doi.org/10.3390/s23073775
Jamshidi, M., Yahya, S.I., Nouri, L., Dezaki, H.H., Rezaei, A., and Chaudhary, M.A., 2023. A high-efficiency diplexer for sustainable 5G-enabled IOT in metaverse transportation system and smart grids. Symmetry, 15(4), p.821. DOI: https://doi.org/10.3390/sym15040821
Khajavi, N., AL-Din Makki, S.V., and Majidifar, S., 2015. Design of high performance microstrip dual-band bandpass filter. Radioengineering, 24(1), pp.32-37. DOI: https://doi.org/10.13164/re.2015.0032
Kim, C.S., Lim, J.S., Kim, D.Y., and Ahn, D., 2004. A design of single and multi-section microstrip directional coupler with the high directivity. IEEE MTT-S International Microwave Symposium Digest, 3, pp.895-1898.
Kim, J.S., and Kong, K.B., 2010. Compact branch-line coupler for harmonic suppression. Progress in Electromagnetics Research, 16, pp.233-239. DOI: https://doi.org/10.2528/PIERC10083011
Lai, C.H., and Ma T.G., 2013. Miniaturised rat-race coupler with second and third harmonic suppression using synthesised transmission lines. Electronics Letters, 49(22), pp.1394-1396. DOI: https://doi.org/10.1049/el.2013.2975
Li, J.L., Qu, S.W., and Xue, Q., 2007. Microstrip directional coupler with flat coupling and high isolation. Electronics Letters, 43(4), pp.228-229. DOI: https://doi.org/10.1049/el:20073812
Liou, C.Y., Wu, M.S., Yeh, J.C., Chueh, Y.Z., and Mao, S.G., 2009. A novel triple-band microstrip branch-line coupler with arbitrary operating frequencies. IEEE Microwave and Wireless Components Letters, 19(11), pp.683-685. DOI: https://doi.org/10.1109/LMWC.2009.2031998
Majdi, K.A., and Mezaal, Y.S., 2023. New miniature narrow band microstrip diplexer for recent wireless communications. Electronics, 12, p.716. DOI: https://doi.org/10.3390/electronics12030716
Majidifar, S., 2016. High performance microstrip LPFs using dual taper loaded resonator. Optik, 127(6), pp.3484-3488. DOI: https://doi.org/10.1016/j.ijleo.2015.12.111
Majidifar, S., and Hayati, M., 2017. Design of a sharp response microstrip lowpass filter using taper loaded and radial stub resonators. Turkish Journal of Electrical Engineering and Computer Sciences, 5, pp.4013-4022. DOI: https://doi.org/10.3906/elk-1609-130
Noori, L., and Rezaei, A., 2017. Design of microstrip wide stopband quad-band bandpass filters for multi-service communication systems. AEU-International Journal of Electronics and Communications, 81, pp.136-142. DOI: https://doi.org/10.1016/j.aeue.2017.07.023
Noori, L., and Rezaei, A., 2018. Design of a compact narrowband quad-channel diplexer for multi-channel long-range RF communication systems. Analog Integrated Circuits and Signal Processing, 94(1), pp.1-8. DOI: https://doi.org/10.1007/s10470-017-1063-7
Nouri, L., Nkenyereye, L., Hafez, M.A., Hazzazi, F., Chaudhary, M.A., and Assaad, M., 2024. A simplified and efficient approach for designing microstrip bandpass filters: Applications in satellite and 5G communications. AEU-International Journal of Electronics and Communications, 177, p.155189. DOI: https://doi.org/10.1016/j.aeue.2024.155189
Nouri, L., Yahya, S.I., and Rezaei, A., 2020. Design and fabrication of a low-loss microstrip lowpass-bandpass diplexer for WiMAX applications. China Communications, 17(6), pp.109-120. DOI: https://doi.org/10.23919/JCC.2020.06.009
Nouri, L., Yahya, S.I., Rezaei, A., Chaudhary, M.A., and Nhu, B.N., 2023. A novel configuration of microstrip coupler with low loss and suppressed harmonics. AEU-International Journal of Electronics and Communications, 165, p.154653. DOI: https://doi.org/10.1016/j.aeue.2023.154653
Nouri, L., Yahya, S.I., Rezaei, A., Hazzazi, F., Chaudhary, M.A., Assaad, M., and Nhu, B.N., 2023. Microstrip lowpass-bandpass triplexer with flat channels and low insertion losses: Design and fabrication for multi-service wireless communication systems. AEU-International Journal of Electronics and Communications, 170, p.154807. DOI: https://doi.org/10.1016/j.aeue.2023.154807
Nouri, L., Yahya, S.I., Rezaei, A., Hazzazi, F.A., and Nhu, B.N., 2023. A compact negative group delay microstrip diplexer with low losses for 5G applications. ARO-The Scientific Journal of Koya University, 11(2), pp.17-24. DOI: https://doi.org/10.14500/aro.11237
Nouri, L., Zubir, F., Nkenyereye, L., Rezaei, A., Hafez, M.A., Hazzazi, F., Chaudhary, M.A., Assaad, M., and Yusoff, Z., 2024. Novel ultra-compact wide stopband microstrip lowpass-bandpass triplexer for 5G multi-service wireless networks. IEEE Access, 12, pp.2926-2940. DOI: https://doi.org/10.1109/ACCESS.2023.3348786
Nouri, L., Zubir, F., Yahya, S.I., Rezaei, A., Hazzazi, F., Chaudhary, M.A., Assaad, M., Yusoff, Z., and Le, B.N., 2023. A high-performance microstrip triplexer with compact size, flat channels and low losses for 5G applications. IEEE Access, 11, pp.78768-78777. DOI: https://doi.org/10.1109/ACCESS.2023.3299176
Rezaei, A., and Noori, L. 2020. Miniaturized microstrip diplexer with high performance using a novel structure for wireless L-band applications. Wireless Networks, 26, pp.1795-1802. DOI: https://doi.org/10.1007/s11276-018-1870-5
Rezaei, A., and Noori, L., 2018. Compact low-loss microstrip diplexer using novel engraved semi-patch cells for GSM and WLAN applications. AEU-International Journal of Electronics and Communications, 87, pp.158-163. DOI: https://doi.org/10.1016/j.aeue.2018.02.022
Rezaei, A., and Noori, L., 2018. Microstrip hybrid coupler with a wide stop-band using symmetric structure for wireless applications. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 17, pp.23-31. DOI: https://doi.org/10.1590/2179-10742018v17i11121
Rezaei, A., and Noori, L., 2018. Novel low-loss microstrip triplexer using coupled lines and step impedance cells for 4G and WiMAX applications. Turkish Journal of Electrical Engineering and Computer Sciences, 26(4), pp.1871-1880. DOI: https://doi.org/10.3906/elk-1708-48
Rezaei, A., and Noori, L., 2018. Novel microstrip quadruplexer with wide stopband for WiMAX applications. Microwave and Optical Technology Letters, 60(6), pp.1491-1495. DOI: https://doi.org/10.1002/mop.31187
Rezaei, A., Noori, L., and Mohammadi, H., 2019. Design of a miniaturized microstrip diplexer using coupled lines and spiral structures for wireless and WiMAX applications. Analog Integrated Circuits and Signal Processing, 98, pp.409-415. DOI: https://doi.org/10.1007/s10470-018-1365-4
Rezaei, A., Yahya, S.I., and Nouri, L., 2023. A high‐performance microstrip bandpass filtering coupler with low‐loss and compact size. Microwave and Optical Technology Letters, 65(9), pp.2483-2487. DOI: https://doi.org/10.1002/mop.33732
Rezaei, A., Yahya, S.I., and Nouri, L., 2023. Design and analysis of a compact microstrip lowpass–bandpass diplexer with good performance for wireless applications. International Journal of Microwave and Wireless Technologies, 15(7), pp.1099-1107. DOI: https://doi.org/10.1017/S1759078722001465
Rezaei, A., Yahya, S.I., and Nouri, L., 2024. An ultra-compact diplexer based on simple microstrip coupled lines for GSM and wideband wireless applications. Wireless Networks, 30(2), pp.857-865. DOI: https://doi.org/10.1007/s11276-023-03519-x
Rezaei, A., Yahya, S.I., Noori, L., and Jamaluddin, M.H., 2022. Designing high-performance microstrip quad-band bandpass filters (for multi-service communication systems): A novel method based on artificial neural networks. Neural Computing and Applications, 34(10), pp.7507-7521. DOI: https://doi.org/10.1007/s00521-021-06879-7
Salehi, M., and Noori, L., 2015. Miniaturized microstrip bandpass filters using novel stub loaded resonator. Applied Computational Electromagnetics Society Journal, 30(6), pp.692-697.
Salehi, M.R., and Noori, L., 2014. Novel 2.4 Ghz branch-line coupler using microstrip cells. Microwave and Optical Technology Letters, 56(9), pp.2110-2113. DOI: https://doi.org/10.1002/mop.28552
Salehi, M.R., Keyvan, S., Abiri, E., and Noori, L., 2016. Compact microstrip diplexer using new design of triangular open loop resonator for 4G wireless communication systems. AEU International Journal of Electronics and Communications, 70(7), pp.961-969. DOI: https://doi.org/10.1016/j.aeue.2016.04.015
Salehi, M.R., Noori, L., and Abiri, E., 2016. Prediction of matching condition for a microstrip subsystem using artificial neural network and adaptive neuro-fuzzy inference system. International Journal of Electronics, 103(11), pp.1882-1893. DOI: https://doi.org/10.1080/00207217.2016.1138539
Shi, J., Qiang, J., Xu, K., Wang, Z.B., Lin, L., Chen, J.X., Liu, W., and Zhang, X.Y., 2016. A balanced filtering branch-line coupler. IEEE Microwave and Wireless Components Letters, 26(2), pp.119-121. DOI: https://doi.org/10.1109/LMWC.2016.2516764
Shukor, N.A.M., and Seman, N., 2016. Enhanced design of two-section microstrip-slot branch line coupler with the overlapped λ/4 open circuited lines at ports. Wireless Personal Communications, 88, pp.467-478. DOI: https://doi.org/10.1007/s11277-015-3138-z
Shukor, N.A.M., and Seman, N.,2020.5G planar branch line coupler design based on the analysis of dielectric constant, loss tangent and quality factor at high frequency. Scientific Reports, 10, p.16115. DOI: https://doi.org/10.1038/s41598-020-72444-2
Xu, J., and Zhu, Y., 2017. Microstrip triplexer and switchable triplexer using new impedance matching circuits. International Journal of RF and Microwave Computer‐Aided Engineering, 27, p.e21057. DOI: https://doi.org/10.1002/mmce.21057
Xu, J., Chen, Z.Y., and Wan, H., 2020. Lowpass-bandpass triplexer integrated switch design using common lumped-element triple-resonance resonator technique. IEEE Transactions on Industrial Electronics, 67(1), pp.471-479. DOI: https://doi.org/10.1109/TIE.2019.2898579
Yahya, S.I., Rezaei, A., and Nouri, L., 2021. The use of artificial neural network to design and fabricate one of the most compact microstrip diplexers for broadband L-band and S-band wireless applications. Wireless Networks, 27, pp.663-676. DOI: https://doi.org/10.1007/s11276-020-02478-x
Yahya, S.I., Zubir, F., Nkenyereye, L., Hafez, M.A., Nouri, L., Assaad, M., Chaudhary, M.A., and Jizat, N.M., 2024. A lowpass-bandpass triplexer with a new microstrip configuration and compact size for 5G and energy harvesting applications. IEEE Access, 12, pp.60264-60275. DOI: https://doi.org/10.1109/ACCESS.2024.3393836
Yahya, S.I., Zubir, F., Nouri, L., Hazzazi, F., Yusoff, Z., Chaudhary, M.A., Assaad, M., Rezaei, A., and Le, B.N., 2023. A balanced symmetrical branch-line microstrip coupler for 5G applications. Symmetry, 15(8), p.1598. DOI: https://doi.org/10.3390/sym15081598
Yahya, S.I., Zubir, F., Nouri, L., Yusoff, Z., Chaudhary, M.A., Assaad, M., Rezaei, A., and Le, B.N., 2023. A new compact and low phase imbalance microstrip coupler for 5G wireless communication systems. PLoS One, 18(12), p.e0296272. DOI: https://doi.org/10.1371/journal.pone.0296272
Yahya, S.I., Zubir, F., Nouri, L., Yusoff, Z., Hazzazi, F., Chaudhary, M.A., Assaad, M., Rezaei, A., and Le, B.N., 2023. Design and optimization of a compact microstrip filtering coupler with low losses and improved group delay for high-performance RF communication systems. IEEE Access, 11, pp.103976-103985. DOI: https://doi.org/10.1109/ACCESS.2023.3317441
Zakaria, Z., Mutalib, M.A., Isa, M.S.M., Zainuddin, N.A., Yik, S.W., and Othman, A., 2013. Design of microstrip bandpass filter with defected microstrip structure (DMS). Australian Journal of Basic and Applied Sciences, 7(11), pp.263-269.
Zeng, S.J., Wu, J.Y., and Tu, W.H., 2011. Compact and high-isolation quadruplexer using distributed coupling technique. IEEE Microwave and Wireless Component Letters, 21(4), pp.197-199. DOI: https://doi.org/10.1109/LMWC.2011.2109702
Zhu, C., Xu, J., Kang, W., and Wu, W., 2017. Design of balun-integrated switchable low-pass-bandpass triplexer. IEEE Microwave and Wireless Components Letters, 27(4), pp.353-355. DOI: https://doi.org/10.1109/LMWC.2017.2679044
Copyright (c) 2024 Leila Nouri, Salah I. Yahya, Abbas Rezaei, Sohrab Majidifar
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who choose to publish their work with Aro agree to the following terms:
-
Authors retain the copyright to their work and grant the journal the right of first publication. The work is simultaneously licensed under a Creative Commons Attribution License [CC BY-NC-SA 4.0]. This license allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors have the freedom to enter into separate agreements for the non-exclusive distribution of the journal's published version of the work. This includes options such as posting it to an institutional repository or publishing it in a book, as long as proper acknowledgement is given to its initial publication in this journal.
-
Authors are encouraged to share and post their work online, including in institutional repositories or on their personal websites, both prior to and during the submission process. This practice can lead to productive exchanges and increase the visibility and citation of the published work.
By agreeing to these terms, authors acknowledge the importance of open access and the benefits it brings to the scholarly community.