Broadband Metamaterial Absorbers for Organic Solar Cells

A Review

Authors

  • Diyaree O. Kakil Department of Physics, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region – F.R. Iraq https://orcid.org/0000-0002-0055-9790
  • Fahmi F. Muhammadsharif Department of Physics, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region – F.R. Iraq https://orcid.org/0000-0002-4563-9671
  • Yadgar I. Abdulkarim Physics Department, College of Science, Charmo University, 46023 Chamchamal, Sulaimania, Kurdistan Region – F.R. Iraq https://orcid.org/0000-0002-2808-2867

DOI:

https://doi.org/10.14500/aro.12025

Keywords:

Broadband absorbers, Metamaterials, Organic solar cells, Photovoltaic efficiency, Plasmonic

Abstract

Organic solar cells (OSCs) often suffer from weak absorption in the visible and infrared spectrum, which directly restricts their efficiency. Since light harvesting is central to solar conversion, improving absorption across a broad range is critical. Broadband metamaterial absorbers (BMMAs) present a promising solution by enhancing light-matter interaction and extending absorption over a broader spectrum. This improvement directly makes the process of converting energy more efficient. This review aims to systematically examine the recent progress of metamaterial absorbers (MMAs), highlighting broadband, polarization independent, and wide-angle designs areas that remain unexplored in recent reviews. Different categories of strategies, such as planar, vertical, lumped-element, and nanostructured plasmonic designs, are discussed to highlight how material choice and design geometry affect absorption. In addition, it describes the physical concepts of perfect absorption and assesses how applicable they are to OSC integration. Our analysis shows that the most of the progress has been theoretical approaches with a limited experiment. These studies demonstrate that BMMAs have an excellent opportunity to significantly improve energy conversion efficiency. At the same time, most challenges remain, like scalability, material losses, and easy integration into OGCs. This research also points out that there are future investigations into affordable, low-loss materials that can be easily integrated. Overall, this study emphasizes how important
MMBAs are to advancing the efficiency and sustainability of next generation OSCs.

Downloads

Download data is not yet available.

Author Biographies

Diyaree O. Kakil, Department of Physics, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region – F.R. Iraq

Diyaree M. Kakil is a Lecturer at the Department of Physics, Faculty of Science and Health, Koya University, Iraq. He received the B.Sc. degree in Physics from Salahaddin University and the M.Sc. degree in Physics from Koya University. His research interests include metamaterial absorbers, organic solar cells, and Nuclear physics.

Fahmi F. Muhammadsharif, Department of Physics, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region – F.R. Iraq

Fahmi F. Muhammadsharif is an Assistant Professor at the Department of Physics, Faculty of Science, Koya University. He got a B.Sc. degree in Physics, an M.Sc. degree in Physics, a PhD degree in Solar energy and three PDF degrees in Photovoltaic system. His research interests are in photovoltaics/solar cells, organic/hybrid electronics and simulation/modelling.

Yadgar I. Abdulkarim, Physics Department, College of Science, Charmo University, 46023 Chamchamal, Sulaimania, Kurdistan Region – F.R. Iraq

Yadgar I. Abdulkarim is currently a Researcher at the Department of Electrical and Computer Engineering at the University of Alberta, Edmonton, Alberta, Canada. He received his B.Sc. degree in Physics from the University of Sulaimani, Iraq, in 2007, an M.Sc. degree in Theoretical Physics from V.N. Karazin Kharkiv National University, Kharkiv, Ukraine, in 2012, and a Ph.D. in Electronics and Advanced Materials from the School of Physics and Electronics, Central South University, Changsha, Hunan, China, in 2020. His research focuses on the design and fabrication of metamaterial-based sensors operating in the microwave and terahertz frequency ranges, with additional interests in antenna engineering and biosensor technologies.

References

Aalizadeh, M., Khavasi, A., Butun, B., and Ozbay, E., 2018. Large-area, cost-effective, ultra-broadband perfect absorber utilizing manganese in metal insulator-metal structure. Scientific Reports, 8(1), p.9162. DOI: https://doi.org/10.1038/s41598-018-27397-y

Abouelez, A.E., Eldiwany, E.A., and Swillam, M.A., 2024. Silicon-based ultra broadband mid-IR and LWIR near-perfect metamaterial absorber. Optical and Quantum Electronics, 56(7), p.1103. DOI: https://doi.org/10.1007/s11082-024-06996-2

Ahmad, A., Asad, A., Pacpaco, P., Thampongphan, C., and Hasan, M.H., 2024. application of metamaterial in renewable energy: A review. International Journal of Engineering Materials and Manufacture, 9(2), pp.60-80. DOI: https://doi.org/10.26776/ijemm.09.02.20243.04

Al-Badri, K.S.L., 2020. Electromagnetic broad band absorber based on metamaterial and lumped resistance. Journal of King Saud University-Science, 32(1), pp.501-506. DOI: https://doi.org/10.1016/j.jksus.2018.07.013

Ali, A., Mitra, A., and Aïssa, B., 2022. Metamaterials and metasurfaces: A review from the perspectives of materials, mechanisms and advanced metadevices. Nanomaterials (Basel), 12(6), p.1027. DOI: https://doi.org/10.3390/nano12061027

Aliqab, K., Armghan, A., and Alsharari, M., 2024. Polarization insensitive and wideband terahertz absorber using high-impedance resistive material of RuO2 . Scientific Reports, 14(1), p.19149. DOI: https://doi.org/10.1038/s41598-024-70251-7

Ardeshana, M.A., Thakkar, F.N., and Domadia, S.G., 2025. Composite structure design for broadband metamaterial absorption: Integrated nonlinearity and enhanced performance using lumped resistors. Journal of Applied Physics, 137(9), p.093104. DOI: https://doi.org/10.1063/5.0250746

Armghan, A., Aliqab, K., and Alsharari, M., 2025. A novel fan-shaped ultrabroadband solar absorber using nickel-based plasmonic metasurfaces. Scientific Reports, 15(1), p.21839. DOI: https://doi.org/10.1038/s41598-025-06600-x

Bağmancı, M., Wang, L., Sabah, C., Karaaslan, M., Paul, L.C., Rani, T., and Unal, E., 2024. Broadband multi‐layered stepped cone shaped metamaterial absorber for energy harvesting and stealth applications. Engineering Reports, 6(11), p.e12903. DOI: https://doi.org/10.1002/eng2.12903

Baqir, M.A., Qadeer, A., Altintas, O., Draz, M.U., Karaaslan, M., and Sampe, J., 2025. Design of polarization-insensitive wideband metamaterial radar absorber with enhanced bandwidth. Progress in Electromagnetics Research C, 155, pp.67-74. DOI: https://doi.org/10.2528/PIERC25021702

Bilal, R.M.H., Saeed, M.A., Naveed, M.A., Zubair, M., Mehmood, M.Q., and Massoud, Y., 2022. Nickel-based high-bandwidth nanostructured metamaterial absorber for visible and infrared spectrum. Nanomaterials (Basel), 12(19), p.3356. DOI: https://doi.org/10.3390/nano12193356

Cai, B., Wu, L., Zhu, X., Cheng, Z., and Cheng, Y., 2024. Ultra-broadband and wide-angle plasmonic light absorber based on all-dielectric gallium arsenide (GaAs) metasurface in visible and near-infrared region. Results in Physics, 58, p.107509. DOI: https://doi.org/10.1016/j.rinp.2024.107509

Carrillo-Sendejas, J.C., and Maldonado, J.L., 2025. Progress in organic solar cells: Materials, challenges, and novel strategies for niche applications. APL Energy, 3(2), p.021501. DOI: https://doi.org/10.1063/5.0267160

Cen, C., Liu, X., Lin, Y., Yi, Z., and Zeng, Q., 2025. Metamaterial absorber with ultra-broadband, ultra-high absorption, polarization independence and high-temperature resistance for solar thermal energy harvesting applications. Optics Communications, 575, p.131292. DOI: https://doi.org/10.1016/j.optcom.2024.131292

Chao, Y.C., Lin, H.I., Lin, J.Y., Tsao, Y.C., Liao, Y.M., Hsu, F.C., and Chen, Y.F., 2023. Unconventional organic solar cell structure based on hyperbolic metamaterial. Journal of Materials Chemistry C, 11(6), pp.2273-2281. DOI: https://doi.org/10.1039/D2TC04723C

Chen, H.T., 2012. Interference theory of metamaterial perfect absorbers. Optics Express, 20(7), pp.7165-7172. DOI: https://doi.org/10.1364/OE.20.007165

Chen, H.T., Padilla, W.J., Cich, M.J., Azad, A.K., Averitt, R.D., and Taylor, A.J., 2009. A metamaterial solid-state terahertz phase modulator. Nature Photonics, 3(3), pp.148-151. DOI: https://doi.org/10.1038/nphoton.2009.3

Chen, Q., Huang, J.L., Wang, C.H., Ke, P.X., Yang, C.F., and Tseng, H.W., 2024. Investigation of a pyramid-like optical absorber with high absorptivity in the range of ultraviolet a to middle infrared. Photonics, 11(4), p.352. DOI: https://doi.org/10.3390/photonics11040352

Cheng, D.K., 1989. Field and Wave Electromagnetics. Pearson, Boston, MA, U.S.A., p.720.

Choukri, S., Takhedmit, H., El Mrabet, O., Aznabet, M., and Cirio, L., 2022. Wide Angle, Polarization Independent Metamaterial Absorber Unit-Cell for RCS Reduction and Energy Harvesting Applications. In: The 12th International Conference on Metamaterials, Photonic Crystals and Plasmonics. IEEE, Torremolinos, Spain, pp.1-8. Available from: https://hal.science/hal-03714453v1 [Last accessed on 2025 Aug 01].

Chowdhury, M.Z.B., Islam, M.T., Hoque, A., Alshammari, A.S., Alzamil, A., Alsaif, H., Alshammari, B.M., Hossain, I., and Samsuzzaman, M., 2022. Design and parametric analysis of a wide-angle and polarization insensitive ultra broadband metamaterial absorber for visible optical wavelength applications. Nanomaterials (Basel), 12(23), p.4253. DOI: https://doi.org/10.3390/nano12234253

Duan, G., Schalch, J., Zhao, X., Li, A., Chen, C., Averitt, R.D., and Zhang, X., 2019. A survey of theoretical models for terahertz electromagnetic metamaterial absorbers. Sensors and Actuators A: Physical, 287, pp.21-28. DOI: https://doi.org/10.1016/j.sna.2018.12.039

Duan, G., Schalch, J., Zhao, X., Zhang, J., Averitt, R., and Zhang, X., 2018. Identifying the perfect absorption of metamaterial absorbers. Physical Review B, 97(3), p.035128. DOI: https://doi.org/10.1103/PhysRevB.97.035128

Fu, X., and Cui, T.J., 2019. Recent progress on metamaterials: From effective medium model to real-time information processing system. Progress in Quantum Electronics, 67, p.100223. DOI: https://doi.org/10.1016/j.pquantelec.2019.05.001

Gandhi, C., Babu, P.R., and Senthilnathan, K., 2021. Ultra-thin polarization independent broadband terahertz metamaterial absorber. Frontiers of Optoelectronics, 14(3), pp.288-297. DOI: https://doi.org/10.1007/s12200-021-1223-3

Ghosh, S., and Srivastava, K.V., 2014. An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory. IEEE Antennas and Wireless Propagation Letters, 14, pp.511-514. DOI: https://doi.org/10.1109/LAWP.2014.2369732

Góra, P., and Łopato, P., 2023. Metamaterials’ application in sustainable technologies and an introduction to their influence on energy harvesting devices. Applied Sciences, 13(13), p.7742. DOI: https://doi.org/10.3390/app13137742

Hanif, A., Alam, T., Islam, M.T., Hakim, M.L., Yahya, I., Albadran, S., Islam, M.S., and S. Soliman, M., 2024. Ni-PI-Ni based nanoarchitectonics near-perfect metamaterial absorber with incident angle stability for visible and near-infrared applications. International Journal of Optomechatronics, 18(1), p.2299026. DOI: https://doi.org/10.1080/15599612.2023.2299026

Hoa, N.T.Q., Lam, P.H., Tung, P.D., Tuan, T.S., and Nguyen, H., 2019. Numerical study of a wide-angle and polarization-insensitive ultrabroadband metamaterial absorber in visible and near-infrared region. IEEE Photonics Journal, 11(1), pp.1-8. DOI: https://doi.org/10.1109/JPHOT.2018.2888971

Huang, X., Zhang, X., Hu, Z., Aqeeli, M., and Alburaikan, A., 2015. Design of broadband and tunable terahertz absorbers based on graphene metasurface: Equivalent circuit model approach. IET Microwaves, Antennas and Propagation, 9(4), pp.307-312. DOI: https://doi.org/10.1049/iet-map.2014.0152

Isegawa, T., Okamoto, T., Kondo, M., Katsumata, S., and Kubo, W., 2019. P3HT: PC61BM solar cell embedding silver nanostripes for light absorption enhancement. Optics Communications, 441, pp.21-25. DOI: https://doi.org/10.1016/j.optcom.2019.02.009

Islam, K.M.R., Rahimian, A., and Ho, T.D., 2025. A low-profile wideband and polarization-insensitive metasurface absorber for X and Ku bands. Journal of Electromagnetic Waves and Applications, 39, pp.1534-1547. DOI: https://doi.org/10.1080/09205071.2025.2518546

Jackson, J.D., 1999. Classical Electrodynamics. Wiley-VCH, United States of America.

Jain, A., Kothari, R., Tyagi, V., Rajamony, R.K., Ahmad, M.S., Singh, H.M., Raina, S., and Pandey, A., 2024. Advances in organic solar cells: Materials, progress, challenges and amelioration for sustainable future. Sustainable Energy Technologies and Assessments, 63, p.103632. DOI: https://doi.org/10.1016/j.seta.2024.103632

Jang, T., Youn, H., Shin, Y.J., and Guo, L.J., 2014. Transparent and flexible polarization-independent microwave broadband absorber. Acs Photonics, 1(3), pp.279-284. Jiao, S., Li, Y., Yang, H., and Xu, S., 2021. Numerical study of ultra-broadband wide-angle absorber. Results in Physics, 24, p.104146. DOI: https://doi.org/10.1021/ph400172u

Karimi Habil, M., Ghahremani, M., and Zapata-Rodríguez, C.J., 2022. Multi octave metasurface-based refractory superabsorber enhanced by a tapered unit cell structure. Scientific Reports, 12(1), p.17066. DOI: https://doi.org/10.1038/s41598-022-21740-0

Katsumata, S., Isegawa, T., Okamoto, T., and Kubo, W., 2020. Effect of metamaterial perfect absorber on device performance of PCPDTBT: PC71 BM solar cell. Physica Status Solidi (A) Applications and Materials Science, 217(1), p.1900910. DOI: https://doi.org/10.1002/pssa.201900910

Kim, Y.J., Yoo, Y.J., Kim, K.W., Rhee, J.Y., Kim, Y.H., and Lee, Y., 2015. Dual broadband metamaterial absorber. Optics Express, 23(4), pp.3861-3868. DOI: https://doi.org/10.1364/OE.23.003861

Kishore, T.S., Kumar, P.U., and Ippili, V., 2025. Review of global sustainable solar energy policies: Significance and impact. Innovation and Green Koschny, T., Kafesaki, M., Economou, E., and Soukoulis, C., 2004. Effective medium theory of left-handed materials. Physical Review Letters, 93(10), p.107402. DOI: https://doi.org/10.1103/PhysRevLett.93.107402

Kotsuka, Y., 2019. Electromagnetic Wave Absorbers: Detailed Theories and Applications. John Wiley & Sons, Hoboken, New Jersey, USA, p.336. DOI: https://doi.org/10.1002/9781119564430

Kumar, R., Singh, B.K., and Pandey, P.C., 2022. Broadband metamaterial absorber in the visible region using a petal-shaped resonator for solar cell applications. Physica E: Low-Dimensional Systems and Nanostructures, 142, p.115327. DOI: https://doi.org/10.1016/j.physe.2022.115327

Landy, N.I., Bingham, C.M., Tyler, T., Jokerst, N., Smith, D.R., and Padilla, W.J., 2009. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Physical Review B—Condensed Matter and Materials Physics, 79(12), p.125104. DOI: https://doi.org/10.1103/PhysRevB.79.125104

Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., and Padilla, W.J., 2008. Perfect metamaterial absorber. Physical Review Letters, 100(20), p.207402. DOI: https://doi.org/10.1103/PhysRevLett.100.207402

Lazaroiu, A.C., Gmal Osman, M., Strejoiu, C.V., and Lazaroiu, G., 2023. A comprehensive overview of photovoltaic technologies and their efficiency for climate neutrality. Sustainability, 15(23), p.16297. DOI: https://doi.org/10.3390/su152316297

Lee, D., Hwang, J.G., Lim, D., Hara, T., and Lim, S., 2016. Incident angle-and polarization-insensitive metamaterial absorber using circular sectors. Scientific Reports, 6(1), p.27155. DOI: https://doi.org/10.1038/srep27155

Liao, S.H., Wang, C.H., Ke, P.X., and Yang, C.F., 2024. Using planar metamaterials to design a bidirectional switching functionality absorber—an ultra-wideband optical absorber and multi-wavelength resonant absorber. Photonics, 11(3), p.199. DOI: https://doi.org/10.3390/photonics11030199

Lin, Y., Cui, Y., Ding, F., Fung, K.H., Ji, T., Li, D., and Hao, Y., 2017. Tungsten based anisotropic metamaterial as an ultra-broadband absorber. Optical Materials Express, 7(2), pp.606-617. DOI: https://doi.org/10.1364/OME.7.000606

Liu, K., Hu, H., Song, H., Zeng, X., Ji, D., Jiang, S., and Gan, Q., 2013. Wide angle and polarization-insensitive perfect absorber for organic photovoltaic layers. IEEE Photonics Technology Letters, 25(13), pp.1266-1269. DOI: https://doi.org/10.1109/LPT.2013.2264047

Liu, K., Zeng, B., Song, H., Gan, Q., Bartoli, F.J., and Kafafi, Z.H., 2014. Super absorption of ultra-thin organic photovoltaic films. Optics Communications, 314, pp.48-56. DOI: https://doi.org/10.1016/j.optcom.2013.08.062

Liu, N., Mesch, M., Weiss, T., Hentschel, M., and Giessen, H., 2010. Infrared perfect absorber and its application as plasmonic sensor. Nano Letters, 10(7), pp.2342-2348. DOI: https://doi.org/10.1021/nl9041033

Liu, X., Xia, F., Wang, M., Liang, J., and Yun, M., 2023. Working mechanism and progress of electromagnetic metamaterial perfect absorber. Photonics, 10(2), p.205. DOI: https://doi.org/10.3390/photonics10020205

Liu, Y., Chen, Y., Li, J., Hung, T.C., and Li, J., 2012a. Study of energy absorption on solar cell using metamaterials. Solar Energy, 86(5), pp.1586-1599. DOI: https://doi.org/10.1016/j.solener.2012.02.021

Liu, Y., Gu, S., Luo, C., and Zhao, X., 2012b. Ultra-thin broadband metamaterial absorber. Applied Physics A, 108, pp.19-24. DOI: https://doi.org/10.1007/s00339-012-6936-0

Long, C., Yin, S., Wang, W., Li, W., Zhu, J., and Guan, J., 2016. Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode. Scientific Reports, 6(1), p.21431. DOI: https://doi.org/10.1038/srep21431

Moniruzzaman, M., Islam, M.T., Muhammad, G., Singh, M.S.J., and Samsuzzaman, M., 2020. Quad band metamaterial absorber based on asymmetric circular split ring resonator for multiband microwave applications. Results in Physics, 19, p.103467. DOI: https://doi.org/10.1016/j.rinp.2020.103467

Musa, A., Alam, T., Islam, M.T., Hakim, M.L., Rmili, H., Alshammari, A.S., Islam, M.S., and Soliman, M.S., 2023. Broadband plasmonic metamaterial optical absorber for the visible to near-infrared region. Nanomaterials (Basel), 13(4), p.626. DOI: https://doi.org/10.3390/nano13040626

Nguyen, T.Q.H., Nguyen, T.K.T., Cao, T.N., Nguyen, H., and Bach, L.G., 2020. Numerical study of a broadband metamaterial absorber using a single split circle ring and lumped resistors for X-band applications. Aip Advances, DOI: https://doi.org/10.1063/1.5143915

Padilla, W. J., and Fan, K., 2022. Metamaterial Electromagnetic Wave Absorbers. Springer Nature Switzerland AG, Switzerland. DOI: https://doi.org/10.1007/978-3-031-03765-8

Prasada, N., Babua, T., Phanidharb, S., Singampallic, R., Naikd, B., Sarmaa, M., and Ramesha, S., 2021. Potential applications of metamaterials in antenna design, cloaking devices, sensors and solar cells: A comprehensive review. Journal of Optoelectronic and Biomedical Materials, 13(2), pp.23-31. DOI: https://doi.org/10.15251/JOBM.2021.132.23

Saadeldin, A.S., Sayed, A.M., Amr, A.M., Sayed, M.O., Hameed, M.F.O., and Obayya, S., 2023. Broadband polarization insensitive metamaterial absorber. Optical and Quantum Electronics, 55(7), p.652. DOI: https://doi.org/10.1007/s11082-023-04881-y

Sayed, S.I., Mahmoud, K., and Mubarak, R.I., 2023. Design and optimization of broadband metamaterial absorber based on manganese for visible applications. Scientific Reports, 13(1), p.11937. DOI: https://doi.org/10.1038/s41598-023-38263-x

Sayed, S.I., Mahmoud, K., and Mubarak, R.I., 2025. Circuit modeling and hybrid optimization of a lithography-free visible metamaterial absorber. Discover Applied Sciences, 7(8), p.790. DOI: https://doi.org/10.1007/s42452-025-06481-9

Shen, G., Zhang, M., Ji, Y., Huang, W., Yu, H., and Shi, J., 2018. Broadband terahertz metamaterial absorber based on simple multi-ring structures. Aip Advances, 8(7), p.075206. DOI: https://doi.org/10.1063/1.5024606

Shen, Y., Pang, Y.Q., Wang, J.F., Ma, H., Pei, Z.B., and Qu, S.B., 2015. Ultrabroadband terahertz absorption by uniaxial anisotropic nanowire metamaterials. IEEE Photonics Technology Letters, 27(21), pp.2284-2287. DOI: https://doi.org/10.1109/LPT.2015.2461633

Smith, D.R., Padilla, W.J., Vier, D., Nemat-Nasser, S.C., and Schultz, S., 2000. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84(18), p.4184. DOI: https://doi.org/10.1103/PhysRevLett.84.4184

Solak, E.K., and Irmak, E., 2023. Advances in organic photovoltaic cells: A comprehensive review of materials, technologies, and performance. RSC Advances, 13(18), pp.12244-12269. DOI: https://doi.org/10.1039/D3RA01454A

Tak, J., Jin, Y., and Choi, J., 2016. A dual‐band metamaterial microwave absorber. Microwave and Optical Technology Letters, 58(9), pp.2052-2057. DOI: https://doi.org/10.1002/mop.29977

Takashima, Y., Furuta, S., Nagamatsu, K., Haraguchi, M., and Naoi, Y., 2024. Broadband Ag/SiO2 /Fe/TiO2 ultrathin planar absorber with a wide acceptance angle from visible to near-infrared regions. Optical Materials Express, 14(3), pp.778-791. DOI: https://doi.org/10.1364/OME.517239

Tegegne, N.A., Nchinda, L.T., and Krüger, T.P., 2025. Progress toward stable organic solar cells. Advanced Optical Materials, 13(4), p.2402257. DOI: https://doi.org/10.1002/adom.202402257

Tuong, P.V., Park, J.W., Lam, V.D., Jang, W.H., Nikitov, S.A., and Lee, Y.P., 2013. Dielectric and Ohmic losses in perfectly absorbingmetamaterials. Optics Communications, 295, pp.17-20. DOI: https://doi.org/10.1016/j.optcom.2013.01.031

Verma, A., and Meena, O., 2023. A Review of Metamaterial Absorber and its Absorption Techniques. In: 2023 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS). IEEE, Bhopal, India, pp.1-6. DOI: https://doi.org/10.1109/SCEECS57921.2023.10062996

Veselago, V., 1967. The electrodynamics of substances with simultaneously negative values of ε and µ. Uspekhi Fizicheskikh Nauk, 92(3), pp.517-526. DOI: https://doi.org/10.3367/UFNr.0092.196707d.0517

Wang, B.X., 2016. Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs. IEEE Journal of Selected Topics in Quantum Electronics, 23(4), pp.1-7. DOI: https://doi.org/10.1109/JSTQE.2016.2547325

Wang, B.X., Xu, C., Duan, G., Xu, W., and Pi, F., 2023a. Review of broadband metamaterial absorbers: From principles, design strategies, and tunable properties to functional applications. Advanced Functional Materials, 33(14), p.2213818. DOI: https://doi.org/10.1002/adfm.202213818

Wang, B.X., Zhai, X., Wang, G., Huang, W., and Wang, L., 2014. Design of a four-band and polarization-insensitive terahertz metamaterial absorber. IEEE Photonics Journal, 7(1), pp.1-8. DOI: https://doi.org/10.1109/JPHOT.2014.2381633

Wang, C.Y., Liang, J.G., Cai, T., Li, H.P., Ji, W.Y., Zhang, Q., and Zhang, C.W., 2019. High-performance and ultra-broadband metamaterial absorber based on mixed absorption mechanisms. IEEE Access, 7, pp.57259-57266. DOI: https://doi.org/10.1109/ACCESS.2019.2913278

Wang, G.Z., and Wang, B.X., 2015. Five-band terahertz metamaterial absorber based on a four-gap comb resonator. Journal of Lightwave Technology, 33(24), pp.5151-5156. DOI: https://doi.org/10.1109/JLT.2015.2497740

Wang, J., Lang, T., Hong, Z., Xiao, M., and Yu, J., 2021. Design and fabrication of a triple-band terahertz metamaterial absorber. Nanomaterials, 11(5), p.1110. DOI: https://doi.org/10.3390/nano11051110

Wang, L., and Karaaslan, M., 2023. Advanced Metamaterials for Engineers. IOP Publishing, Bristol, UK, pp.358. DOI: https://doi.org/10.1088/978-0-7503-5754-8

Wang, P., Gao, Z., Xu, Z., and Zhao, T., 2023b. Perfect solar absorber based on four-step stacked metamaterial. Photonics, 10, p.1082. DOI: https://doi.org/10.3390/photonics10101082

Wang, Q., Wang, Y., Tang, X.-Z., Huang, X., Xiong, Y., and Zhang, F., 2018. Analysis of triple-band binary metamaterial absorber based on low-permittivity all-dielectric resonance surface. Journal of Advanced Dielectrics, 8(3), p.1850021. DOI: https://doi.org/10.1142/S2010135X18500212

Wen, D.E., Yang, H., Ye, Q., Li, M., Guo, L., and Zhang, J., 2013. Broadband metamaterial absorber based on a multi-layer structure. Physica Scripta, 88(1), p.015402. DOI: https://doi.org/10.1088/0031-8949/88/01/015402

Wen, Q.Y., Zhang, H.W., Xie, Y.S., Yang, Q.H., and Liu, Y.L., 2009. Dual band terahertz metamaterial absorber: Design, fabrication, and characterization. Applied Physics Letters, 95(24), p.241111. DOI: https://doi.org/10.1063/1.3276072

Xie, J., 2023. Broadband Absorber Using Double-Layer Frequency Selective Surface Loaded with Resistors. New Materials, Machinery and Vehicle Engineering. IOS Press, Amsterdam, Netherlands, pp.180-186. DOI: https://doi.org/10.3233/ATDE230137

Ye, Y.Q., Jin, Y., and He, S., 2010. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. Journal of the Optical Society of America B, 27(3), pp.498-504. DOI: https://doi.org/10.1364/JOSAB.27.000498

Yu, P., Besteiro, L.V., Huang, Y., Wu, J., Fu, L., Tan, H.H., Jagadish, C., Wiederrecht, G.P., Govorov, A.O., and Wang, Z., 2019. Broadband metamaterial absorbers. Advanced Optical Materials, 7(3), p.1800995. DOI: https://doi.org/10.1002/adom.201800995

Yue, S., Hou, M., Wang, R., Guo, H., Hou, Y., Li, M., Zhang, Z., Wang, Y., and Zhang, Z., 2020. Ultra-broadband metamaterial absorber from ultraviolet to long-wave infrared based on CMOS-compatible materials. Optics Express, 28(21), pp.31844-31861. DOI: https://doi.org/10.1364/OE.403551

Zhang, C., Zhou, W., Sun, S., Yi, N., Song, Q., and Xiao, S., 2015. Absorption enhancement in thin-film organic solar cells through electric and magnetic resonances in optical metamaterial. Optical Materials Express, 5(9), pp.1954-1961. DOI: https://doi.org/10.1364/OME.5.001954

Zhang, H., Yang, J., Zhang, H., and Liu, J., 2018. Design of an ultra-broadband absorber based on plasma metamaterial and lumped resistors. Optical Materials Express, 8(8), pp.2103-2113. DOI: https://doi.org/10.1364/OME.8.002103

Zhang, Y., Yang, W., Li, X., and Liu, G., 2023. Design and analysis of a broadband microwave metamaterial absorber. IEEE Photonics Journal, 15(3), pp.1-10. DOI: https://doi.org/10.1109/JPHOT.2023.3277449

Zhao, C., Jia, M., Zhang, N., Meng, S., and Tian, Y., 2025. Ultra-wideband optically transparent flexible metamaterial absorber for satellite stealth. Scientific Reports, 15(1), p.29093. DOI: https://doi.org/10.1038/s41598-025-09951-7

Zheng, H., Pham, T.S., Chen, L., and Lee, Y., 2023. Metamaterial perfect absorbers for controlling bandwidth: Single-peak/multiple-peaks/tailored-band/ broadband. Crystals, 14(1), p.19. DOI: https://doi.org/10.3390/cryst14010019

Zhou, Z., Zhou, X., Zhang, R., Ke, S., Zhu, W., Wu, S., Qin, L., and Li, X., 2023. Large-Area and Wide-Angle Perfect Absorbers based on Array of Nanospheres. In: Nanophotonics, Micro/Nano Optics, and Plasmonics VIII. SPIE, China, pp.191-201. DOI: https://doi.org/10.1117/12.2655767

Zhu, J., Ma, Z., Sun, W., Ding, F., He, Q., Zhou, L., and Ma, Y., 2014. Ultra-broadband terahertz metamaterial absorber. Applied Physics Letters, 105(2), p.021102. DOI: https://doi.org/10.1063/1.4890521

Zhu, W., 2018. Electromagnetic Metamaterial Absorbers: From Narrowband to Broadband. Intechopen, London, pp.133-151. DOI: https://doi.org/10.5772/intechopen.78581

Ziolkowski, R.W., 2006. Metamaterial-based source and scattering enhancements: From microwave to optical frequencies. Opto-Electronics Review, 14(3), pp.167-177. DOI: https://doi.org/10.2478/s11772-006-0022-0

Published

2025-11-06

How to Cite

Kakil, D. O., Muhammadsharif, F. F. and Abdulkarim, Y. I. (2025) “Broadband Metamaterial Absorbers for Organic Solar Cells: A Review”, ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 13(2), pp. 233–255. doi: 10.14500/aro.12025.

Issue

Section

Review Articles
Received 2025-01-27
Accepted 2025-10-04
Published 2025-11-06

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.