Broadband Metamaterial Absorbers for Organic Solar Cells

A Review

Authors

  • Diyaree O. Kakil Department of Physics, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region – F.R. Iraq https://orcid.org/0000-0002-0055-9790
  • Fahmi F. Muhammadsharif Department of Physics, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region – F.R. Iraq https://orcid.org/0000-0002-4563-9671
  • Yadgar I. Abdulkarim Physics Department, College of Science, Charmo University, 46023 Chamchamal, Sulaimania, Kurdistan Region – F.R. Iraq https://orcid.org/0000-0002-2808-2867

DOI:

https://doi.org/10.14500/aro.12025

Keywords:

Broadband absorbers, Metamaterials, Organic solar cells, Photovoltaic efficiency, Plasmonic

Abstract

Organic solar cells (OSCs) often suffer from weak absorption in the visible and infrared spectrum, which directly restricts their efficiency. Since light harvesting is central to solar conversion, improving absorption across a broad range is critical. Broadband metamaterial absorbers (BMMAs) present a promising solution by enhancing light-matter interaction and extending absorption over a broader spectrum. This improvement directly makes the process of converting energy more efficient. This review aims to systematically examine the recent progress of metamaterial absorbers (MMAs), highlighting broadband, polarization independent, and wide-angle designs areas that remain unexplored in recent reviews. Different categories of strategies, such as planar, vertical, lumped-element, and nanostructured plasmonic designs, are discussed to highlight how material choice and design geometry affect absorption. In addition, it describes the physical concepts of perfect absorption and assesses how applicable they are to OSC integration. Our analysis shows that the most of the progress has been theoretical approaches with a limited experiment. These studies demonstrate that BMMAs have an excellent opportunity to significantly improve energy conversion efficiency. At the same time, most challenges remain, like scalability, material losses, and easy integration into OGCs. This research also points out that there are future investigations into affordable, low-loss materials that can be easily integrated. Overall, this study emphasizes how important
MMBAs are to advancing the efficiency and sustainability of next generation OSCs.

Downloads

Download data is not yet available.

Author Biography

Fahmi F. Muhammadsharif, Department of Physics, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region – F.R. Iraq

Fahmi F. Muhammadsharif is an Assistant Professor at the Department of Physics, Faculty of Science and Health, Koya University. He got the B.Sc. degree in Physics, the M.Sc. degree in Physics and the Ph.D. degree in Solar Energy from the University of Sulaimani, University of Mosul and Universiti Malaya, respectively. His research interests are in Solar Energy, Solar Cells, and Metamaterials. Dr. Fahmi is a professional member of the International Solar Energy Society, and International Association of Advanced Materials

References

Aalizadeh, M., Khavasi, A., Butun, B., and Ozbay, E., 2018. Large-area, cost-effective, ultra-broadband perfect absorber utilizing manganese in metal insulator-metal structure. Scientific Reports, 8(1), p.9162.

Abouelez, A.E., Eldiwany, E.A., and Swillam, M.A., 2024. Silicon-based ultra broadband mid-IR and LWIR near-perfect metamaterial absorber. Optical and Quantum Electronics, 56(7), p.1103.

Ahmad, A., Asad, A., Pacpaco, P., Thampongphan, C., and Hasan, M.H., 2024. application of metamaterial in renewable energy: A review. International Journal of Engineering Materials and Manufacture, 9(2), pp.60-80.

Al-Badri, K.S.L., 2020. Electromagnetic broad band absorber based on metamaterial and lumped resistance. Journal of King Saud University-Science, 32(1), pp.501-506.

Ali, A., Mitra, A., and Aïssa, B., 2022. Metamaterials and metasurfaces: A review from the perspectives of materials, mechanisms and advanced metadevices. Nanomaterials (Basel), 12(6), p.1027.

Aliqab, K., Armghan, A., and Alsharari, M., 2024. Polarization insensitive and wideband terahertz absorber using high-impedance resistive material of RuO2 . Scientific Reports, 14(1), p.19149.

Ardeshana, M.A., Thakkar, F.N., and Domadia, S.G., 2025. Composite structure design for broadband metamaterial absorption: Integrated nonlinearity and enhanced performance using lumped resistors. Journal of Applied Physics, 137(9), p.093104.

Armghan, A., Aliqab, K., and Alsharari, M., 2025. A novel fan-shaped ultrabroadband solar absorber using nickel-based plasmonic metasurfaces. Scientific Reports, 15(1), p.21839.

Bağmancı, M., Wang, L., Sabah, C., Karaaslan, M., Paul, L.C., Rani, T., and Unal, E., 2024. Broadband multi‐layered stepped cone shaped metamaterial absorber for energy harvesting and stealth applications. Engineering Reports, 6(11), p.e12903.

Baqir, M.A., Qadeer, A., Altintas, O., Draz, M.U., Karaaslan, M., and Sampe, J., 2025. Design of polarization-insensitive wideband metamaterial radar absorber with enhanced bandwidth. Progress in Electromagnetics Research C, 155, pp.67-74.

Bilal, R.M.H., Saeed, M.A., Naveed, M.A., Zubair, M., Mehmood, M.Q., and Massoud, Y., 2022. Nickel-based high-bandwidth nanostructured metamaterial absorber for visible and infrared spectrum. Nanomaterials (Basel), 12(19), p.3356.

Cai, B., Wu, L., Zhu, X., Cheng, Z., and Cheng, Y., 2024. Ultra-broadband and wide-angle plasmonic light absorber based on all-dielectric gallium arsenide (GaAs) metasurface in visible and near-infrared region. Results in Physics, 58, p.107509.

Carrillo-Sendejas, J.C., and Maldonado, J.L., 2025. Progress in organic solar cells: Materials, challenges, and novel strategies for niche applications. APL Energy, 3(2), p.021501.

Cen, C., Liu, X., Lin, Y., Yi, Z., and Zeng, Q., 2025. Metamaterial absorber with ultra-broadband, ultra-high absorption, polarization independence and high-temperature resistance for solar thermal energy harvesting applications. Optics Communications, 575, p.131292.

Chao, Y.C., Lin, H.I., Lin, J.Y., Tsao, Y.C., Liao, Y.M., Hsu, F.C., and Chen, Y.F., 2023. Unconventional organic solar cell structure based on hyperbolic metamaterial. Journal of Materials Chemistry C, 11(6), pp.2273-2281.

Chen, H.T., 2012. Interference theory of metamaterial perfect absorbers. Optics Express, 20(7), pp.7165-7172.

Chen, H.T., Padilla, W.J., Cich, M.J., Azad, A.K., Averitt, R.D., and Taylor, A.J., 2009. A metamaterial solid-state terahertz phase modulator. Nature Photonics, 3(3), pp.148-151.

Chen, Q., Huang, J.L., Wang, C.H., Ke, P.X., Yang, C.F., and Tseng, H.W., 2024. Investigation of a pyramid-like optical absorber with high absorptivity in the range of ultraviolet a to middle infrared. Photonics, 11(4), p.352.

Cheng, D.K., 1989. Field and Wave Electromagnetics. Pearson, Boston, MA, U.S.A., p.720.

Choukri, S., Takhedmit, H., El Mrabet, O., Aznabet, M., and Cirio, L., 2022. Wide Angle, Polarization Independent Metamaterial Absorber Unit-Cell for RCS Reduction and Energy Harvesting Applications. In: The 12th International Conference on Metamaterials, Photonic Crystals and Plasmonics. IEEE, Torremolinos, Spain, pp.1-8. Available from: https://hal.science/hal-03714453v1 [Last accessed on 2025 Aug 01].

Chowdhury, M.Z.B., Islam, M.T., Hoque, A., Alshammari, A.S., Alzamil, A., Alsaif, H., Alshammari, B.M., Hossain, I., and Samsuzzaman, M., 2022. Design and parametric analysis of a wide-angle and polarization insensitive ultra broadband metamaterial absorber for visible optical wavelength applications. Nanomaterials (Basel), 12(23), p.4253.

Duan, G., Schalch, J., Zhao, X., Li, A., Chen, C., Averitt, R.D., and Zhang, X., 2019. A survey of theoretical models for terahertz electromagnetic metamaterial absorbers. Sensors and Actuators A: Physical, 287, pp.21-28.

Duan, G., Schalch, J., Zhao, X., Zhang, J., Averitt, R., and Zhang, X., 2018. Identifying the perfect absorption of metamaterial absorbers. Physical Review B, 97(3), p.035128.

Fu, X., and Cui, T.J., 2019. Recent progress on metamaterials: From effective medium model to real-time information processing system. Progress in Quantum Electronics, 67, p.100223.

Gandhi, C., Babu, P.R., and Senthilnathan, K., 2021. Ultra-thin polarization independent broadband terahertz metamaterial absorber. Frontiers of Optoelectronics, 14(3), pp.288-297.

Ghosh, S., and Srivastava, K.V., 2014. An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory. IEEE Antennas and Wireless Propagation Letters, 14, pp.511-514.

Góra, P., and Łopato, P., 2023. Metamaterials’ application in sustainable technologies and an introduction to their influence on energy harvesting devices. Applied Sciences, 13(13), p.7742.

Hanif, A., Alam, T., Islam, M.T., Hakim, M.L., Yahya, I., Albadran, S., Islam, M.S., and S. Soliman, M., 2024. Ni-PI-Ni based nanoarchitectonics near-perfect metamaterial absorber with incident angle stability for visible and near-infrared applications. International Journal of Optomechatronics, 18(1), p.2299026.

Hoa, N.T.Q., Lam, P.H., Tung, P.D., Tuan, T.S., and Nguyen, H., 2019. Numerical study of a wide-angle and polarization-insensitive ultrabroadband metamaterial absorber in visible and near-infrared region. IEEE Photonics Journal, 11(1), pp.1-8.

Huang, X., Zhang, X., Hu, Z., Aqeeli, M., and Alburaikan, A., 2015. Design of broadband and tunable terahertz absorbers based on graphene metasurface: Equivalent circuit model approach. IET Microwaves, Antennas and Propagation, 9(4), pp.307-312.

Isegawa, T., Okamoto, T., Kondo, M., Katsumata, S., and Kubo, W., 2019. P3HT: PC61BM solar cell embedding silver nanostripes for light absorption enhancement. Optics Communications, 441, pp.21-25.

Islam, K.M.R., Rahimian, A., and Ho, T.D., 2025. A low-profile wideband and polarization-insensitive metasurface absorber for X and Ku bands. Journal of Electromagnetic Waves and Applications, 39, pp.1534-1547.

Jackson, J.D., 1999. Classical Electrodynamics. Wiley-VCH, United States of America.

Jain, A., Kothari, R., Tyagi, V., Rajamony, R.K., Ahmad, M.S., Singh, H.M., Raina, S., and Pandey, A., 2024. Advances in organic solar cells: Materials, progress, challenges and amelioration for sustainable future. Sustainable Energy Technologies and Assessments, 63, p.103632.

Jang, T., Youn, H., Shin, Y.J., and Guo, L.J., 2014. Transparent and flexible polarization-independent microwave broadband absorber. Acs Photonics, 1(3), pp.279-284. Jiao, S., Li, Y., Yang, H., and Xu, S., 2021. Numerical study of ultra-broadband wide-angle absorber. Results in Physics, 24, p.104146.

Karimi Habil, M., Ghahremani, M., and Zapata-Rodríguez, C.J., 2022. Multi octave metasurface-based refractory superabsorber enhanced by a tapered unit cell structure. Scientific Reports, 12(1), p.17066.

Katsumata, S., Isegawa, T., Okamoto, T., and Kubo, W., 2020. Effect of metamaterial perfect absorber on device performance of PCPDTBT: PC71 BM solar cell. Physica Status Solidi (A) Applications and Materials Science, 217(1), p.1900910.

Kim, Y.J., Yoo, Y.J., Kim, K.W., Rhee, J.Y., Kim, Y.H., and Lee, Y., 2015. Dual broadband metamaterial absorber. Optics Express, 23(4), pp.3861-3868.

Kishore, T.S., Kumar, P.U., and Ippili, V., 2025. Review of global sustainable solar energy policies: Significance and impact. Innovation and Green Koschny, T., Kafesaki, M., Economou, E., and Soukoulis, C., 2004. Effective medium theory of left-handed materials. Physical Review Letters, 93(10), p.107402.

Kotsuka, Y., 2019. Electromagnetic Wave Absorbers: Detailed Theories and Applications. John Wiley & Sons, Hoboken, New Jersey, USA, p.336.

Kumar, R., Singh, B.K., and Pandey, P.C., 2022. Broadband metamaterial absorber in the visible region using a petal-shaped resonator for solar cell applications. Physica E: Low-Dimensional Systems and Nanostructures, 142, p.115327.

Landy, N.I., Bingham, C.M., Tyler, T., Jokerst, N., Smith, D.R., and Padilla, W.J., 2009. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Physical Review B—Condensed Matter and Materials Physics, 79(12), p.125104.

Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., and Padilla, W.J., 2008. Perfect metamaterial absorber. Physical Review Letters, 100(20), p.207402.

Lazaroiu, A.C., Gmal Osman, M., Strejoiu, C.V., and Lazaroiu, G., 2023. A comprehensive overview of photovoltaic technologies and their efficiency for climate neutrality. Sustainability, 15(23), p.16297.

Lee, D., Hwang, J.G., Lim, D., Hara, T., and Lim, S., 2016. Incident angle-and polarization-insensitive metamaterial absorber using circular sectors. Scientific Reports, 6(1), p.27155.

Liao, S.H., Wang, C.H., Ke, P.X., and Yang, C.F., 2024. Using planar metamaterials to design a bidirectional switching functionality absorber—an ultra-wideband optical absorber and multi-wavelength resonant absorber. Photonics, 11(3), p.199.

Lin, Y., Cui, Y., Ding, F., Fung, K.H., Ji, T., Li, D., and Hao, Y., 2017. Tungsten based anisotropic metamaterial as an ultra-broadband absorber. Optical Materials Express, 7(2), pp.606-617.

Liu, K., Hu, H., Song, H., Zeng, X., Ji, D., Jiang, S., and Gan, Q., 2013. Wide angle and polarization-insensitive perfect absorber for organic photovoltaic layers. IEEE Photonics Technology Letters, 25(13), pp.1266-1269.

Liu, K., Zeng, B., Song, H., Gan, Q., Bartoli, F.J., and Kafafi, Z.H., 2014. Super absorption of ultra-thin organic photovoltaic films. Optics Communications, 314, pp.48-56.

Liu, N., Mesch, M., Weiss, T., Hentschel, M., and Giessen, H., 2010. Infrared perfect absorber and its application as plasmonic sensor. Nano Letters, 10(7), pp.2342-2348.

Liu, X., Xia, F., Wang, M., Liang, J., and Yun, M., 2023. Working mechanism and progress of electromagnetic metamaterial perfect absorber. Photonics, 10(2), p.205.

Liu, Y., Chen, Y., Li, J., Hung, T.C., and Li, J., 2012a. Study of energy absorption on solar cell using metamaterials. Solar Energy, 86(5), pp.1586-1599.

Liu, Y., Gu, S., Luo, C., and Zhao, X., 2012b. Ultra-thin broadband metamaterial absorber. Applied Physics A, 108, pp.19-24.

Long, C., Yin, S., Wang, W., Li, W., Zhu, J., and Guan, J., 2016. Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode. Scientific Reports, 6(1), p.21431.

Moniruzzaman, M., Islam, M.T., Muhammad, G., Singh, M.S.J., and Samsuzzaman, M., 2020. Quad band metamaterial absorber based on asymmetric circular split ring resonator for multiband microwave applications. Results in Physics, 19, p.103467.

Musa, A., Alam, T., Islam, M.T., Hakim, M.L., Rmili, H., Alshammari, A.S., Islam, M.S., and Soliman, M.S., 2023. Broadband plasmonic metamaterial optical absorber for the visible to near-infrared region. Nanomaterials (Basel), 13(4), p.626.

Nguyen, T.Q.H., Nguyen, T.K.T., Cao, T.N., Nguyen, H., and Bach, L.G., 2020. Numerical study of a broadband metamaterial absorber using a single split circle ring and lumped resistors for X-band applications. Aip Advances,

Padilla, W. J., and Fan, K., 2022. Metamaterial Electromagnetic Wave Absorbers. Springer Nature Switzerland AG, Switzerland.

Prasada, N., Babua, T., Phanidharb, S., Singampallic, R., Naikd, B., Sarmaa, M., and Ramesha, S., 2021. Potential applications of metamaterials in antenna design, cloaking devices, sensors and solar cells: A comprehensive review. Journal of Optoelectronic and Biomedical Materials, 13(2), pp.23-31.

Saadeldin, A.S., Sayed, A.M., Amr, A.M., Sayed, M.O., Hameed, M.F.O., and Obayya, S., 2023. Broadband polarization insensitive metamaterial absorber. Optical and Quantum Electronics, 55(7), p.652.

Sayed, S.I., Mahmoud, K., and Mubarak, R.I., 2023. Design and optimization of broadband metamaterial absorber based on manganese for visible applications. Scientific Reports, 13(1), p.11937.

Sayed, S.I., Mahmoud, K., and Mubarak, R.I., 2025. Circuit modeling and hybrid optimization of a lithography-free visible metamaterial absorber. Discover Applied Sciences, 7(8), p.790.

Shen, G., Zhang, M., Ji, Y., Huang, W., Yu, H., and Shi, J., 2018. Broadband terahertz metamaterial absorber based on simple multi-ring structures. Aip Advances, 8(7), p.075206.

Shen, Y., Pang, Y.Q., Wang, J.F., Ma, H., Pei, Z.B., and Qu, S.B., 2015. Ultrabroadband terahertz absorption by uniaxial anisotropic nanowire metamaterials. IEEE Photonics Technology Letters, 27(21), pp.2284-2287.

Smith, D.R., Padilla, W.J., Vier, D., Nemat-Nasser, S.C., and Schultz, S., 2000. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84(18), p.4184.

Solak, E.K., and Irmak, E., 2023. Advances in organic photovoltaic cells: A comprehensive review of materials, technologies, and performance. RSC Advances, 13(18), pp.12244-12269.

Tak, J., Jin, Y., and Choi, J., 2016. A dual‐band metamaterial microwave absorber. Microwave and Optical Technology Letters, 58(9), pp.2052-2057.

Takashima, Y., Furuta, S., Nagamatsu, K., Haraguchi, M., and Naoi, Y., 2024. Broadband Ag/SiO2 /Fe/TiO2 ultrathin planar absorber with a wide acceptance angle from visible to near-infrared regions. Optical Materials Express, 14(3), pp.778-791.

Tegegne, N.A., Nchinda, L.T., and Krüger, T.P., 2025. Progress toward stable organic solar cells. Advanced Optical Materials, 13(4), p.2402257.

Tuong, P.V., Park, J.W., Lam, V.D., Jang, W.H., Nikitov, S.A., and Lee, Y.P., 2013. Dielectric and Ohmic losses in perfectly absorbingmetamaterials. Optics Communications, 295, pp.17-20.

Verma, A., and Meena, O., 2023. A Review of Metamaterial Absorber and its Absorption Techniques. In: 2023 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS). IEEE, Bhopal, India, pp.1-6.

Veselago, V., 1967. The electrodynamics of substances with simultaneously negative values of ε and µ. Uspekhi Fizicheskikh Nauk, 92(3), pp.517-526.

Wang, B.X., 2016. Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs. IEEE Journal of Selected Topics in Quantum Electronics, 23(4), pp.1-7.

Wang, B.X., Xu, C., Duan, G., Xu, W., and Pi, F., 2023a. Review of broadband metamaterial absorbers: From principles, design strategies, and tunable properties to functional applications. Advanced Functional Materials, 33(14), p.2213818.

Wang, B.X., Zhai, X., Wang, G., Huang, W., and Wang, L., 2014. Design of a four-band and polarization-insensitive terahertz metamaterial absorber. IEEE Photonics Journal, 7(1), pp.1-8.

Wang, C.Y., Liang, J.G., Cai, T., Li, H.P., Ji, W.Y., Zhang, Q., and Zhang, C.W., 2019. High-performance and ultra-broadband metamaterial absorber based on mixed absorption mechanisms. IEEE Access, 7, pp.57259-57266.

Wang, G.Z., and Wang, B.X., 2015. Five-band terahertz metamaterial absorber based on a four-gap comb resonator. Journal of Lightwave Technology, 33(24), pp.5151-5156.

Wang, J., Lang, T., Hong, Z., Xiao, M., and Yu, J., 2021. Design and fabrication of a triple-band terahertz metamaterial absorber. Nanomaterials, 11(5), p.1110.

Wang, L., and Karaaslan, M., 2023. Advanced Metamaterials for Engineers. IOP Publishing, Bristol, UK, pp.358.

Wang, P., Gao, Z., Xu, Z., and Zhao, T., 2023b. Perfect solar absorber based on four-step stacked metamaterial. Photonics, 10, p.1082.

Wang, Q., Wang, Y., Tang, X.-Z., Huang, X., Xiong, Y., and Zhang, F., 2018. Analysis of triple-band binary metamaterial absorber based on low-permittivity all-dielectric resonance surface. Journal of Advanced Dielectrics, 8(3), p.1850021.

Wen, D.E., Yang, H., Ye, Q., Li, M., Guo, L., and Zhang, J., 2013. Broadband metamaterial absorber based on a multi-layer structure. Physica Scripta, 88(1), p.015402.

Wen, Q.Y., Zhang, H.W., Xie, Y.S., Yang, Q.H., and Liu, Y.L., 2009. Dual band terahertz metamaterial absorber: Design, fabrication, and characterization. Applied Physics Letters, 95(24), p.241111.

Xie, J., 2023. Broadband Absorber Using Double-Layer Frequency Selective Surface Loaded with Resistors. New Materials, Machinery and Vehicle Engineering. IOS Press, Amsterdam, Netherlands, pp.180-186.

Ye, Y.Q., Jin, Y., and He, S., 2010. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. Journal of the Optical Society of America B, 27(3), pp.498-504.

Yu, P., Besteiro, L.V., Huang, Y., Wu, J., Fu, L., Tan, H.H., Jagadish, C., Wiederrecht, G.P., Govorov, A.O., and Wang, Z., 2019. Broadband metamaterial absorbers. Advanced Optical Materials, 7(3), p.1800995.

Yue, S., Hou, M., Wang, R., Guo, H., Hou, Y., Li, M., Zhang, Z., Wang, Y., and Zhang, Z., 2020. Ultra-broadband metamaterial absorber from ultraviolet to long-wave infrared based on CMOS-compatible materials. Optics Express, 28(21), pp.31844-31861.

Zhang, C., Zhou, W., Sun, S., Yi, N., Song, Q., and Xiao, S., 2015. Absorption enhancement in thin-film organic solar cells through electric and magnetic resonances in optical metamaterial. Optical Materials Express, 5(9), pp.1954-1961.

Zhang, H., Yang, J., Zhang, H., and Liu, J., 2018. Design of an ultra-broadband absorber based on plasma metamaterial and lumped resistors. Optical Materials Express, 8(8), pp.2103-2113.

Zhang, Y., Yang, W., Li, X., and Liu, G., 2023. Design and analysis of a broadband microwave metamaterial absorber. IEEE Photonics Journal, 15(3), pp.1-10.

Zhao, C., Jia, M., Zhang, N., Meng, S., and Tian, Y., 2025. Ultra-wideband optically transparent flexible metamaterial absorber for satellite stealth. Scientific Reports, 15(1), p.29093.

Zheng, H., Pham, T.S., Chen, L., and Lee, Y., 2023. Metamaterial perfect absorbers for controlling bandwidth: Single-peak/multiple-peaks/tailored-band/ broadband. Crystals, 14(1), p.19.

Zhou, Z., Zhou, X., Zhang, R., Ke, S., Zhu, W., Wu, S., Qin, L., and Li, X., 2023. Large-Area and Wide-Angle Perfect Absorbers based on Array of Nanospheres. In: Nanophotonics, Micro/Nano Optics, and Plasmonics VIII. SPIE, China, pp.191-201.

Zhu, J., Ma, Z., Sun, W., Ding, F., He, Q., Zhou, L., and Ma, Y., 2014. Ultra-broadband terahertz metamaterial absorber. Applied Physics Letters, 105(2), p.021102.

Zhu, W., 2018. Electromagnetic Metamaterial Absorbers: From Narrowband to Broadband. Intechopen, London, pp.133-151.

Ziolkowski, R.W., 2006. Metamaterial-based source and scattering enhancements: From microwave to optical frequencies. Opto-Electronics Review, 14(3), pp.167-177.

Published

2025-11-06

How to Cite

Kakil, D. O., Muhammadsharif, F. F. and Abdulkarim, Y. I. (2025) “Broadband Metamaterial Absorbers for Organic Solar Cells: A Review”, ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 13(2), pp. 233–255. doi: 10.14500/aro.12025.

Issue

Section

Review Articles
Received 2025-01-27
Accepted 2025-10-04
Published 2025-11-06

Similar Articles

<< < 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.