Feasibility Study of Concrete Louvers for High-rise Residential Buildings in Terms of Cooling Energy Requirements
Abstract
High-rise residential buildings are increasing worldwide, including cities in the Kurdistan Region of Iraq. Therefore, creating sustainable environments in and around these residential buildings are becoming an important problem. Improving energy efficiency in buildings has received critical attention worldwide. Countries have developed national sustainability strategies that lead to the lower energy consumption while maintaining comfort, reducing energy consumption, and minimizing harmful emissions. In this paper, an analysis of the impact of external shading devices in high-rise residential buildings on energy consumption of a 13-storey building in Sulaimani city is studied. The study is focused on fixed shading elements, explaining the influence of the design of vertical and horizontal shading devices on the total energy consumption of this type of building. The results show that both a single fixed horizontal blind with a depth of 20 cm and a triple vertical shading with the same depth are considered useless. The reduction in cooling loads by two fixed horizontal louvers almost doubled compared to a single fixed horizontal shading with 20 cm. Moreover, triple fixed horizontal louvers with 40 cm have almost the same effect on reducing cooling loads as triple fixed louvers with 60 cm. On the other hand, a triple fixed horizontal shading device with 60 cm has twice the effect on reducing annual cooling loads as a triple fixed vertical shading device with 60 cm.
Downloads
References
Abd El-Monteleb, A. and Ahmed, M.A., 2012. Using simulation for studying the influence of vertical shading devices on the thermal performance of residential buildings (Case study: New Assiut City). Ain Shams Engineering Journal, 3(2), pp.163-174.
Idchabani, R., El Ganaoui, M. and Sick, F., 2017. Analysis of exterior shading by overhangs and fins in hot climate. Energy Procedia, 139, pp.379-384.
AbdelMonteleb, A., 2013. Using simulation for studying the influence of horizontal shading device protrusion on the thermal performance of spaces in residential buildings. Alexandria Engineering Journal, 52(4), pp.787-796.
Ali, M.M. and Al-Kodmany, K., 2012. Tall Buildings and Urban Habitat of the 21st Century: A Global Perspective. Buildings, 2(4), pp.384-423.
Alzoubi, H.H. and Al-Zoubi, A., 2010. Assessment of building façade performance in terms of daylighting and the associated energy consumption in architectural spaces: Vertical and horizontal shading devices for southern exposure facades. Energy Conversion and Management, 8(51), pp.1592-1599.
Arsalan, G. and Sev, A., 2014. Significant Issues in and Around High-Rise Residential Environments. Mimar Sinan Fine Arts University, Istanbul.
Ashmawy, R.E. and Azmy, N.Y., 2018. Buildings orientation and its impact on the energy consumption. The Academic Research Community Publication, 2(3), pp.35-49.
Athienitis, A. and Haghighat, F., 1992. A Study of the Effect of Solar Radiation on the indoor Environment. Amer Society of Heating, Anaheim, CA, pp.257-261.
CIBSE, 2006. CIBSE Guide A:Environmental Design. The Chartered Institution of Building Services Engineers, London, Norwich.
Date and Time Info., 2020. Date and Time. Available from: https://www. dateandtime.info/citycoordinates.php?id=98463. [Last accessed on 2020 Oct 16].
Datta, G., 2001. Effect of fixed horizontal louver shading devices on thermal perfomance of building by TRNSYS simulation. Renewable Energy, 23(3-4), pp.497-507.
DesignBuilder., 2018. Designbuilder Software ltd.v.5.5.2.3. Available from: https://www.designbuilder.co.uk. [Last accessed on 2018 Dec 01].
Kim, J.T. and Kim, G., 2010. Advanced external shading device to maximize visual and view performance. Indoor and Built Environment, 19(1), pp.65-72.
Kottek, M., Grieser, J., Beck, C., Rudolf, B. And Rubel, F., 2006. World Map of Köppen-Geiger Climate Classification. Meteorologische Zeitschrift, 15(3), pp.259-263.
Milne, N. and Liggett, R., 2019. Climate Consultant v.6 Build 15. Available from: http://www.energy-design-tools.aud.ucla.edu. [Last accessed on 2020 Oct 01].
Morad, D.H. and Ismail, S.K., 2017. A comparative study between the climate response strategies and thermal comfort of a traditional and contemporary houses in KRG: Erbil. Kurdistan Journal of Applied Research, 2(3), pp.1-11.
Neufert, E., Neufert, P. and Baiche, B., 2000. Neufert Architects’ Data. 3rd ed. Blackwell Publishing, Oxford.
Shaeri, J., Habibi, A., Yaghoubi, M. and Chokhachian, A., 2019. The optimum window-to-wall ratio in office buildings for hot-humid, hot-dry, and cold climates in Iran. Environments, 6, pp.5-16.
Shahdan, M., Ahmad, S. and Hussin, M.A., 2018. External Shading Devices for Energy Efficient Building. Vol. 117. IOP Conference Series: Earth and Environmental Science.
Tariq, S.H. and Jinia, M.A., 2012. Effect of fixed horizontal shading devices in south facing residential buildings at Dhaka, Bangladesh. Asian Journal of Applied Science and Engineering, 1(2), pp.9-19.
Copyright (c) 2021 Sara Dh. Bahaadin, Binaee Y. Raof, Hendren Abdulrahman
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who choose to publish their work with Aro agree to the following terms:
-
Authors retain the copyright to their work and grant the journal the right of first publication. The work is simultaneously licensed under a Creative Commons Attribution License [CC BY-NC-SA 4.0]. This license allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors have the freedom to enter into separate agreements for the non-exclusive distribution of the journal's published version of the work. This includes options such as posting it to an institutional repository or publishing it in a book, as long as proper acknowledgement is given to its initial publication in this journal.
-
Authors are encouraged to share and post their work online, including in institutional repositories or on their personal websites, both prior to and during the submission process. This practice can lead to productive exchanges and increase the visibility and citation of the published work.
By agreeing to these terms, authors acknowledge the importance of open access and the benefits it brings to the scholarly community.