Long-wavelength GaInNAs/GaAs Vertical-cavity Surface-emitting Laser for Communication Applications

  • Faten A. Chaqmaqchee Department of Physics, Faculty of Science and Health, Koya University, University Park, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region http://orcid.org/0000-0001-8057-2495
Keywords: Vertical-cavity surface-emitting lasers, GaInNAs/ GaAs, Light-current-voltage characterization, Optical pumping, Electrical pumping


This paper presents a comprehensive study of optical and electrical properties of vertical-cavity surface-emitting lasers(VCSELS) for long wavelength communication applications. The device consists of GaInNAs/GaAs multi-quantum wells QWs that enclosed between standard top and bottom epitaxially grown on AlGaAs/GaAs distributed Bragg reflectors. The impact of driven currents and injecting optical powers through QWs layers on the output light emission is addressed. Room temperature spectra measurements are performed at various applied currents using 980 nm pump laser and maximum intensity amplitude at around 21 dB was achieved.


Download data is not yet available.

Author Biography

Faten A. Chaqmaqchee, Department of Physics, Faculty of Science and Health, Koya University, University Park, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region
Faten A. Chaqmaqchee got a B.Sc. Degree In Physics from the University Salahaddin In 1994-1995, M.Sc. Degree in Laser Physics from the University Selcuk In 2000, Ph.D. Degree In Applied Physics of Laser Physics from the University of Essex In 2012, and Post Doctoral from Technical University Berlin TUB in 2018. She has Participated in more than Ten Conferences, Workshops and Training Schools in the United Kingdom, United States America and all around Europe. She is now an Assistant Professor of Applied Physics (Laser Physics), where she attended the Work at the University of Koya Since 2004, But She was an Assistance Physics at the University of Salahhadin in Erbil Between 1995 and 1998.  


Bjorlin, E.S., Riou, B., Abraham, P., Piprek, J., Chiu, Y.J., Black, K.A., Keating,A. and Bowers, J.E., 2001. Long wavelength vertical cavity semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 37(2), pp.274-281.

Buyanova, I.A., Chen, W.M. and Monemar, B., 2001. Electronic properties of Ga(In)NAs alloys. MRS Internet Journal Research Nitride Semiconductor, 6(2), pp.1-19.

Chaqmaqchee, F.A., 2014. Optically and electrically pumped of

Ga0.65In0.35N0.02As0.98/GaAs vertical-cavity surface-emitting lasers (VCSELs). The Arabian Journal for Science and Engineering, 39(7), pp.5785-5790.

Chaqmaqchee, F.A.I. and Balkan, N., 2012. Gain studies of 1.3-μm dilute nitride HELLISH-VCSOA for optical communications. Nanoscale Research Letters, 7(526), pp.1-4.

Chaqmaqchee, F.A.I. and Balkan, N., 2014. Ga0.35In0.65N0.02As0.08/GaAs bidirectional light-emitting and light-absorbing heterojunction operating at 1.3 μm. Nanoscale Research Letters, 9(37), pp.1-5.

Chaqmaqchee, F.A.I., 2019. Performance characteristics of conventional vertical cavity surface emitting lasers VCSELs at 1300 nm. ZANCO Journal of Pure and Applied Sciences, 31(2), pp.14-18.

Chaqmaqchee, F.A.I., Mazzucato, S., Oduncuoglu, M., Balkan, N., Sun, Y., Gunes, M., Hugues, M. and Hopkinson, M., 2011. GaInNAs-based Hellishvertical cavity semiconductor optical amplifier for 1.3μm operation. Journal Nanoscale Research Letters, 6(104), pp.1-7.

Chaqmaqchee, F.A.I., Mazzucatoa, S., Sun, Y., Balkan, N., Tiras, E., Hugues, M. and Hopkinson, M., 2012. Electrical characterisation of p-doped distributedBragg reflectors in electrically pumped GaInNAs VCSOAs for 1.3 μm operation. Journal Materials Science and Engineering B, 177(10), pp.739-743.

Chaqmaqchee, F.A.I., Salh, S.A.A. and Sabri, M.F.M., 2020. Optical analysis of 1300 nm GaInNAsSb/GaAs vertical cavity semiconductor optical amplifier. ZANKO Journal of Pure and Applied Sciences, 32(2), pp.87-92.

Haghighi, N., Rosales, R., Larisch, G., Marcin, G., Frasunkiewicz, L., Czyszanowski, T. and Lott, J.A., 2018. Simplicity VCSELs. Proceedings of SPIE, 10552, pp.1-9.

Harman, G.G., 1997. Wire Bonding in Microelectronics: Material, Processes, Reliability and Yield. McGraw-Hill, New York.Available from: https://www.bookdepository.com/Wire-Bonding-Microelectronics-Materials-ProcessesReliability-Yield-George-Harman/9780070326194. [Last accessed on 2019 Dec 10].

Harris, J.S.Jr., 2002. GaInNAs long-wavelength lasers: Progress and challenges. Semiconductor Science and Technology, 17(8), pp.880.

Hetterich, M., Dawson, M.D., Egorov, A., Bernklau, D. and Riechert, H., 2000. Electronic states and band alignment in GalnNAs/GaAs quantum-well structures with low nitrogen content. Applied Physics Letters, 76(8), pp.1030.

Karim, A., Bjorlin, S., Piprek, J. and Bowers, J.E., 2000. Long-wavelength vertical-cavity lasers and amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 6(6), pp.1244-1253.

Kondow, M., Uomi, K., Niwa, A., Kitatani, T., Watahiki, S. and Yazawa, Y., 1996. GaInNAs: A novel material for long-wavelength-range laser diodes with excellent high-temperature performance. Japanese Journal of Applied Physics,

(2B), pp.1273.

Korpijärvi, V., Kantola, E.L., Leinonen, T., Isoaho R. and Guina, M., 2015. Monolithic GaInNAsSb/GaAs VECSEL operating at 1550 nm. IEEE Journal of Selected Topics in Quantum Electronics, 21(6), pp.480-484.

Lisesivdin, S.B., Khan, N.A., Mazzucato, S., Balkan, N., Adams, M.J., Korpijärvi, V.M., Guina, M., Mezosi, G. and Sorel, M., 2014. Optical gain in 1.3-μm electrically driven dilute nitride VCSOAs. Nanoscale Research Letters, 9(22), pp.1-5.

Piprek, J., Bjorlin, E.S. and Bowers, J.E., 2001. Optical gain-bandwidth product of vertical cavity laser amplifiers. Electronics Letters, 37(5), pp.298-299.

Pozo, J., Vogiatzis, N., Ansell, O., Hearda, P.J., Rorison, J.M., Tuomistoc, P., Konttinen, J., Saarinen, M., Peng, C., Viheriälä, J., Leinonen, T. and Pessa, M., 2008. Fabrication and characterization of GaInNAs/GaAs semiconductor optical amplifiers. Proceedings of SPIE, 6997, pp.1-9.

Shen, C.C., Hsu, T.C., Yeh, Y.W., Kang, C.Y., Lu, Y.T., Lin, H.W., Tseng, H.Y., Chen, Y.T., Chen, C.Y., Lin, C.C., Wu, C.H., Lee, P.T., Sheng, Y., Chiu, C.H. and Kuo, H.C., 2019. Design, modeling, and fabrication of high-speed VCSEL with data rate up to 50 Gb/s. Nanoscale Research Letters, 14(276), pp.1-6.

Wah, J.Y. and Balkan, N., 2004. Low field operation of hot electron light emitting devices: Quasi-flat-band model. IEE Proceedings Optoelectronics, 151(6), pp.482-285.

Yeh, P., 1991. Optical Waves and Layered Media. John Wiley and Sons, New York. Available from: https://www.wiley.com/en-us/optical+waves +in+ layered+media-p-9780471731924. [Last accessed on 2019 Dec 10].

How to Cite
Chaqmaqchee, F. A. (2020) “Long-wavelength GaInNAs/GaAs Vertical-cavity Surface-emitting Laser for Communication Applications”, ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 8(1), pp. 107-111. doi: 10.14500/aro.10627.