Molecular Analysis and Genotyping of Drug-Resistant Acinetobacter baumannii Isolates from Clinical Specimens
DOI:
https://doi.org/10.14500/aro.12052Keywords:
Acinetobacter baumannii, Antibiotic resistance gene, Enterobacterial repetitive intergenic consensus polymerase chain reaction, Extensively drug resistant, Pan drug resistantAbstract
Acinetobacter baumannii is a globally concerning hospital infection because it has developed resistance to many antibiotics, including last-resort carbapenems. In this study, 46 non-duplicate A. baumannii isolates from hospitalized patients are identified by the Phoenix BD Diagnostic System, which are used for bacterial identification and antimicrobial susceptibility profiles. Various clinical specimens, including endotracheal aspiration, urine, wound, blood, burns, and cerebrospinal fluid, were collected between 2023 and 2024 at different hospital wards. To provide further understanding of the epidemiology of multidrug-resistant (MDR) A. baumannii isolates, this study attempts to; (1) utilize enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) DNA fingerprinting to estimate genetic diversity, which reveals a significant level of genetic relationship is established amongst A. baumannii isolates from hospitalized patients, suggesting cross-transmission, and (2) clarifies the genetic characteristics of the antimicrobial resistance profiles contributing to the antibiotics widely used for MDR A. baumannii isolates. All isolates are classified as MDR (54.3%), extensively drug-resistant (39.1%), and pandrug-resistant (6.5%). According to Clinical and Laboratory Standards Institute-2024 standards, 93.4% and 91.3% of isolates are resistant to meropenem and imipenem, respectively, while colistin and tigecycline are the most effective antibiotics. Furthermore, the most common of the genes present among clinical isolates are blaOXA-51 (100%) and pmrC (97.80%), while the less common detected genes are blaIMP (0.0%) and blaOXA-58 (46%). ERIC-PCR could provide a rapid and dependable scheme to recognize clonal relationships among isolates from a multiplicity of clinical samples. Controlling endemic A. baumannii strains, particularly in intensive care unit settings, is essential.
Downloads
References
Abban, M.K., Ayerakwa, E.A., Mosi, L., and Isawumi, A., 2023. The burden of hospital acquired infections and antimicrobial resistance. Heliyon, 9(10), p.e20561. DOI: https://doi.org/10.1016/j.heliyon.2023.e20561
Abbasi, A., Hajihashemi, B., and Shokri, D., 2024. Molecular mechanisms of colistin resistance mediated by pmrCAB genes in Acinetobacter baumannii isolated from patients hospitalized in Isfahan medical centers. Postępy Higieny I Medycyny Doświadczalnej, 78(1), pp.52-57. DOI: https://doi.org/10.2478/ahem-2024-0002
Abd El-Baky, R.M., Farhan, S.M., Ibrahim, R.A., Mahran, K.M., and Hetta, H.F., 2020. Antimicrobial resistance pattern and molecular epidemiology of ESBL and MBL producing Acinetobacter baumannii isolated from hospitals in Minia, Egypt. Alexandria Journal of Medicine, 56(1), pp.4-13. DOI: https://doi.org/10.1080/20905068.2019.1707350
Abduljabar, K.A., and Mawlood, A.H., 2023. Multilocus sequence typing analysis and molecular characterization of carbapenemase related genes in Acinetobacter baumannii isolated from hospitalized patients in Erbil city, Iraq. Cellular and Molecular Biology (Noisy-le-grand), 69(11), pp.116-124. DOI: https://doi.org/10.14715/cmb/2023.69.11.18
Alagna, L., Palomba, E., Mangioni, D., Bozzi, G., Lombardi, A., Ungaro, R., Castelli, V., Prati, D., Vecchi, M., and Muscatello, A., 2020. Multidrug-resistant gram-negative bacteria decolonization in immunocompromised patients: A focus on fecal microbiota transplantation. International Journal of Molecular Sciences, 21(16), pp.5619. DOI: https://doi.org/10.3390/ijms21165619
Al-Hindawi, R.A., 2018. Detection of metallo βlactamase class among carbapenem resistant Acinetobacter baumannii (CRAB) isolates in Hilla/Iraq. Journal of Global Pharmacology Technology, 9(12), pp.169-178.
Ali, S., Al-Haideri, H.H., and Al Hishimi, A.M., 2022. Evaluating the activity of ultrasound on biofilm formation by Acinetobacter baumannii isolated from clinical specimens. Baghdad Science Journal, 19(6), pp.1522-1535. DOI: https://doi.org/10.21123/bsj.2022.7739
Aljindan, R., Alsamman, K., and Elhadi, N., 2018. ERIC-PCR genotyping of Acinetobacter baumannii isolated from different clinical specimens. Saudi Journal of Medicine and Medical Sciences, 6(1), pp.13-17. DOI: https://doi.org/10.4103/sjmms.sjmms_138_16
Al-Kadmy, I.M.S., Ali, A.N.M., Salman, I.M.A., and Khazaal, S.S., 2018. Molecular characterization of Acinetobacter baumannii isolated from Iraqi hospital environment. New Microbes and New Infections, 21, pp.51-57. DOI: https://doi.org/10.1016/j.nmni.2017.10.010
Al-Shamiri, M.M., Zhang, S., Mi, P., Liu, Y., Xun, M., Yang, E., Ai, L., Han, L., and Chen, Y., 2021. Phenotypic and genotypic characteristics of Acinetobacter baumannii enrolled in the relationship among antibiotic resistance, biofilm formation and motility. Microbial Pathogenesis, 155, pp.104922. DOI: https://doi.org/10.1016/j.micpath.2021.104922
Assimakopoulos, S.F., Karamouzos, V., Lefkaditi, A., Sklavou, C., Kolonitsiou, F., Christofidou, M., Fligou, F., Gogos, C., and Marangos, M., 2019. Triple combination therapy with high-dose ampicillin/sulbactam, high-dose tigecycline and colistin in the treatment of ventilator-associated pneumonia caused by pan drug resistant Acinetobacter baumannii: A case series study. Le Infezioni in Medicina, 27(1), pp.11-16. DOI: https://doi.org/10.14776/piv.2020.27.e5
Azimi, L., Talebi, M., Pourshafie, M.R., Owlia, P., and Lari, A.R., 2015. Characterization of carbapenemases in extensively drug resistance Acinetobacter baumannii in a burn care center in Iran. International Journal of Molecular and Cellular Medicine, 4(1), pp.46-53.
Behera, I.C., Swain, S.K., and Chandra, M., 2017. Incidence of colistin-resistant Acinetobacter baumannii in an Indian tertiary care teaching hospital.International Journal Advances Reserch (Indore), 3(12), pp.283-286.
Bertini, A., Poirel, L., Mugnier, P.D., Villa, L., Nordmann, P., and Carattoli, A., 2010. Characterization and PCR-based replicon typing of resistance plasmids in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 54(10), pp.4168-4177. DOI: https://doi.org/10.1128/AAC.00542-10
Chapartegui-González, I., Lázaro-Díez, M., Bravo, Z., Navas, J., Icardo, J.M., and Ramos-Vivas, J., 2018. Acinetobacter baumannii maintains its virulence after long-time starvation. PLoS One, 13(8), p.e0201961. DOI: https://doi.org/10.1371/journal.pone.0201961
Charretier, Y., Diene, S.M., Baud, D., Chatellier, S., Santiago-Allexant, E., Van Belkum, A., Guigon, G., and Schrenzel, J., 2018. Colistin heteroresistance and involvement of the pmrab regulatory system in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 62(9), pp.e00788-18. DOI: https://doi.org/10.1128/AAC.00788-18
Chawsheen, M.A., Al-Naqshbandi, A.A., and Abdulqader, H.H., 2020. Bacterial profile and antimicrobial susceptibility of isolates recovered from lower respiratory tract infection for patients in Rizgary hospital, Erbil. Aro-The Scientific Journal of Koya University, 8(2), pp.64-70. DOI: https://doi.org/10.14500/aro.10724
Chen, H.D., and Groisman, E.A., 2013. The biology of the pmra/pmrb two-component system: The major regulator of lipopolysaccharide modifications. Annual Review of Microbiology, 67(1), pp.83-112. DOI: https://doi.org/10.1146/annurev-micro-092412-155751
Evans, B., 2009. The significance of the oxa-51-like β-lactamases of Acinetobacter baumannii. pp.1-254.
Falah, F., Shokoohizadeh, L., and Adabi, M., 2019. Molecular identification and genotyping of Acinetobacter baumannii isolated from burn patients by PCR and ERIC-PCR. Scars Burns and Healing, 5, p.2059513119831369. DOI: https://doi.org/10.1177/2059513119831369
Fattouh, M., and El-Din, A.N., 2014. Emergence of carbapenem-resistant Acinetobacter baumannii in the intensive care unit in Sohag university hospital, Egypt. International Journal Current Microbiology Applied Science, 3(4), pp.732-744.
Hamzah, A.S., 2018. Genotyping of fusA gene from clinical isolates Acinetobacter baumannii in Baghdad. Baghdad Science Journal, 15(1), pp.37-42. DOI: https://doi.org/10.21123/bsj.15.1.37-42
Hou, C., and Yang, F., 2015. Drug-resistant gene of blaOXA-23, blaOXA-24, blaOXA-51 and blaOXA-58 in Acinetobacter baumannii. International Journal of Clinical and Experimental Medicine, 8(8), pp.13859-13863.
Jiang, Y., Ding, Y., Wei, Y., Jian, C., Liu, J., and Zeng, Z., 2022. Carbapenem-resistant Acinetobacter baumannii: A challenge in the intensive care unit. Frontiers in Microbiology, 13, p.1045206. DOI: https://doi.org/10.3389/fmicb.2022.1045206
Joshi, P.R., Acharya, M., Kakshapati, T., Leungtongkam, U., Thummeepak, R., and Sitthisak, S., 2017. Co-existence of blaOXA-23 and blaNDM-1 genes of Acinetobacter baumannii isolated from Nepal: Antimicrobial resistance and clinical significance. Antimicrobial Resistance and Infection Control, 6, p.21. DOI: https://doi.org/10.1186/s13756-017-0180-5
Khalid, H.M., 2024. Molecular study of blaVIM and blaIMP genes in Acinetobacter baumannii strains isolated from burn patients in Duhok City, Iraq. The Journal of Infection in Developing Countries, 18(01), pp.101-105. DOI: https://doi.org/10.3855/jidc.18570
Kumburu, H.H., Sonda, T., Van Zwetselaar, M., Leekitcharoenphon, P., Lukjancenko, O., Mmbaga, B.T., Alifrangis, M., Lund, O., Aarestrup, F.M., and Kibiki, G.S., 2019. Using WGS to identify antibiotic resistance genes and predict antimicrobial resistance phenotypes in MDR Acinetobacter baumannii in Tanzania. Journal of Antimicrobial Chemotherapy, 74(6), pp.1484-1493. DOI: https://doi.org/10.1093/jac/dkz055
Kyriakidis, I., Vasileiou, E., Pana, Z.D., and Tragiannidis, A., 2021. Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens, 10(3), p.373. DOI: https://doi.org/10.3390/pathogens10030373
Lima, W.G., Alves, M.C., Cruz, W.S., and Paiva, M.C., 2018. Chromosomally encoded and plasmid-mediated polymyxins resistance in Acinetobacter baumannii: A huge public health threat. European Journal of Clinical Microbiology and Infectious Diseases, 37, pp.1009-1019. DOI: https://doi.org/10.1007/s10096-018-3223-9
Lin, M.F., and Lan, C.Y., 2014. Antimicrobial resistance in Acinetobacter baumannii: From bench to bedside. World Journal of Clinical Cases, 2(12), pp.787-814. DOI: https://doi.org/10.12998/wjcc.v2.i12.787
Magiorakos, A.P., Srinivasan, A., Carey, R.B., Carmeli, Y., Falagas, M.E., Giske, C.G., Harbarth, S., Hindler, J.F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D.L., Rice, L.B., Stelling, J., Struelens, M.J., Vatopoulos, A., Weber, J.T., and Monnet, D.L., 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), pp.268-281. DOI: https://doi.org/10.1111/j.1469-0691.2011.03570.x
Moffatt, J.H., Harper, M., and Boyce, J.D., 2019. Mechanisms of polymyxin resistance. In: Polymyxin Antibiotics From Laboratory Bench to Bedside. Springer, Germany, pp.55-71. DOI: https://doi.org/10.1007/978-3-030-16373-0_5
Moubareck, C.A., and Halat, D.H., 2020. Insights into Acinetobacter baumannii: A review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen. Antibiotics (Basel), 9(3), p.119. DOI: https://doi.org/10.3390/antibiotics9030119
Müller, C., Reuter, S., Wille, J., Xanthopoulou, K., Stefanik, D., Grundmann, H., Higgins, P.G., and Seifert, H., 2023. A global view on carbapenem-resistant Acinetobacter baumannii. Mbio, 14(6), p.e0226023. DOI: https://doi.org/10.1128/mbio.02260-23
Noel, H.R., Petrey, J.R., and Palmer, L.D., 2022. Mobile genetic elements in Acinetobacter antibiotic-resistance acquisition and dissemination. Annals of the New York Academy of Sciences, 1518(1), pp.166-182. DOI: https://doi.org/10.1111/nyas.14918
Nordmann, P., Poirel, L., Carrër, A., Toleman, M.A., and Walsh, T.R., 2011. How to detect NDM-1 producers. Journal of Clinical Microbiology, 49(2), pp.718-721. DOI: https://doi.org/10.1128/JCM.01773-10
Novović, K., and Jovčić, B., 2023a. Colistin resistance in Acinetobacter baumannii: Molecular mechanisms and epidemiology. Antibiotics (Basel), 12(3), p.516.
Novović, K., and Jovčić, B., 2023b. Colistin resistance in Acinetobacter baumannii: Molecular mechanisms and epidemiology. Antibiotics (Basel), 12(3), p.516. DOI: https://doi.org/10.3390/antibiotics12030516
Poirel, L., Walsh, T.R., Cuvillier, V., and Nordmann, P., 2011. Multiplex PCR for detection of acquired carbapenemase genes. Diagnostic Microbiology and Infectious Disease, 70(1), pp.119-123. DOI: https://doi.org/10.1016/j.diagmicrobio.2010.12.002
Radhi, S.H., and Al-Charrakh, A.H., 2019. Occurrence of MBLs and carbapenemases among MDR and XDR Acinetobacter baumannii isolated from hospitals in Iraq. Scopus Ijphrd Citation Score, 10(7), p.668. DOI: https://doi.org/10.5958/0976-5506.2019.01651.6
Rezaei, A., Fazeli, H., Moghadampour, M., Halaji, M., and Faghri, J., 2018. Determination of antibiotic resistance pattern and prevalence of OXA-type carbapenemases among Acinetobacter baumannii clinical isolates from inpatients in Isfahan, central Iran. Le Infezioni in Medicina, 26(1), pp.61-66.
Rodrigues, D.C.S., Silveira, M.C., Pribul, B.R., Karam, B.R.S., Picão, R.C., Kraychete, G.B., Pereira, F.M., De Lima, R.M., De Souza, A.K.G., Leão, R.S., Marques, E.A., Rocha-de-Souza, C.M., and Carvalho-Assef, A.P.A., 2024. Genomic study of Acinetobacter baumannii strains co-harboring blaOXA-58 and blaNDM-1 reveals a large multidrug-resistant plasmid encoding these carbapenemases in Brazil. Frontiers in Microbiology, 15, p.1439373. DOI: https://doi.org/10.3389/fmicb.2024.1439373
Saelim, W., Santimaleeworagun, W., Thunyaharn, S., Changpradub, D., and Juntanawiwat, P., 2018. Pharmacodynamic profiling of optimal sulbactam regimens against carbapenem-resistant Acinetobacter baumannii for critically ill patients. Asian Pacific Journal of Tropical Biomedicine, 8(1), pp.14-18. DOI: https://doi.org/10.4103/2221-1691.221129
Sehree, M.M., Al-Kaysi, A.M., and Abdullah, H.N., 2023. A developed colorimetric assay using unmodified gold nanoparticles for the identification of Acinetobacter baumannii isolates from different clinical samples. Baghdad Science Journal, 20(4), p.4. DOI: https://doi.org/10.21123/bsj.2023.6842
Shayea, R.H., and Ali, M.R., 2022. ERIC-PCR genotyping and clonal genetic linkage between carbapenem-resistant Acinetobacter baumannii isolates. Jordan Journal of Biological Sciences, 15(4), pp.689-696. DOI: https://doi.org/10.54319/jjbs/150418
Shi, J., Cheng, J., Liu, S., Zhu, Y., and Zhu, M., 2024. Acinetobacter baumannii: An evolving and cunning opponent. Frontiers in Microbiology, 15, p.1332108. DOI: https://doi.org/10.3389/fmicb.2024.1332108
Smai, S.B., and Ganjo, A.R., 2020. A prevalence of infections with antibiotic-resistant Acinetobacter baumannii in different clinical samples from hospitals in Erbil. Zanco Journal of Pure and Applied Sciences, 32(3), pp.95-100. DOI: https://doi.org/10.21271/ZJPAS.32.3.11
Tagliabue, A., and Rappuoli, R., 2018. Changing priorities in vaccinology: Antibiotic resistance moving to the top. Frontiers in Immunology, 9, p.1068. DOI: https://doi.org/10.3389/fimmu.2018.01068
Takebayashi, Y., Findlay, J., Heesom, K.J., Warburton, P.J., Avison, M.B., and Evans, B.A., 2021. Variability in carbapenemase activity of intrinsic oxaab (OXA-51-like) β-lactamase enzymes in Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy, 76(3), pp.587-595. DOI: https://doi.org/10.1093/jac/dkaa502
Tawfeeq, H.R., Rasheed, M.N., Hassan, R.H., Musleh, M.H., and Nader, M.I., 2020. Molecular detection of blaoxa genes in Acinetobacter baumannii collected from patients with various infections. Biochemical and Cellular Archives, 20(1), pp.1233-1239.
Towner, K.J., 2009. Acinetobacter: An old friend, but a new enemy. Journal of Hospital Infection, 73(4), pp.355-363. DOI: https://doi.org/10.1016/j.jhin.2009.03.032
Trebosc, V., Gartenmann, S., Tötzl, M., Lucchini, V., Schellhorn, B., Pieren,M., Lociuro, S., Gitzinger, M., Tigges, M., Bumann, D., and Kemmer, C., 2019. Dissecting colistin resistance mechanisms in extensively drug-resistant Acinetobacter baumannii clinical isolates. MBio, 10(4), pp. e01083-19. DOI: https://doi.org/10.1128/mBio.01083-19
Turton, J.F., Woodford, N., Glover, J., Yarde, S., Kaufmann, M.E., and Pitt, T.L., 2006. Identification of Acinetobacter baumannii by detection of the blaOXA-51-like carbapenemase gene intrinsic to this species. Journal of Clinical Microbiology, 44(8), pp.2974-2976. DOI: https://doi.org/10.1128/JCM.01021-06
Vázquez-López, R., Solano-Gálvez, S.G., Juárez Vignon-Whaley, J.J., AbelloVaamonde, J.A., Padró Alonzo, L.A., Rivera Reséndiz, A., MuleiroÁlvarez,M., Vega López, E.N., Franyuti-Kelly, G., Álvarez-Hernández, D.A., Guzmán, V.M., Bañuelos, J.E.J., Felix, J.M., Barrios, J.E.J., and Fortes, T.B., 2020. Acinetobacter baumannii resistance: A real challenge for clinicians. Antibiotics (Basel), 9(4), p.205. DOI: https://doi.org/10.3390/antibiotics9040205
Yazdansetad, S., Najari, E., Ghaemi, E.A., Javid, N., Hashemi, A., and Ardebili, A., 2019. Carbapenem-resistant Acinetobacter baumannii isolates carrying blaOXA genes with upstream ISAba1: First report of a novel OXA subclass from Iran. Journal of Global Antimicrobial Resistance, 18, pp.95-99. DOI: https://doi.org/10.1016/j.jgar.2018.12.011
Downloads
Published
How to Cite
Issue
Section
License
Authors who choose to publish their work with Aro agree to the following terms:
-
Authors retain the copyright to their work and grant the journal the right of first publication. The work is simultaneously licensed under a Creative Commons Attribution License [CC BY-NC-SA 4.0]. This license allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors have the freedom to enter into separate agreements for the non-exclusive distribution of the journal's published version of the work. This includes options such as posting it to an institutional repository or publishing it in a book, as long as proper acknowledgement is given to its initial publication in this journal.
-
Authors are encouraged to share and post their work online, including in institutional repositories or on their personal websites, both prior to and during the submission process. This practice can lead to productive exchanges and increase the visibility and citation of the published work.
By agreeing to these terms, authors acknowledge the importance of open access and the benefits it brings to the scholarly community.