Computational Insights into the Electronic, Optical, and Reactivity Behavior of Halogenated Phenanthrene Derivatives
Abstract
Abstract—This study explores the complex effects of halogenation on polycyclic aromatic hydrocarbons (PAHs), specifically focusing on phenanthrene. The research aims to understand how the substitution of halogens – namely fluorine (F), chlorine (Cl), and bromine (Br) – in the phenanthrene structure affects its electronic properties, reactivity, and potential applications. The results indicate that halogenation reduces the HOMO-LUMO gap by 0.0100 eV, 0.0064 eV, and 0.2438 eV for F, Cl, and Br, respectively. In addition, it increases the electronegativity (e.g., phenanthrene: 3.6371 eV; phenanthrene-Br: 3.8575 eV), enhancing electron attraction from the phenanthrene rings and lowering the chemical potential. Through detailed analyses of molecular orbitals and density of states, the study reveals significant shifts in energy levels and optical properties. It also employs NMR spectroscopy, potential energy maps, and charge distribution to provide a comprehensive understanding of the compounds. Reduced Density Gradient and Non-Covalent Interaction (NCI) analyses further elucidate the complexities of intermolecular forces in the halogenated derivatives. The research delves into drug-likeness, Natural Bond Orbital (NBO) analysis, and Non-linear Optical properties, highlighting potential applications in medicine, environmental science, and organic electronics. Notably, the halogenated molecules exhibit more intense coloration compared to undoped phenanthrene, with absorption peaks shifting to λ = 295.1 nm for phenanthrene-Cl, 305.3 nm for phenanthrene-F, and 307.2 nm for phenanthrene-Br, compared to λ = 293.0 nm for pure phenanthrene. These findings underscore the transformative impact of halogenation, positioning this study as a significant contribution to the understanding and potential utilization of halogenated PAHs.
Downloads
References
Abbaz, T., Bendjeddou, A., and Villemin, D., 2017. Structure, electronic properties, NBO, NLO and chemi-cal reactivity of bis (1, 4-dithiafulvalene) derivatives: Functional density theory study. International Journal of Advanced Chemistry, 6, pp.18-25. DOI: https://doi.org/10.14419/ijac.v6i1.8668
Abbaz, T., Bendjeddou, A., and Villemin, D., 2018. Molecular structure, NBO analysis, first hyper polarizability, and homo-lumo studies of π-extended tetrathiafulvalene (EXTTF) derivatives connected to π-nitro phenyl by density functional method. International Journal of Advanced Chemistry, 6, p.114. DOI: https://doi.org/10.14419/ijac.v6i1.11126
Abdel-Shafy, H.I., and Mansour, M.S.M., 2016. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25, pp.107-123. DOI: https://doi.org/10.1016/j.ejpe.2015.03.011
Ahmed, L., and Rebaz, O., 2020. Computational study on paracetamol drug. Journal of Physical Chemistry and Functional Materials, 3, pp.9-13.
Aihara, J.I., 1999. Reduced HOMO-LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. The Journal of Physical Chemistry A, 103, pp.7487-7495. DOI: https://doi.org/10.1021/jp990092i
Akbas, E., Othman, K.A., Çelikezen, F.Ç., Aydogan Ejder, N., Turkez, H., Yapca, O.E., and Mardinoglu, A., 2023. Synthesis and biological evaluation of novel benzylidene thiazolo pyrimidin-3(5H)-one derivatives. Polycyclic Aromatic Compounds, 44, pp.1-18. DOI: https://doi.org/10.1080/10406638.2023.2228961
Al-Shamiri, H.A., Sakr, M.E., Abdel-Latif, S.A., Negm, N.A., Abou Kana, M.T., EL-Daly, S.A., and Elwahy, A.H., 2022. Experimental and theoretical studies of linear and non-linear optical properties of novel fused-triazine derivatives for advanced technological applications. Scientific Reports, 12, p.19937. DOI: https://doi.org/10.1038/s41598-022-22311-z
Arcadi, A., Fabrizi, G., Goggiamani, A., Iazzetti, A., Iavarone, F., Marrone, F., Mazzoccanti, G., and Sferrazza, A., 2023. Synthesis of 9,10-dibenzoyl-phenanthrene derivatives through a palladium-catalyzed domino approach. Advanced Synthesis and Catalysis, 365, pp.3277-3283. DOI: https://doi.org/10.1002/adsc.202300550
Arfsten, D.P., Schaeffer, D.J., and Mulveny, D.C. 1996. The effects of near ultraviolet radiation on the toxic effects of polycyclic aromatic hydrocarbons in animals and plants: A review. Ecotoxicology and Environmental Safety, 33, pp.1-24. DOI: https://doi.org/10.1006/eesa.1996.0001
Arumugam, M., Lulu, S., Kumari, S., and Veena, N., 2013. Computational screening and evaluation of bioactive compounds against NS3 helicase of HCV. International Journal of Pharmacy and Pharmaceutical Sciences, 5, pp.370-376.
Asath, R.M., Rekha, T., Premkumar, S., Mathavan, T., and Benial, A.M.F., 2016. Vibrational, spectroscopic, molecular docking and density functional theory studies on N-(5-aminopyridin-2-yl) acetamide. Journal of Molecular Structure, 1125, pp.633-642. DOI: https://doi.org/10.1016/j.molstruc.2016.07.064
Aziz, S.B., Abdullah, O.G., Hussein, A.M., Abdulwahid, R.T., Rasheed, M.A., Ahmed, H.M., Abdalqadir, S.W., and Mohammed, A.R., 2017. Optical properties of pure and doped PVA: PEO based solid polymer blend electrolytes: Two methods for band gap study. Journal of Materials Science: Materials in Electronics, 28, pp.7473-7479. DOI: https://doi.org/10.1007/s10854-017-6437-1
Barbosa, F. Jr., Rocha, B.A., Souza, M.C.O., Bocato, M.Z., Azevedo, L.F., Adeyemi, J.A., Santana, A., and Campiglia, A.D., 2023. Polycyclic aromatic hydrocarbons (PAHs): Updated aspects of their determination, kinetics in the human body, and toxicity. Journal of Toxicology and Environmental Health, Part B: Critical Reviews, 26, pp.28-65. DOI: https://doi.org/10.1080/10937404.2022.2164390
Becke, A.D., 1993. Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98, pp.5648-5652. DOI: https://doi.org/10.1063/1.464913
Boukabcha, N., Benmohammed, A., Belhachemi, M.H.M., Goudjil, M., Yahiaoui, S., Megrouss, Y., Djafri, A., Khelloul, N., Benyehlou, Z.D., and Djafri, A., 2023. Spectral investigation, TD-DFT study, Hirshfeld surface analysis, NCI-RDG, HOMO-LUMO, chemical reactivity and NLO properties of 1-(4-fluorobenzyl)-5-bromolindolin-2, 3dione. Journal of Molecular Structure, 1285, p.135492. DOI: https://doi.org/10.1016/j.molstruc.2023.135492
Ceylan, Ü., Tari, G.Ö., Gökce, H., and Ağar, E., 2016. Spectroscopic (FT–IR and UV-Vis) and theoretical (HF and DFT) investigation of 2-Ethyl-N-[(5 nitrothiophene-2-yl) methylidene] aniline. Journal of Molecular Structure, 1110, pp.1-10. DOI: https://doi.org/10.1016/j.molstruc.2016.01.019
Chattaraj, P.K., and Roy, D.R., 2007. Update 1 of: electrophilicity index. Chemical Reviews, 107, pp.PR46-PR74. DOI: https://doi.org/10.1021/cr078014b
Clar, E., 1972. Aromaticity of polyhedral boranes, carboranes, and metallacarboranes. Angewandte Chemie International Edition in English, 11, pp.1111-1115. DOI: https://doi.org/10.1002/anie.197211111
Costa, A.C. Jr., Ondar, G.F., Versiane, O., Ramos, J.M., Santos, T.G., Martin, A.A., Raniero, L., Bussi, G.G., and Tellez Soto, C.A., 2013. DFT: B3LYP/6-311G (d, p) vibrational analysis of bis-(diethyldithiocarbamate) zinc(II) and natural bond orbitals. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 105, pp.251-258. DOI: https://doi.org/10.1016/j.saa.2012.11.097
Ding, Z.B., Tommasini, M., and Maestri, M., 2019. A topological model for predicting adsorption energies of polycyclic aromatic hydrocarbons on late-transition metal surfaces. Reaction Chemistry and Engineering Journal, 4, pp.410-417. DOI: https://doi.org/10.1039/C8RE00229K
Domingo, L.R., Aurell, M.J., Pérez, P., and Contreras, R., 2002. Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels–Alder reactions. Tetrahedron, 58, pp.4417-4423. DOI: https://doi.org/10.1016/S0040-4020(02)00410-6
Esme, A., 2019. Experimental (FT-IR, FT-Raman, and UV‒Vis) and quantum chemical calculations on monomer and dimer structures of l-hydroxy-2-naphthoic acid using the DFT and TD‒DFT methods. Indian Journal of Pure and Applied Physics, 57, pp.822-835.
Haenen, H.T.M., 1977. Potential probe measurement analysis and charge distribution determination. Journal of Electrostatics, 2, pp.203-222. DOI: https://doi.org/10.1016/0304-3886(77)90054-7
Haritash, A.K., and Kaushik, C.P., 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. Journal of Hazardous Materials, 169, pp.1-15. DOI: https://doi.org/10.1016/j.jhazmat.2009.03.137
Humphrey, W., Dalke, A., and Schulten, K., 1996. VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, pp.33-38. DOI: https://doi.org/10.1016/0263-7855(96)00018-5
Jagdale, B.S., Ashok Adole, V., Bhavsing Pawar, T., and Desale, B.S., 2020. Molecular structure, frontier molecular orbitals, MESP and UV-visible spectroscopy studies of ethyl 4-(3,4-dimethoxyphenyl)-6-methyl-2-oxo-1,2,3,4 tetrahydropyrimidine-5-carboxylate: A theoretical and experimental appraisal. Material Science Research India, 17, pp.13-26. DOI: https://doi.org/10.13005/msri.17.special-issue1.04
Janietz, S., Bradley, D., Grell, M., Giebeler, C., Inbasekaran, M., and Woo, E., 1998. Electrochemical determination of the ionization potential and electron affinity of poly (9, 9-dioctylfluorene). Applied Physics Letters, 73, pp.2453-2455. DOI: https://doi.org/10.1063/1.122479
Kaka, K.N., Omer, R.A., Mamand, D.M., and Qader, A.F., 2024. Bromination of chalcone. Aro-The Scientific Journal of Koya University, 12, pp.48-53. DOI: https://doi.org/10.14500/aro.11431
Khan, M.U., Khalid, M., Asim, S., Momina, Hussain, R., Mahmood, K., Iqbal, J., Akhtar, M.N., Hussain, A., and Imran, M., 2021. Exploration of nonlinear optical properties of triphenylamine-dicyanovinylene coexisting donor-π-acceptor architecture by the modification of π-conjugated linker. Frontiers in Materials, 8, p.719971. DOI: https://doi.org/10.3389/fmats.2021.719971
Koparir, P., Omar, R.A., Sarac, K., Ahmed, L.O., Karatepe, A., Taskin-Tok, T., and Safin, D.A., 2023. Synthesis, characterization and computational analysis of thiophene-2, 5-diylbis ((3-mesityl-3-methylcyclobutyl) methanone). Polycyclic Aromatic Compounds, 43, pp.6107-6125. DOI: https://doi.org/10.1080/10406638.2022.2112712
Koparir, P., Parlak, A.E., Karatepe, A., and Omar, R.A., 2022. Elucidation of potential anticancer, antioxidant and antimicrobial properties of some new triazole compounds bearing pyridine-4-yl moiety and cyclobutane ring. Arabian Journal of Chemistry, 15, p.103957. DOI: https://doi.org/10.1016/j.arabjc.2022.103957
Lawal, A.T., and Fantke, P., 2017. Polycyclic aromatic hydrocarbons. A review. Cogent Environmental Science, 3, p.1339841. DOI: https://doi.org/10.1080/23311843.2017.1339841
Lazarou, Y.G., Prosmitis, A.V., Papadimitriou, V.C., and Papagiannakopoulos, P., 2001. Theoretical calculation of bond dissociation energies and enthalpies of formation for halogenated molecules. The Journal of Physical Chemistry A, 105, pp.6729-6742. DOI: https://doi.org/10.1021/jp010309k
Li, A., and Draine, B., 2002. Do the infrared emission features need ultraviolet excitation? The polycyclic aromatic hydrocarbon model in UV-poor reflection nebulae. The Astrophysical Journal, 572, p.232. DOI: https://doi.org/10.1086/340285
Li, S., Zhang, Q., Gao, M., Li, H., Yang, Z., Wang, Y., and Sun, H., 2024. Polycyclic aromatic hydrocarbons and their halogenated derivatives in soil from Yellow River Delta: Distribution, source apportionment, and risk assessment. Marine Pollution Bulletin, 202, p.116308. DOI: https://doi.org/10.1016/j.marpolbul.2024.116308
Li, W., and Wu, S., 2023. Challenges of halogenated polycyclic aromatic hydrocarbons in foods: Occurrence, risk, and formation. Trends in Food Science and Technology, 131, pp.1-13. DOI: https://doi.org/10.1016/j.tifs.2022.11.015
Li, Z., Hu, W., Li, Z., and Wang, Z., 2020. High performance n-type organic field effect transistors based on halogenated derivatives of naphthalene tetracarboxylic diimides. Materials Science in Semiconductor Processing, 120, p.105273. DOI: https://doi.org/10.1016/j.mssp.2020.105273
Lu, T., and Chen, F., 2012. Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33, pp.580-592. DOI: https://doi.org/10.1002/jcc.22885
Makula, P., Pacia, M., and Macyk, W., 2018. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra. The Journal of Physical Chemistry Letters, 9, pp.6814-6817. DOI: https://doi.org/10.1021/acs.jpclett.8b02892
Mayr, H., and Patz, M., 1994. Scales of nucleophilicity and electrophilicity: A system for ordering polar organic and organometallic reactions. Angewandte Chemie International Edition in English, 33, pp.938-957. DOI: https://doi.org/10.1002/anie.199409381
McClellan, A.L., and Pimentel, G.C., 1955. Vibrational assignment and thermodynamic properties of naphthalene. The Journal of Chemical Physics, 23, pp.245-248. DOI: https://doi.org/10.1063/1.1741948
McCoull, K.D., Rindgen, D., Blair, I.A., and Penning, T.M., 1999. Synthesis and characterization of polycyclic aromatic hydrocarbon o-quinone depurinating N7-guanine adducts. Chemical Research in Toxicology Journal, 12, pp.237-46. DOI: https://doi.org/10.1021/tx980182z
Modelli, A., Mussoni, L., and Fabbri, D., 2006. Electron affinities of polycyclic aromatic hydrocarbons by means of B3LYP/6-31+G* calculations. The Journal of Physical Chemistry A, 110, pp.6482-6486. DOI: https://doi.org/10.1021/jp0605911
Montgomery, J.A., Frisch, M.J., Ochterski, J.W., and Petersson, G.A., 1999. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. The Journal of Chemical Physics, 110, pp.2822-2827. DOI: https://doi.org/10.1063/1.477924
Moore, T.J., Cohen, M.R.A., and Furberg, C.D., 2007. A decade of drug-likeness. Nature Reviews Drug Discovery, 6, pp.853-853. DOI: https://doi.org/10.1038/nrd2460
Nasidi, I.I, Kaygili, O., Majid, A., Bulut, N., Alkhedher, M., and Eldin, S.M., 2022. Halogen doping to control the band gap of ascorbic acid: A theoretical study. ACS Omega, 7, pp.44390-44397. DOI: https://doi.org/10.1021/acsomega.2c06075
Obot, I., Macdonald, D., and Gasem, Z., 2015. Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview. Corrosion Science, 99, pp.1-30. DOI: https://doi.org/10.1016/j.corsci.2015.01.037
Omar, R.A., Koparir, P., Sarac, K., Koparir, M., and Safin, D.A., 2023. A novel coumarin-triazole-thiophene hybrid: Synthesis, characterization, ADMET prediction, molecular docking and molecular dynamics studies with a series of SARS-CoV-2 proteins. Journal of Chemical Sciences, 135, p.6. DOI: https://doi.org/10.1007/s12039-022-02127-0
Omer, R., Koparir, P., Koparir, M., Rashid, R., Ahmed, L., and Hama, J., 2022a. Synthesis, characterization and DFT study of 1-(3-Mesityl-3-methylcyclobutyl) 2-((4-phenyl-5-(thiophen-2-yl)-4H-1, 2, 4-triazol-3-yl) thio) ethan-1-one. Protection of Metals and Physical Chemistry of Surfaces, 58, pp.1077-1089. DOI: https://doi.org/10.1134/S2070205122050185
Omer, R.A., Ahmed, K.M., Othman, K.A., Hamad, W.M., Faraj, R.K., Muhialdin, A.J., and Salih, S.K., 2024. New thiazole derivatives. Aro-The Scientific Journal of Koya University, 12, pp.10-22. DOI: https://doi.org/10.14500/aro.11557
Omer, R.A., Koparir, P., and Ahmed, L., 2022b. Theoretical determination of corrosion inhibitor activities of 4-allyl-5-(pyridin-4-yl)-4H-1, 2, 4-triazole-3 thiol-thione tautomerism. Indian Journal of Chemical Technology, 29, pp.75-81.
Palmer, A.J., Ghani, R.A., Kaur, N., Phanstiel, O., and Wallace, H.M., 2009. A putrescine-anthracene conjugate: A paradigm for selective drug delivery. Biochemical Journal, 424, pp.431-438. DOI: https://doi.org/10.1042/BJ20090815
Pearson, R.G., 2005. Chemical hardness and density functional theory. Journal of Chemical Sciences, 117, pp.369-377. DOI: https://doi.org/10.1007/BF02708340
Pi, X., Sun, F., Gao, J., Qu, Z., Wang, A., Qie, Z., Wang, L., and Liu, H., 2019. A new insight into the SO(2) adsorption behavior of oxidized carbon materials using model adsorbents and DFT calculations. Physical Chemistry Chemical Physics, 21, pp.9181-9188. DOI: https://doi.org/10.1039/C8CP07782G
Ranjith, P., Ignatious, A., Panicker, C.Y., Sureshkumar, B., Armakovic, S., Armakovic, S.J., Van Alsenoy, C., and Anto, P., 2022.
Spectroscopic investigations, DFT calculations, molecular docking and MD simulations of 3-[(4-Carboxyphenyl) carbamoyl]-4-hydroxy-2-oxo-1, 2-dihydroxy quinoline 6-carboxylic acid. Journal of Molecular Structure, 1264, p.133315. DOI: https://doi.org/10.1016/j.molstruc.2022.133315
Rebaz, O., Ahmed, L., Koparir, P., and Jwameer, H., 2022. Impact of solvent polarity on the molecular properties of dimetridazole. El-Cezeri, 9, pp.740-747.
Ricks, A.M., Douberly, G.E., and Duncan, M.A., 2009. The infrared spectrum of protonated naphthalene and its relevance for the unidentified infrared bands. The Astrophysical Journal, 702, p.301. DOI: https://doi.org/10.1088/0004-637X/702/1/301
Roy, C.P., Karmakar, S., and Dash, J., 2024. Synthesis of phenanthrenes and 1-hydroxyphenanthrenes via aromatization-assisted ring-closing metathesis: Toward polynuclear aromatic hydrocarbons. The Journal of Organic Chemistry, 89, pp.10511-10523. DOI: https://doi.org/10.1021/acs.joc.4c00723
Ryno, S., 2015. Molecular-Scale Understanding of Electronic Polarization in Organic Molecular Crystals. Georgia Institute of Technology, p.1-12.
Sahoo, B.M., Ravi Kumar, B.V.V., Banik, B.K., and Borah, P., 2020. Polyaromatic hydrocarbons (PAHs): Structures, synthesis and their biological profile. Current Organic Synthesis, 17, pp.625-640. DOI: https://doi.org/10.2174/1570179417666200713182441
Saidj, M., Djafri, A., Rahmani, R., Belkafouf, N.E.H., Boukabcha, N., Djafri, A., and Chouaih, A., 2023. Molecular structure, experimental and theoretical vibrational spectroscopy,(HOMO-LUMO, NBO) investigation,(RDG, AIM) analysis,(MEP, NLO) study and molecular docking of Ethyl-2-{[4-Ethyl-5 (Quinolin-8-yloxyMethyl)-4H-1, 2, 4-Triazol-3-yl] Sulfanyl} acetate. Polycyclic Aromatic Compounds, 43, pp.2152-2176. DOI: https://doi.org/10.1080/10406638.2022.2039238
Sarmah, A., and Hobza, P., 2020. Directly linked metalloporphyrins: A quest for bio-inspired materials. Materials Advances, 1, pp.1895-1908. DOI: https://doi.org/10.1039/D0MA00461H
Solano, E.A., and Mayer, P.M., 2015. A complete map of the ion chemistry of the naphthalene radical cation? DFT and RRKM modeling of a complex potential energy surface. The Journal of Chemical Physics, 143, 104305. DOI: https://doi.org/10.1063/1.4930000
Srivastava, A., and Singh, V.B., 2007. Theoretical and experimental studies of vibrational spectra of naphthalene and its cation. Indian Journal of Pure and Applied Physics, 45, pp.714-720.
Sumathi, D., Thanikachalam, V., Bharanidharan, S., Saleem, H., and Babu, N.R. Vibrational spectroscopy (FT-IR, FT-Raman and UV) studies of E-[1-Methyl-2, 6-diphenyl-3-(propan-2-yl) piperidin-4-ylidene] amino 3-methylbenzoate] using DFT method. International Journal of Scientific Research, 5, pp. 2277-8179.
Sun, Z., and Wu, J., 2012. Open-shell polycyclic aromatic hydrocarbons. Journal of Materials Chemistry, 22, pp.4151-4160. DOI: https://doi.org/10.1039/C1JM14786B
Swofford, R.L., Long, M.E., and Albrecht, A.C., 1976. C-H vibrational states of benzene, naphthalene, and anthracene in the visible region by thermal lensing spectroscopy and the local mode model. The Journal of Chemical Physics, 65, pp.179-190. DOI: https://doi.org/10.1063/1.432815
Tang, M., Yu, Q., Wang, Z., Zhang, C., Sun, B., Yi, Y., and Zhang, F.L., 2018. Synthesis of polycyclic aromatic hydrocarbons (PAHs) via a transient directing group. Organic Letters, 20, pp.7620-7623. DOI: https://doi.org/10.1021/acs.orglett.8b03359
Tang, M.L., and Bao, Z., 2011. Halogenated materials as organic semiconductors. Chemistry of Materials, 23, pp.446-455. DOI: https://doi.org/10.1021/cm102182x
Tirado-Rives, J., and Jorgensen, W.L., 2008. Performance of B3LYP density functional methods for a large set of organic molecules. Journal of Chemical Theory and Computation, 4, pp.297-306. DOI: https://doi.org/10.1021/ct700248k
Toriyama, M.Y., Ganose, A.M., Dylla, M., Anand, S., Park, J., Brod, M.K., Munro, J.M., Persson, K.A., Jain, A., and Snyder, G.J., 2022. How to analyse a density of states. Materials Today Electronics, 1, p.100002. DOI: https://doi.org/10.1016/j.mtelec.2022.100002
Villemin, D., Abbaz, T., and Bendjeddou, A., 2018. Molecular structure, HOMO, LUMO, MEP, natural bond orbital analysis of benzo and anthraquinodimethane derivatives. Pharmaceutical and Biological Evaluations, 5, p.27. DOI: https://doi.org/10.26510/2394-0859.pbe.2018.04
Walters, W.P., and Murcko, M.A., 2002. Prediction of “drug-likeness”. Advanced Drug Delivery Reviews, 54, pp.255-271. Wang, D., Chen, L., Shi, C., Wang, X., Cui, G., Zhang, P., and Chen, Y., 2016. Quantum spin Hall insulator in halogenated arsenene films with sizable energy gaps. Scientific reports, 6, p.28487. DOI: https://doi.org/10.1038/srep28487
Wilbur, D., Manning, W.B., Hilton, B.D., and Muschik, G.M., 1982. Carbon-13 NMR of polycyclic aromatic compounds. 1-Methoxybenz[a]anthracene-7, 12-diones. Organic Magnetic Resonance, 18, pp.63-67. DOI: https://doi.org/10.1002/mrc.1270180202
Wodrich, M.D., Corminboeuf, C., Schreiner, P.R., Fokin, A.A., and Schleyer, P.V.R., 2007. How accurate are DFT treatments of organic energies? Organic Letters, 9, pp.1851-1854. DOI: https://doi.org/10.1021/ol070354w
Wu, M., Nie, M., Wang, X., Su, J., and Cao, W., 2010. Analysis of phenanthrene biodegradation by using FTIR, UV and GC-MS. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75, pp.1047-1050. DOI: https://doi.org/10.1016/j.saa.2009.12.051
Copyright (c) 2024 Rebaz A. Omer , Khdir A. Othman, Yousif H. Azeez, Aryan F. Qader
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who choose to publish their work with Aro agree to the following terms:
-
Authors retain the copyright to their work and grant the journal the right of first publication. The work is simultaneously licensed under a Creative Commons Attribution License [CC BY-NC-SA 4.0]. This license allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
-
Authors have the freedom to enter into separate agreements for the non-exclusive distribution of the journal's published version of the work. This includes options such as posting it to an institutional repository or publishing it in a book, as long as proper acknowledgement is given to its initial publication in this journal.
-
Authors are encouraged to share and post their work online, including in institutional repositories or on their personal websites, both prior to and during the submission process. This practice can lead to productive exchanges and increase the visibility and citation of the published work.
By agreeing to these terms, authors acknowledge the importance of open access and the benefits it brings to the scholarly community.