Surveillance of Antimicrobial Resistance in Iraq

A Comprehensive Data Collection Approach

Keywords: Antimicrobial resistance, Multidrug resistant, Klebsiella pneumoniae, Staphylococcs aureus, Escherichia coli, Surveillance of AMR

Abstract

Antimicrobial resistance (AMR) generates serious negative impacts on health-care systems worldwide, and Iraq is not an exception. To uncover the prevalence of AMR and to visualize the magnitude of the multidrug-resistant (MDR) dilemma in Iraqi hospitals, this study is carried out. A total of 11592 clinical records from ten different health-care facilities in seven Iraqi provinces are collected and analyzed. Our data show that 4984 (43.0%) of all clinical samples are negative for bacterial growth. In adults, Gram-negative bacteria (GNB) represented 48.9% and Gram-positive bacteria (GPB) represented 51.1% of clinical isolates; in children, GNB represented 60.8% and GPB represented 39.2%. Furthermore, in adults, Klebsiella pneumoniae (30.1%) and Staphylococcus aureus (40.8%) are among the most common GNB and GPB isolates, respectively. In children, K. pneumoniae (37.9%) and Staphylococcus haemolyticus (41.8%) are the most common GNB and GPB, respectively. Adults’ samples showed that Escherichia coli and Proteus mirabilis were the most resistant GNB; S. aureus and Staphylococcus epidermidis are among the most resistant GPB. In children, K. pneumoniae is found to be the most resistant GNB. This study confirms the persistence of antimicrobial resistance and multidrug-resistant gram-negative and gram-positive bacteria in adults and children alike. Ampicillin and oxacillin have been recognized as ineffective drugs in adults, and ampicillin, nafcillin, cefoxitin, and benzylpenicillin have been found to be highly resisted by pathogenic bacteria in children. The outcomes confirm the necessity of conducting AMR surveillance on a regular basis and establishing national antibiotic prescription guidelines to manage AMR development in Iraq.

Downloads

Download data is not yet available.

Author Biographies

Dhurgham K. Al-Fahad, Department of Pharmaceutical Sciences, College of Pharmacy, University of Thi-Qar, Nasiriyah, 64001, F.R. Iraq

Dhurgham K. Al-Fahad is an Assistant Professor at the Department of Pharmaceutical Sciences, College of Pharmacy, University of Thi-Qar. He got the B.Sc., M.Sc., and the Ph.D. degrees in biotechnology. His research interests are in antimicrobial resistance, cell migration, and focal adhesion kinases in cancer cells.

Jawad A. Alpofead, Department of Pharmaceutical Chemistry, College of Pharmacy, University of Thi-Qar, Nasiriyah, 64001, F.R. Iraq

Jawad A. Alpofead is currently a lecturer at the department of Pharmaceutical Chemistry, College of Pharmacy, University of Thi-Qar, Iraq. He received his PhD in Analytical Chemistry from the University of Strathclyde, UK, in 2016. His research is in the area of bioanalytical chemistry, especially the development of new analytical methods to assess risk to human health (extraction methods for determining bioaccessibility and bioavailability). He is a member of the Royal Society of Chemistry since 2014.

Mahmoud A. Chawsheen, (1) Department of General Sciences, Faculty of Education, Soran University, Erbil, 44008, Kurdistan Region-F.R. Iraq. (2) Medical Research Center, Hawler Medical University, Erbil, 44001, Kurdistan Region-F.R. Iraq

Mahmoud A. Chawsheen is an Assistant Professor at the Department of General Sciences, Faculty of Education, Soran University. He also works at Hawler Medical University's Medical Research Center. He got the B.Sc. degree in Biological sciences and the M.Sc. and the Ph.D. degrees in cell biology. His research interests are in cell signaling, cancer cell death and migration, multi-drug resistance, and docking studies. Dr. Mahmoud is a member of the European Association for Cancer Research and the Royal Microscopical Society.

Ahmed A. Al-Naqshbandi, Department of Laboratory, Rizgary Teaching Hospital, Erbil, 44001, Kurdistan Region-F.R. Iraq

Ahmed A. Al-Naqshbandi is a specialist in molecular immunology at the Department of Laboratory, Microbiology Unit, Rizgary Teaching Hospital. He got the B.Sc. degree in biology, the M.Sc. degree in microbiology (immunology), and the Ph.D. degree in molecular immunology. His research interests are immunology, bacteriology, and molecular biology. Dr. Ahmed is a member of the Kurdistan Biology Syndicate.

Ali T. Abas, Department of Pharmaceutical Sciences, College of Pharmacy, University of Thi-Qar, Nasiriyah, 64001, F.R. Iraq

Ali T. Abas is an Assistant Professor at the Department of Pharmaceutical Sciences, College of Pharmacy, University of Thi-Qar. He got B.Sc., M.Sc., and Ph.D. degrees in microbiology. His research interest is mainly in microbiology.

References

Abou Fayad, A., Rizk, A., El Sayed, S., Kaddoura, M., Jawad, N.K., Al-Attar, A., Dewachi, O., Nguyen, V.K., and Sater, Z.A., 2023. Antimicrobial resistance and the Iraq wars: Armed conflict as an underinvestigated pathway with growing significance. BMJ Global Health, 7, p.e010863. DOI: https://doi.org/10.1136/bmjgh-2022-010863

Al-Hasani, H., Al-Rubaye, D., and Abdelhameed, A., 2023. The emergence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and Pandrug-resistant (PDR) In Iraqi clinical isolates of Escherichia coli. Journal of Population Therapeutics and Clinical Pharmacology, 30, pp.469-482. DOI: https://doi.org/10.47750/jptcp.2023.30.05.047

A l h u m a i d , S . , A l M u t a i r , A . , A l A l a w i , Z . , Alzahrani, A.J., Tobaiqy, M., Alresasi, A.M., Bu-Shehab, I., Al-Hadary, I., Alhmeed, N., Alismail, M., Aldera, A.H., Alhbabi, F., Al-Shammari, H., Rabaan, A.A., and Al-Omari, A., 2021. Antimicrobial susceptibility of gram-positive and gram-negative bacteria: A 5-year retrospective analysis at a multi-hospital healthcare system in Saudi Arabia. Annals of Clinical Microbiology and Antimicrobials, 20, p.43. DOI: https://doi.org/10.1186/s12941-021-00450-x

Al-Jebouri, M.M., and Mdish, S.A., 2019. Tracing of antibiotic-resistant bacteria isolated from semen of Iraqi males with primary infertility. Open Journal of Urology, 9, pp.19-29. DOI: https://doi.org/10.4236/oju.2019.91003

Al-Jumaily, E.F.A., and Zgaer, S.H., 2016. Multidrug resistant Proteus mirabilis isolated from urinary tract infection from different hospitals in Baghdad City. International Journal of Current Microbiology and Applied Sciences, 5, pp.390-399. DOI: https://doi.org/10.20546/ijcmas.2016.509.042

Allami, M., Mohammed, E.J., Alazzawi, F., and Bahreini, M., 2021. Prevalence and antibiotic resistance pattern of pathogenic bacteria isolated from urinary tract infections in Qal’at Saleh Hospital, Iraq. Avicenna Journal of Clinical Microbiology and Infection, 8, pp.117-122. DOI: https://doi.org/10.34172/ajcmi.2021.22

Allel, K., Day, L., Hamilton, A., Lin, L., Furuya-Kanamori, L., Moore, C.E., Van Boeckel, T., Laxminarayan, R., and Yakob, L., 2023. Global antimicrobial-resistance drivers: An ecological country-level study at the human-animal interface. The Lancet Planetary Health, 7, pp.e291-e303. DOI: https://doi.org/10.1016/S2542-5196(23)00026-8

Al-Naqshbandi, A.A., Chawsheen, M.A., and Abdulqader, H.H., 2019. Prevalence and antimicrobial susceptibility of bacterial pathogens isolated from urine specimens received in Rizgary hospital-Erbil. Journal of Infection and Public Health, 12, pp.330-336. DOI: https://doi.org/10.1016/j.jiph.2018.11.005

Al-Naqshbandi, A.A., Hassan, H.A., Chawsheen, M.A., and Abdul Qader, H.H., 2021. Categorization of Bacterial Pathogens Present in Infected Wounds and their Antibiotic Resistance Profile Recovered from Patients Attending Rizgary Hospital-Erbil. Aro-the Scientific Journal of Koya University, 9, pp.64-70. DOI: https://doi.org/10.14500/aro.10864

Badry, A., Jameel, A., and Mero, W., 2014. Pathogenic microorganisms associated with diarrhea in infants and children in Duhok Province, Kurdistan Region/Iraq. Science Journal of University of Zakho, 2, pp.266-275. DOI: https://doi.org/10.25271/2014.2.2.201

Bhatia, R., and Ichhpujani, R.L., 2008. Essentials of Medical Microbiology. Jaypee Brothers Medical Publishers, New Delhi, p.47. DOI: https://doi.org/10.5005/jp/books/10281_1

Borgio, J.F., Rasdan, A.S., Sonbol, B., Alhamid, G., Almandil, N.B., and Abdulazeez, S., 2021. Emerging status of multidrug-resistant bacteria and fungi in the Arabian Peninsula. Biology (Basel), 10, p.1144. DOI: https://doi.org/10.3390/biology10111144

Chawsheen, M.A., Al-Naqshbandi, A.A., and Abdulqader, H.H., 2020. Bacterial profile and antimicrobial susceptibility of isolates recovered from lower respiratory tract infection for patients in Rizgary Hospital, Erbil. Aro-the Scientific Journal of Koya University, 8, pp.64-70. DOI: https://doi.org/10.14500/aro.10724

Coque, T., Graham, D., Pruden, A., So, A., Topp, E., Echeverria, A., Vaughn Grooters, S., Halpaap, A., Hanna, N., and Salazar, M., 2023. Bracing for Superbugs: Strengthening Environmental Action in the One Health Response to Antimicrobial Resistance. UNEP-UN Environment Programme. Available from: https://www.unep.org/resources/superbugs/environmental-action [Last accessed on 2023 Sep 30].

Derakhshan, S., Navidinia, M., and Haghi, F., 2021. Antibiotic susceptibility of human-associated Staphylococcus aureus and its relation to agr typing, virulence genes, and biofilm formation. BMC Infectious Diseases, 21, p.627. DOI: https://doi.org/10.1186/s12879-021-06307-0

Dharmapalan, D., Shet, A., Yewale, V., and Sharland, M., 2017. High reported rates of antimicrobial resistance in Indian neonatal and pediatric blood stream infections. Journal of the Pediatric Infectious Diseases Society, 6, pp.e62-e68. DOI: https://doi.org/10.1093/jpids/piw092

Hamza, O.A., and Omran, R., 2022. Prevalence of multi-antibiotic resistant bacteria isolated from children with urinary tract infection from Baghdad, Iraq. Journal of Biosciences and Medicines, 10, pp.240-252.

Häsler, R., Kautz, C., Rehman, A., Podschun, R., Gassling, V., Brzoska, P., Sherlock, J., Gräsner, J.T., Hoppenstedt, G., Schubert, S., Ferlinz, A., Lieb, W., Laudes, M., Heinsen, F.-A., Scholz, J., Harmsen, D., Franke, A., Eisend, S., Kunze, T., Fickenscher, H., Ott, S., Rosenstiel, P., and Schreiber, S., 2018. The antibiotic resistome and microbiota landscape of refugees from Syria, Iraq and Afghanistan in Germany. Microbiome, 6, p.37. DOI: https://doi.org/10.1186/s40168-018-0414-7

Hassan, S.K., Dahmash, E.Z., Madi, T., Tarawneh, O., Jomhawi, T., Alkhob, W., Ghanem, R., and Halasa, Z., 2023. Four years after the implementation of antimicrobial stewardship program in Jordan: Evaluation of program’s core elements. Frontiers in Public Health, 11, p.1078596. DOI: https://doi.org/10.3389/fpubh.2023.1078596

Ibrahim, M.E., 2018. High antimicrobial resistant rates among Gram-negative pathogens in intensive care units. Saudi Medical Journal, 39, pp.1035-1043. DOI: https://doi.org/10.15537/smj.2018.10.22944

Labib, J.R., Ibrahim, S.K., Salem, M.R., Youssef, M.R.L., and Meligy, B., 2018. Infection with gram-negative bacteria among children in a tertiary pediatric hospital in Egypt. American Journal of Infection Control, 46, pp.798-801. DOI: https://doi.org/10.1016/j.ajic.2017.12.008

Lambers, H., Piessens, S., Bloem, A., Pronk, H., and Finkel, P., 2006. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. International Journal of Cosmetic Science, 28, pp.359-370. DOI: https://doi.org/10.1111/j.1467-2494.2006.00344.x

Le Doare, K., Bielicki, J., Heath, P.T., and Sharland, M., 2015. Systematic review of antibiotic resistance rates among gram-negative bacteria in children with sepsis in resource-limited countries. Journal of the Pediatric Infectious Diseases Society, 4, pp.11-20. DOI: https://doi.org/10.1093/jpids/piu014

Li, D., Zhang, X., Wang, Y., Xue, J., Ji, X., Shao, X., and Li, Y., 2021. Epidemiology and drug resistance of pathogens isolated from cerebrospinal fluids at a children’s medical center in Eastern China during 2006-2020. Infection and Drug Resistance, 14, pp.5417-5428. DOI: https://doi.org/10.2147/IDR.S344720

Martínez, J.L., Coque, T.M., and Baquero, F., 2014. What is a resistance gene? Ranking risk in resistomes. Nature Reviews Microbiology, 13, pp.116-123. DOI: https://doi.org/10.1038/nrmicro3399

Mazloumi, M.J., Akbari, R., and Yousefi, S., 2021. Detection of inducible clindamycin resistance genes (ermA, ermB, and ermC) in Staphylococcus aureus and Staphylococcus epidermidis. Microbiology and Biotechnology Letters, 49, pp.449-457. DOI: https://doi.org/10.48022/mbl.2103.03011

Murray, C.J.L., Ikuta, K.S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S.C., Browne, A.J., Chipeta, M.G., Fell, F.,... and., Naghavi, M., 2022. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399, pp.629-655.

Nji, E., Kazibwe, J., Hambridge, T., Joko, C.A., Larbi, A.A., Damptey, L.A.O., Nkansa-Gyamfi, N.A., Stålsby Lundborg, C., and Lien, L.T.Q., 2021. High prevalence of antibiotic resistance in commensal Escherichia coli from healthy human sources in community settings. Scientific Reports, 11, p.3372. DOI: https://doi.org/10.1038/s41598-021-82693-4

Ogundipe, F.O., Ojo, O.E., Feßler, A.T., Hanke, D., Awoyomi, O.J., Ojo, D.A., Akintokun, A.K., Schwarz, S., and Maurischat, S., 2020. Antimicrobial resistance and virulence of methicillin-resistant Staphylococcus aureus from human, chicken and environmental samples within live bird markets in three Nigerian Cities. Antibiotics, 9, p.588. DOI: https://doi.org/10.3390/antibiotics9090588

Poirel, L., Madec, J.Y., Lupo, A., Schink, A.K., Kieffer, N., Nordmann, P., Schwarz, S., Aarestrup, F.M., Schwarz, S., Shen, J., and Cavaco, L., 2018. Antimicrobial resistance in Escherichia coli. Microbiology Spectrum, 6. DOI: https://doi.org/10.1128/microbiolspec.ARBA-0026-2017

Raoofi, R., Namavari, N., Rahmanian, V., and Dousthaghi, M.H., 2023. Evaluation of antibiotics resistance in Southern Iran in light of COVID‐19 pandemic: A retrospective observational study. Health Science Reports, 6, p.e1153. DOI: https://doi.org/10.1002/hsr2.1153

Raouf, F.E.A., Benyagoub, E., Alkhudhairy, M.K., Akrami, S., and Saki, M., 2022. Extended-spectrum beta-lactamases among Klebsiella pneumoniae from Iraqi patients with community-acquired pneumonia. Revista da Associação Médica Brasileira, 68, pp.833-837. DOI: https://doi.org/10.1590/1806-9282.20220222

Rehman, S., 2023. A parallel and silent emerging pandemic: Antimicrobial resistance (AMR) amid COVID-19 pandemic. Journal of Infection and Public Health, 16, pp.611-617. DOI: https://doi.org/10.1016/j.jiph.2023.02.021

Ruan, Z., Bizri, A.R., El-Fattah, A.A., Bazaraa, H.M., Al Ramahi, J.W., Matar, M., Ali, R.A.N., El Masry, R., Moussa, J., Abbas, A.J.A., and Aziz, M.A., 2023. Antimicrobial resistance landscape and COVID-19 impact in Egypt, Iraq, Jordan, and Lebanon: A survey-based study and expert opinion. PLoS One, 18, p.e0288550. DOI: https://doi.org/10.1371/journal.pone.0288550

Salman, H.A., Alhameedawi, A.K., Muhamad, S.M.S.G., and Taha, Z., 2022. Prevalence of multi-antibiotic resistant bacteria isolated from children with urinary tract infection from Baghdad, Iraq. Microbiology and Biotechnology Letters, 50, pp.147-156. DOI: https://doi.org/10.48022/mbl.2110.10011

Santiago, G.S., Gonçalves, D., Da Silva Coelho, I., De Mattos De Oliveira Coelho, S., and Neto Ferreira, H., 2020. Conjugative plasmidic AmpC detected in Escherichia coli, Proteus mirabilis and Klebsiella pneumoniae human clinical isolates from Portugal. Brazilian Journal of Microbiology, 51, pp.1807-1812. DOI: https://doi.org/10.1007/s42770-020-00355-5

Sivasankar, S., Goldman, J.L., and Hoffman, M.A., 2023. Variation in antibiotic resistance patterns for children and adults treated at 166 non-affiliated US facilities using EHR data. JAC-Antimicrobial Resistance, 5, p.dlac128. DOI: https://doi.org/10.1093/jacamr/dlac128

Sriram, A., Kalanxhi, E., Kapoor, G., Craig, J., Balasubramanian, R., Brar, S., Criscuolo, N., Hamilton, A., Klein, E., and Tseng, K., 2021. State of the world’s antibiotics 2021: A global analysis of antimicrobial resistance and its drivers. Center for Disease Dynamics, Economics and Policy, Washington, DC, USA, pp.1-115.

Torumkuney, D., Behbehani, N., Van Hasselt, J., Hamouda, M., and Keles, N., 2022a. Country data on AMR in Kuwait in the context of community-acquired respiratory tract infections: Links between antibiotic susceptibility, local and international antibiotic prescribing guidelines, access to medicine and clinical outcome. Journal of Antimicrobial Chemotherapy, 77, pp.i77-i83. DOI: https://doi.org/10.1093/jac/dkac220

Torumkuney, D., Dolgum, S., Van Hasselt, J., Abdullah, W., and Keles, N., 2022b.Country data on AMR in Saudi Arabia in the context of community-acquired respiratory tract infections: Links between antibiotic susceptibility, local and international antibiotic prescribing guidelines, access to medicine and clinical outcome. Journal of Antimicrobial Chemotherapy, 77, pp.i70-i76. DOI: https://doi.org/10.1093/jac/dkac219

Vallée, M., Harding, C., Hall, J., Aldridge, P.D., and Tan, A., 2023. Exploring the in situ evolution of nitrofurantoin resistance in clinically derived uropathogenic Escherichia coli isolates. Journal of Antimicrobial Chemotherapy, 78, pp.373-379. DOI: https://doi.org/10.1093/jac/dkac398

World Bank (WB), 2017. Drug-Resistant Infections: A Threat to Our Economic Future. International Bank for Reconstruction and Development. The World Bank, United States.

World Health Organization (WHO), 2021. Antimicrobial Resistance. World Health Organization. Available from: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance [Last accessed on 2023 Jan 01].

Xu, Z., Cave, R., Chen, L., Yangkyi, T., Liu, Y., Li, K., Meng, G., Niu, K., Zhang, W., Tang, N., Shen, J., and Mkrtchyan, H.V., 2020. Antibiotic resistance and molecular characteristics of methicillin-resistant Staphylococcus epidermidis recovered from hospital personnel in China. Journal of Global Antimicrobial Resistance, 22, pp.195-201. DOI: https://doi.org/10.1016/j.jgar.2020.02.013

Yıldız, S.S., Hekimoğlu, C.H., Sucaklı, M.B., Bakkaloğlu, Z., Çevik, Y.N., Ünaldı, Ö., Arslantürk, H., Zikusooka, M., Keçik, M., Nellums, L., and Elci, O.C., 2023. Community-acquired antimicrobial resistance among Syrian refugees and the local population in Türkiye. European Journal of Public Health, 33, pp.809-814. DOI: https://doi.org/10.1093/eurpub/ckad119

Published
2024-11-19
How to Cite
Al-Fahad, D. K., Alpofead, J. A., Chawsheen, M. A., Al-Naqshbandi, A. A. and Abas, A. T. (2024) “ Surveillance of Antimicrobial Resistance in Iraq: A Comprehensive Data Collection Approach”, ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 12(2), pp. 179-193. doi: 10.14500/aro.11689.