Micropollutant Control in Wastewater Treatment

A Review of Harnessing Nitrification and Denitrification Biotransformation of Micropollutant

Authors

DOI:

https://doi.org/10.14500/aro.11661

Keywords:

Biotransformation, Denitrification, Micropollutant, Nitrification, Wastewater treatment

Abstract

Micropollutants, an array of organic compounds such as pharmaceuticals, personal care products, and agrochemicals, are pervasive in contemporary ecosystems, posing significant threats to environmental health even in trace concentrations. Therefore, exploring an efficient and effective technique to remediate these pollutants is essential. Nitrification–denitrification (ND) have emerged as one of the most sustainable treatment methods that effectively mitigate micropollutants while facilitating their biotransformation. This review provides a comprehensive analysis of the intricate interactions fundamentally and mechanically between the ND process and the influencing factors, such as dissolved oxygen (DO) concentration and pH optimization, which are vital to the success of micropollutant biotransformation. Insights gained from this examination contribute to a deeper understanding of microbial strategies, which offer potential avenues for sustainable environmental management and the protection of ecosystem integrity.

Downloads

Download data is not yet available.

Author Biographies

Hanaa A. Muhammad, Department of Biology, Faculty of Science and Health, Koya University, Koya, KOY45, Kurdistan Region - F.R. Iraq

Hanaa A. Muhammad is a Lecturer at the Department of Biology, Faculty of Science and Health, Koya University. She got the B.Sc. degree in Geology, the M.Sc. degree in Contaminant Hydrogeology—Remediation. Her research interests are in sustainability, remediation, and water treatment. 

Hikmat M. Masyab, Department of Biology, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region – F.R. Iraq

Hikmat M. Masyab is an Assistant professor at the Department of Biology, Faculty of Science and health, Koya University. He got the B.Sc. degree in Biology, the M.Sc. degree in Biology/botany, and the Ph.D. degree in Biotechnology. His research interests are in Biotechnology, Plant Tissue Culture and Genetic Engineering.

Bakhtyar A. Othman, Department of Public Health, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region - F.R. Iraq

Bakhtyar A. Othman is an Assistant Professor at the Department of Biology, Faculty of Science and Health, Koya University, Kurdistan Region, F.R. Iraq. He has a B.Sc. and M.Sc. degrees in biology and a Ph.D. degree in ecophysiology. His research interests include environmental pollution, water and soil physico-chemical assessments, and eco-physiological research.

Yaseen N. Mahmood, Department of Biology, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region – F.R. Iraq

Yaseen N. Mahmood is an Assistant Professor at the Department of Biology, Faculty of Science and Health, Koya University, Kurdistan Region, F.R. Iraq. He has a B.Sc. degree in plant production, an M.Sc. degree in plant physiology, and a Ph.D. degree in plant biochemistry and metabolism. His research interests include botany and plant biochemical Phytochemical and Metabolism. He is a member of Swedish Iraqi Studies Network SISNET. and International Friendship Organization (IFO).

References

Abbassi, R., Kumar Yadav, A., Huang, S., and Jaffé, P.R., 2014. Laboratory study of nitrification, denitrification and anammox processes in membrane bioreactors considering periodic aeration. Journal of Environmental Management, 142, pp.53-59. DOI: https://doi.org/10.1016/j.jenvman.2014.03.013

Abu Bakar, S.N.H., Abu Hasan, H., Mohammad, A.W., Sheikh Abdullah, S.R., Haan, T.Y., Ngteni, R., and Yusof, K.M.M., 2018. A review of moving-bed biofilm reactor technology for palm oil mill effluent treatment. Journal of Cleaner Production, 171, pp.1532-1545. DOI: https://doi.org/10.1016/j.jclepro.2017.10.100

Alvarino, T., Suarez, S., Lema, J., and Omil, F., 2018. Understanding the sorption and biotransformation of organic micropollutants in innovative biological wastewater treatment technologies. Science of the Total Environment, 615, pp.297-306. DOI: https://doi.org/10.1016/j.scitotenv.2017.09.278

Alzate Marin, J.C., Caravelli, A.H., and Zaritzky, N.E., 2016. Nitrification and aerobic denitrification in anoxic-aerobic sequencing batch reactor. Bioresource Technology, 200, pp.380-387. DOI: https://doi.org/10.1016/j.biortech.2015.10.024

American Water Works Association, 2013. Nitrification Prevention and Control in Drinking Water, 2nd ed., AWWA Manual. American Water Works Association, Denver, CO.

Arumugham, T., Khudzari, J., Abdullah, N., Yuzir, A., Iwamoto, K., and Homma, K., 2024a. Research trends and future directions on nitrification and denitrification processes in biological nitrogen removal. Journal of Environmental Chemical Engineering, 12, p.111897.

Arumugham, T., Khudzari, J., Abdullah, N., Yuzir, A., Iwamoto, K., and Homma, K., 2024b. Research trends and future directions on nitrification and denitrification processes in biological nitrogen removal. Journal of Environmental Chemical Engineering, 12, p.111897. DOI: https://doi.org/10.1016/j.jece.2024.111897

Bucci, P., Coppotelli, B., Morelli, I., Zaritzky, N., and Caravelli, A., 2021. Heterotrophic nitrification-aerobic denitrification performance in a granular sequencing batch reactor supported by next generation sequencing. International Biodeterioration and Biodegradation Society, 160, p.105210. DOI: https://doi.org/10.1016/j.ibiod.2021.105210

Bueno, R.F., Piveli, R.P., Campos, F., and Sobrinho, P.A., 2018. Simultaneous nitrification and denitrification in the activated sludge systems of continuous flow. Environmental Technology, 39, pp.2641-2652. DOI: https://doi.org/10.1080/09593330.2017.1363820

Chai, H., Xiang, Y., Chen, R., Shao, Z., Gu, L., Li, L., and He, Q., 2019. Enhanced simultaneous nitrification and denitrification in treating low carbon-to-nitrogen ratio wastewater: Treatment performance and nitrogen removal pathway. Bioresource Technology, 280, pp.51-58. DOI: https://doi.org/10.1016/j.biortech.2019.02.022

Chang, M., Wang, Y., Pan, Y., Zhang, K., Lyu, L., Wang, M., and Zhu, T., 2019. Nitrogen removal from wastewater via simultaneous nitrification and denitrification using a biological folded non-aerated filter. Bioresource Technology, 289, p.121696. DOI: https://doi.org/10.1016/j.biortech.2019.121696

Clara, M., Kreuzinger, N., Strenn, B., Gans, O., and Kroiss, H., 2005. The solids retention time-a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Research, 39, pp.97-106. DOI: https://doi.org/10.1016/j.watres.2004.08.036

Corsino, S.F., Capodici, M., Morici, C., Torregrossa, M., and Viviani, G., 2016. Simultaneous nitritation-denitritation for the treatment of high-strength nitrogen in hypersaline wastewater by aerobic granular sludge. Water Research, 88, pp.329-336. DOI: https://doi.org/10.1016/j.watres.2015.10.041

Dawas-Massalha, A., Gur-Reznik, S., Lerman, S., Sabbah, I., and Dosoretz, C.G., 2014. Co-metabolic oxidation of pharmaceutical compounds by a nitrifying bacterial enrichment. Bioresource Technology, 167, pp.336-342. DOI: https://doi.org/10.1016/j.biortech.2014.06.003

Di Capua, F., Iannacone, F., Sabba, F., and Esposito, G., 2022. Simultaneous nitrification-denitrification in biofilm systems for wastewater treatment: Key factors, potential routes, and engineered applications Author links open overlay panel. Bioresource Technology, 361, p.127702. DOI: https://doi.org/10.1016/j.biortech.2022.127702

Doble, M., Kruthiventi, A.K., and Gaikar, V.G., 2004. Biotransformations and Bioprocesses, Biotechnology and Bioprocessing Series. Marcel Dekker, New York. DOI: https://doi.org/10.1201/9780203026373

Dorival-García, N., Zafra-Gómez, A., Navalón, A., González-López, J., Hontoria, E., and Vílchez, J.L., 2013. Removal and degradation characteristics of quinolone antibiotics in laboratory-scale activated sludge reactors under aerobic, nitrifying and anoxic conditions. The Journal of Environmental Management, 120, pp.75-83. DOI: https://doi.org/10.1016/j.jenvman.2013.02.007

Fernandez-Fontaina, E, Omil, F., Lema, J.M., and Carballa, M., 2012. Influence of nitrifying conditions on the biodegradation and sorption of emerging micropollutants. Water Research, 46, pp.5434-5444.

Fernandez-Fontaina, E., Omil, F., Lema, J.M., and Carballa, M., 2012. Influence of nitrifying conditions on the biodegradation and sorption of emerging micropollutants. Water Research, 46, pp.5434-5444. DOI: https://doi.org/10.1016/j.watres.2012.07.037

Gao, F., Zhang, J.M., Wang, Z.G., Peng, W., Hu, H.L., and Fu, C.M., 2013. Biotransformation, a promising technology for anti-cancer drug development. Asian Pacific Journal of Cancer Prevention, 14, pp.5599-5608. DOI: https://doi.org/10.7314/APJCP.2013.14.10.5599

Ghasemi, M., Hasani Zonoozi, M., and Hoseini Shamsabadi, M.J., 2024. Simultaneous nitrification and denitrification pattern in aerated moving-bed sequencing batch reactor: Choosing appropriate SRT for different COD/N ratios. Water Practice and Technology, 19, pp.1920-1935. DOI: https://doi.org/10.2166/wpt.2024.124

Gieseke, A., Arnz, P., Amann, R., and Schramm, A., 2002. Simultaneous P and N removal in a sequencing batch biofilm reactor: Insights from reactor- and microscale investigations. Water Research, 36, pp.501-509. DOI: https://doi.org/10.1016/S0043-1354(01)00232-9

Gonzalez-Gil, L., Carballa, M., and Lema, J.M., 2017. Cometabolic enzymatic transformation of organic micropollutants under methanogenic conditions. Environmental Science and Technology, 51, pp.2963-2971. DOI: https://doi.org/10.1021/acs.est.6b05549

Guo, Y., Zhou, X., Li, Y., Li, K., Wang, C., Liu, J., Yan, D., Liu, Y., Yang, D., and Xing, J., 2013. Heterotrophic nitrification and aerobic denitrification by a novel Halomonas campisalis. Biotechnology Letters, 35, pp.2045-2049. DOI: https://doi.org/10.1007/s10529-013-1294-3

Hall, J.C., Hoagland, R.E., and Zablotowicz, R.M., 2000. Pesticide Biotransformation in Plants and Microorganisms Similarities and Divergences. American Chemical Society, UAS. DOI: https://doi.org/10.1021/bk-2001-0777

Hammar, F., 2002. History of modern genetics in Germany, In: Dutta, N.N., Hammar, F., Haralampidis, K., Karanth, N.G., König, A., Krishna, S.H., Kunze, G., Nagy, E., Orlich, B., Osbourn, A.E., Raghavarao, K.S.M.S., Riedel, K., Sahoo, G.C., Schomäcker, R., Srinivas, N.D., and Trojanowska, M. (Eds.), History and Trends in Bioprocessing and Biotransformation, Advances in Biochemical Engineering/Biotechnology. Springer, Berlin, Heidelberg, pp.1-29.

Hammer, L., and Palmowski, L., 2021. Fate of selected organic micropollutants during anaerobic sludge digestion. Water Environment Research, 93, pp.1910-1924. DOI: https://doi.org/10.1002/wer.1603

Han, P., Yu, Y., Zhou, L., Tian, Z., Li, Z., Hou, L., Liu, M., Wu, Q., Wagner, M., and Men, Y., 2019. Specific micropollutant biotransformation pattern by the comammox bacterium Nitrospira inopinata. Environmental Science and Technology, 53, pp.8695-8705. DOI: https://doi.org/10.1021/acs.est.9b01037

Hayatsu, M., Katsuyama, C., and Tago, K., 2021. Overview of recent researches on nitrifying microorganisms in soil. Soil Science and Plant Nutrition, 67, pp.619-632. DOI: https://doi.org/10.1080/00380768.2021.1981119

He, S., Xue, G., and Wang, B., 2009. Factors affecting simultaneous nitrification and de-nitrification (SND) and its kinetics model in membrane bioreactor. Journal of Hazardous Materials, 168, pp.704-710. DOI: https://doi.org/10.1016/j.jhazmat.2009.02.099

Huang, R., Meng, T., Liu, G., Gao, S., and Tian, J., 2022. Simultaneous nitrification and denitrification in membrane bioreactor: Effect of dissolved oxygen. Journal of Environmental Management, 323, p.116183. DOI: https://doi.org/10.1016/j.jenvman.2022.116183

Huang, S., Fu, Y., Zhang, H., Wang, C., Zou, C., and Lu, X., 2023. Research progress of novel bio-denitrification technology in deep wastewater treatment. Frontiers in Microbiology, 14, p.1284369. DOI: https://doi.org/10.3389/fmicb.2023.1284369

Ilies, P., and Mavinic, D.S., 2001. Biological nitrification and denitrification of a simulated high ammonia landfill leachate using 4-stage Bardenpho systems: System startup and acclimation. Canadian Journal of Civil Engineering, 28, pp.85-97. DOI: https://doi.org/10.1139/l00-094

James, O.O., Cao, J.S., Kabo-Bah, A.T., and Wang, G., 2015. Assessing the impact of solids retention time (SRT) on the secondary clarifier capacity using the State Point Analysis. KSCE Journal of Civil Engineering. 19, pp.1265-1270. DOI: https://doi.org/10.1007/s12205-014-0106-1

James, S.N., and Vijayanandan, A., 2023. Recent advances in simultaneous nitrification and denitrification for nitrogen and micropollutant removal: A review. Biodegradation 34, pp.103-123. DOI: https://doi.org/10.1007/s10532-023-10015-8

Ji, B., Yang, K., Zhu, L., Jiang, Y., Wang, H., Zhou, J., and Zhang, H., 2015. Aerobic denitrification: A review of important advances of the last 30 years. Biotechnology and Bioprocess Engineering, 20, pp.643-651. DOI: https://doi.org/10.1007/s12257-015-0009-0

Jia, Y., Zhou, M., Chen, Y., Hu, Y., and Luo, J., 2020. Insight into short-cut of simultaneous nitrification and denitrification process in moving bed biofilm reactor: Effects of carbon to nitrogen ratio. Chemical Engineering Journal, 400, p.125905. DOI: https://doi.org/10.1016/j.cej.2020.125905

Jonas, M., Luca, R., Barry, D.A., and Christof, H., 2015. A Review of the Fate of Micropollutants in Wastewater Treatment Plants. Wiley Period. Inc CORE Metadata Citation and Similar Papers at. Coreacuk Provided Infoscience École Polytechnique. Fédérale Lausanne. Wiley, United States.

Kanda, R., Kishimoto, N., Hinobayashi, J., and Hashimoto, T., 2016. Effects of recirculation rate of nitrified liquor and temperature on biological nitrification-denitrification process using a trickling filter. Water and Environment Journal, 30, pp.190-196. DOI: https://doi.org/10.1111/wej.12196

Kennes-Veiga, D.M., Gónzalez-Gil, L., Carballa, M., and Lema, J.M., 2022. Enzymatic cometabolic biotransformation of organic micropollutants in wastewater treatment plants: A review. Bioresource Technology, 344, p.126291. DOI: https://doi.org/10.1016/j.biortech.2021.126291

Khin, T., and Annachhatre, A.P., 2004. Novel microbial nitrogen removal processes. Biotechnology Advances, 22, pp.519-532. DOI: https://doi.org/10.1016/j.biotechadv.2004.04.003

Kolakovic, S., Salgado, R., Freitas, E.B., Bronze, M.R., Sekulic, M.T., Carvalho, G., Reis, M.A.M., and Oehmen, A., 2022. Diclofenac biotransformation in the enhanced biological phosphorus removal process. Science of the Total Environment, 806, p.151232. DOI: https://doi.org/10.1016/j.scitotenv.2021.151232

Lakshminarasimman, N., Quiñones, O., Vanderford, B.J., Campo-Moreno, P., Dickenson, E.V., and McAvoy, D.C., 2018. Biotransformation and sorption of trace organic compounds in biological nutrient removal treatment systems. Science of the Total Environment, 640-641, pp.62-72. DOI: https://doi.org/10.1016/j.scitotenv.2018.05.145

Landi, A.I., and Lu, J., 2022. Effects of aeration rates and patterns on shortcut nitrification and denitrification Ali. Journal of Environmental Protection, 13, pp.640-656. DOI: https://doi.org/10.4236/jep.2022.139041

Levine, A.D., Meyer, M.T., and Kish, G., 2006. Evaluation of the persistence of micropollutants through pure‐oxygen activated sludge nitrification and denitrification. Water Environment Research, 78, pp.2276-2285. DOI: https://doi.org/10.2175/106143005X82244

Li, A.J., Li, X.Y., Quan, X.C., and Yang, Z.F., 2013. Aerobic sludge granulation for partial nitrification of ammonia-rich inorganic wastewater. Environmental Engineering and Management Journal, 12, pp.1375-1380. DOI: https://doi.org/10.30638/eemj.2013.169

Li, B., and Irvin, S., 2007. The comparison of alkalinity and ORP as indicators for nitrification and denitrification in a sequencing batch reactor (SBR). Biochemical Engineering Journal, 34, pp.248-255. DOI: https://doi.org/10.1016/j.bej.2006.12.020

Li, B., and Wu, G., 2014. Effects of sludge retention times on nutrient removal and nitrous oxide emission in biological nutrient removal processes. International Journal of Environmental Research and Public Health, 11, pp.3553-3569. DOI: https://doi.org/10.3390/ijerph110403553

Li, L., Song, K., Yeerken, S., Geng, S., Liu, D., Dai, Z., Xie, F., Zhou, X., and Wang, Q., 2020. Effect evaluation of microplastics on activated sludge nitrification and denitrification. Science of the Total Environment, 707, p.135953. DOI: https://doi.org/10.1016/j.scitotenv.2019.135953

Li, Y., Guo, J., Li, H., Song, Y., Chen, Z., Lu, C., Han, Y., and Hou, Y., 2020. Effect of dissolved oxygen on simultaneous removal of ammonia, nitrate and phosphorus via biological aerated filter with sulfur and pyrite as composite fillers. Bioresource Technology, 296, p.122340. DOI: https://doi.org/10.1016/j.biortech.2019.122340

Liu, Y., Shi, H., Xia, L., Shi, H., Shen, T., Wang, Z., Wang, G., and Wang, Y., 2010. Study of operational conditions of simultaneous nitrification and denitrification in a Carrousel oxidation ditch for domestic wastewater treatment. Bioresource Technology, 101, pp.901-906. DOI: https://doi.org/10.1016/j.biortech.2009.09.015

Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S., and Wang, X.C., 2014. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment, 473-474, pp.619-641. DOI: https://doi.org/10.1016/j.scitotenv.2013.12.065

Ma, W., Han, Y., Ma, W., Han, H., Zhu, H., Xu, C., Li, K., and Wang, D., 2017. Enhanced nitrogen removal from coal gasification wastewater by simultaneous nitrification and denitrification (SND) in an oxygen-limited aeration sequencing batch biofilm reactor. Bioresource Technology, 244, pp.84-91. DOI: https://doi.org/10.1016/j.biortech.2017.07.083

Marti, E., Huerta, B., Rodríguez-Mozaz, S., Barceló, D., Jofre, J., and Balcázar, J.L., 2014. Characterization of ciprofloxacin-resistant isolates from a wastewater treatment plant and its receiving river. Water Research, 61, pp.67-76. DOI: https://doi.org/10.1016/j.watres.2014.05.006

Miao, L., Yang, G., Tao, T., and Peng, Y., 2019. Recent advances in nitrogen removal from landfill leachate using biological treatments - a review. Journal of Environmental Management, 235, pp.178-185. DOI: https://doi.org/10.1016/j.jenvman.2019.01.057

Michioku, K., Taniura, H., and Inoue, K., 2016. Optimization of Nitrification/Denitrification Process in Landfill Leachate Treatment. In: International Symposium on Ecohydraulics. 11th ed Engineers Australia, Barton ACT, Melbourne, pp.342-349.

Mota, C., Head, M., Ridenoure, J., Cheng, J., and De Los Reyes, F., 2005. Effects of aeration cycles on nitrifying bacterial populations and nitrogen removal in intermittently aerated reactors. Applied and Environmental Microbiology, 71, pp.8565-8572. DOI: https://doi.org/10.1128/AEM.71.12.8565-8572.2005

Nair, D., Abalos, D., Philippot, L., Bru, D., Mateo-Marín, N., and Petersen, S.O., 2021. Soil and temperature effects on nitrification and denitrification modified N2O mitigation by 3,4-dimethylpyrazole phosphate. Soil Biology and Biochemistry, 157, p.108224. DOI: https://doi.org/10.1016/j.soilbio.2021.108224

Pagga, U., Bachner, J., and Strotmann, U., 2006. Inhibition of nitrification in laboratory tests and model wastewater treatment plants. Chemosphere, 65, pp.1-8. DOI: https://doi.org/10.1016/j.chemosphere.2006.03.021

Peng, Y.Z., Chen, Y., Peng, C.Y., Liu, M., Wang, S.Y., Song, X.Q., and Cui, Y.W., 2004. Nitrite accumulation by aeration controlled in sequencing batch reactors treating domestic wastewater. Water Science and Technology. 50, 35-43. DOI: https://doi.org/10.2166/wst.2004.0603

Phan, H.V., Hai, F.I., Kang, J., Dam, H.K., Zhang, R., Price, W.E., Broeckmann, A., and Nghiem, L.D., 2014. Simultaneous nitrification/denitrification and trace organic contaminant (TrOC) removal by an anoxic-aerobic membrane bioreactor (MBR). Bioresource Technology, 165, pp.96-104. DOI: https://doi.org/10.1016/j.biortech.2014.03.094

Pochana, K., and Keller, J., 1999. Study of factors affecting simultaneous nitrification and denitrification (SND). Water Science Technologies, 39, pp.61-68. DOI: https://doi.org/10.2166/wst.1999.0262

Pous, N., Puig, S., Balaguer, M.D., and Colprim, J., 2017a. Effect of hydraulic retention time and substrate availability in denitrifying bioelectrochemical systems. Environmental Science: Water Research and Technology, 3, pp.922-229.

Pous, N., Puig, S., Balaguer, M.D., and Colprim, J., 2017b. Effect of hydraulic retention time and substrate availability in denitrifying bioelectrochemical systems. Environmental Science: Water Research and Technology, 3, pp.922-229. DOI: https://doi.org/10.1039/C7EW00145B

Qian, W., Ma, B., Li, X., Zhang, Q., and Peng, Y., 2019. Long-term effect of pH on denitrification: High pH benefits achieving partial-denitrification. Bioresource Technology, 278, pp.444-449. DOI: https://doi.org/10.1016/j.biortech.2019.01.105

Qu, D., Wang, C., Wang, Y., Zhou, R., and Ren, H., 2015. Heterotrophic nitrification and aerobic denitrification by a novel groundwater origin cold-adapted bacterium at low temperatures. RSC Advances, 5, pp.5149-5157. DOI: https://doi.org/10.1039/C4RA13141J

Qu, W., Suo, L., Liu, R., Liu, M., Zhao, Y., Xia, L., Fan, Y., Zhang, Q., and Gao, Z., 2022. Influence of temperature on denitrification and microbial community structure and diversity: A laboratory study on nitrate removal from groundwater. Water, 14, p.436. DOI: https://doi.org/10.3390/w14030436

Radley, E., Davidson, J., Foster, J., Obexer, R., Bell, E.L., and Green, A.P., 2023. Engineering enzymes for environmental sustainability. Angewandte Chemie International Edition, 62, p.e202309305. DOI: https://doi.org/10.1002/anie.202309305

Reid, G., 1907. Nitrification of sewage. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 79, pp.58-74. DOI: https://doi.org/10.1098/rspb.1907.0007

Rout, P.R., Bhunia, P., and Dash, R.R., 2017. Simultaneous removal of nitrogen and phosphorous from domestic wastewater using Bacillus cereus GS-5 strain exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying phosphorous removal. Bioresource Technology, 244, pp.484-495. DOI: https://doi.org/10.1016/j.biortech.2017.07.186

Saïd, M., Ezzahra, A.F., Jamal, A., Mohammed, R., and Omar, A., 2014. Heterotrophic denitrification by Gram-positive bacteria: Bacillus cereus and Bacillus tequilensis 4. International Journal of Scientific and Research Publications, 4.

Sanz, J.P., Freund, M., and Hother, S., 1996. Nitrification and denitrification in continuous upflow filters - process modelling and optimization. Water Science and Technology, 34, pp.441-448. DOI: https://doi.org/10.2166/wst.1996.0402

Sarioglu, M., Insel, G., Artan, N., and Orhon, D., 2009. Model evaluation of simultaneous nitrification and denitrification in a membrane bioreactor operated without an anoxic reactor. Journal of Membrane Science, 337, pp.17-27. DOI: https://doi.org/10.1016/j.memsci.2009.03.015

Schwarzenbach, R.P., Gschwend, P.M., and Imboden, D.M., 2017. Environmental Organic Chemistry., 3rd ed. Wiley, Hoboken, NJ.

Sharma, P., Kanta Pandey, K., Lepcha, A., Sharma, S., Maurya, N., Kumar Sharma, S., Pradhan, R., and Kumar, R., 2023. Elucidating the potential of nitrifying bacteria in mitigating nitrogen pollution and its industrial application. Microsphere, 2, pp.246-259. DOI: https://doi.org/10.59118/XFKD8065

She, Z., Wu, L., Wang, Q., Gao, M., Jin, C., Zhao, Y., Zhao, L., and Guo, L., 2018. Salinity effect on simultaneous nitrification and denitrification, microbial characteristics in a hybrid sequencing batch biofilm reactor. Bioprocess and Biosystems Engineering, 41, pp.65-75. DOI: https://doi.org/10.1007/s00449-017-1844-5

Singh, V., Ormeci, B., Mishra, S., and Hussain, A., 2022. Simultaneous partial Nitrification, ANAMMOX and denitrification (SNAD) - A review of critical operating parameters and reactor configurations. Chemical Engineering Journal, 433, p.133677. DOI: https://doi.org/10.1016/j.cej.2021.133677

Sipma, J., Osuna, B., Collado, N., Monclús, H., Ferrero, G., Comas, J., and Rodriguez-Roda, I., 2010. Comparison of removal of pharmaceuticals in MBR and activated sludge systems. Desalination, 250, pp.653-659. DOI: https://doi.org/10.1016/j.desal.2009.06.073

Smith, A.G., 1978. Nitrification-Denitrification of Wastewater using a Single-Sludge System, Research Report - Research Program for the Abatement of Municipal Pollution “Project no. 71-1-20.” Environment Canada : Obtained from Training and Technology Transfer Division (Water), Environmental Protection Service, Fisheries and Environment Canada, Ottawa.

Smriga, S., Ciccarese, D., and Babbin, A.R., 2021. Denitrifying bacteria respond to and shape microscale gradients within particulate matrices. Communications Biology, 4, p.570. DOI: https://doi.org/10.1038/s42003-021-02102-4

Song, T., Zhang, X., Li, J., Wu, X., Feng, H., and Dong, W., 2021. A review of research progress of heterotrophic nitrification and aerobic denitrification microorganisms (HNADMs). Science of the Total Environment, 801, p.149319. DOI: https://doi.org/10.1016/j.scitotenv.2021.149319

Song, X., Yang, X., Hallerman, E., Jiang, Y., and Huang, Z., 2020. Effects of hydraulic retention time and influent nitrate-N concentration on nitrogen removal and the microbial community of an aerobic denitrification reactor treating recirculating marine aquaculture system effluent. Water, 12, p.650. DOI: https://doi.org/10.3390/w12030650

Statiris, E., Dimopoulos, T., Petalas, N., Noutsopoulos, C., Mamais, D., and Mamais, S., 2022. Investigating the long and short-term effect of free ammonia and free nitrous acid levels on nitritation biomass of a sequencing batch reactor treating thermally pre-treated sludge reject water. Bioresource Technology, 362, p.127760. DOI: https://doi.org/10.1016/j.biortech.2022.127760

Suarez, S., Lema, J.M., and Omil, F., 2010. Removal of pharmaceutical and personal care products (PPCPs) under nitrifying and denitrifying conditions. Water Research, 44, pp.3214-3224. DOI: https://doi.org/10.1016/j.watres.2010.02.040

Sun, H., Jiang, T., Zhang, F., Zhang, P., Zhang, H., Yang, H., Lu, J., Ge, S., Ma, B., Ding, J., and Zhang, W., 2012. Understanding the effect of free ammonia on microbial nitrification mechanisms in suspended activated sludge bioreactors. Environmental Research, 200, 111737. DOI: https://doi.org/10.1016/j.envres.2021.111737

Suneethi, S., Keerthiga, G., Soundhar, R., Kanmani, M., Boobalan, T., Krithika, D., and Philip, L., 2015. Qualitative evaluation of small scale municipal Wastewater Treatment Plants (WWTPs) in South India. Water Practice and Technology, 10, pp.711-719. DOI: https://doi.org/10.2166/wpt.2015.087

Thakur, I.S., and Medhi, K., 2019. Nitrification and denitrification processes for mitigation of nitrous oxide from waste water treatment plants for biovalorization: Challenges and opportunities. Bioresource Technology, 282, pp.502-513. DOI: https://doi.org/10.1016/j.biortech.2019.03.069

Tiwari, B., Sellamuthu, B., Ouarda, Y., Drogui, P., Tyagi, R.D., and Buelna, G., 2017. Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresource Technology, 224, pp.1-12. DOI: https://doi.org/10.1016/j.biortech.2016.11.042

Wang, J., and Wang, S., 2016. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review. Journal of Environmental Management, 182, pp.620-640. DOI: https://doi.org/10.1016/j.jenvman.2016.07.049

Wang, J., Rong, H., Cao, Y., and Zhang, C., 2020. Factors affecting simultaneous nitrification and denitrification (SND) in a moving bed sequencing batch reactor (MBSBR) system as revealed by microbial community structures. DOI: https://doi.org/10.1007/s00449-020-02374-w

Bioprocess and Biosystems Engineering, 43, pp.1833-1846.

Wang, Z., Fei, X., He, S., Huang, J., and Zhou, W., 2017a. Effects of hydraulic retention time and ratio on thiosulfate-driven autotrophic denitrification for nitrate removal from micro-polluted surface water. Environmental Technology, 38, pp.2835-2843.

Wang, Z., Fei, X., He, S., Huang, J., and Zhou, W., 2017b. Effects of hydraulic retention time and ratio on thiosulfate-driven autotrophic denitrification for nitrate removal from micro-polluted surface water. Environmental Technology, 38, pp.2835-2843. DOI: https://doi.org/10.1080/09593330.2017.1278794

Xiao, J., and Tang, J.H., 2014. Nitrogen removal with nitrification and denitrification via nitrite. Advanced Materials Research, 908, pp.175-178. DOI: https://doi.org/10.4028/www.scientific.net/AMR.908.175

Xu, G., Feng, C., Fang, F., Chen, S., Xu, Y., and Wang, X., 2015. The heterotrophic-combined-with-autotrophic denitrification process: performance and interaction mechanisms. Water Science and Technology, 71, pp.1212-1218. DOI: https://doi.org/10.2166/wst.2015.097

Yan, L., Liu, S., Liu, Q., Zhang, M., Liu, Y., Wen, Y., Chen, Z., Zhang, Y., and Yang, Q., 2019. Improved performance of simultaneous nitrification and denitrification via nitrite in an oxygen-limited SBR by alternating the DO. Bioresource Technology, 275, pp.153-162. DOI: https://doi.org/10.1016/j.biortech.2018.12.054

Yang, S., and Yang, F., 2011. Nitrogen removal via short-cut simultaneous nitrification and denitrification in an intermittently aerated moving bed membrane bioreactor. Journal of Hazardous Materials, 195, pp.318-323. DOI: https://doi.org/10.1016/j.jhazmat.2011.08.045

Zhang, F., Du, Z., Wang, J., Du, Y., and Peng, Y., 2024. Acidophilic partial nitrification (pH<6) facilitates ultra-efficient short-flow nitrogen transformation: Experimental validation and genomic insights. Water Research, 260, 121921. DOI: https://doi.org/10.1016/j.watres.2024.121921

Zhang, L., Wei, C., Zhang, K., Zhang, C., Fang, Q., and Li, S., 2009. Effects of temperature on simultaneous nitrification and denitrification via nitrite in a sequencing batch biofilm reactor. Bioprocess and Biosystems Engineering, 32, pp.175-182. DOI: https://doi.org/10.1007/s00449-008-0235-3

Zhang, L., Yang, J., and Furukawa, K., 2010. Stable and high-rate nitrogen removal from reject water by partial nitrification and subsequent anammox. Journal of Bioscience and Bioengineering , 110, pp.441-448. DOI: https://doi.org/10.1016/j.jbiosc.2010.05.008

Zhang, Q., Chen, X., Luo, W., Wu, H., Liu, X., Chen, W., Tang, J., and Zhang, L., 2019. Effects of Temperature on the characteristics of nitrogen removal and microbial community in post solid-phase denitrification biofilter process. International Journal of Environmental Research and Public Health, 16, p.4466. DOI: https://doi.org/10.3390/ijerph16224466

Zhang, X.Y., Zeng, Y.W., Tao, R.D., Zhang, M., Zheng, M.M., Qu, M.J., and Mei, Y.J., 2024. Analysis of the microbial diverisity and the mechanism of simultaneous nitrification and denitrification in high nitrogen environments. International Journal of Environmental Science and Technology, 21, pp.1-14. DOI: https://doi.org/10.1007/s13762-024-05463-5

Zhou, Y., Zhu, Y., Zhu, J., Li, C., and Chen, G., 2023. A comprehensive review on wastewater nitrogen removal and its recovery processes. International Journal of Environmental Research and Public Health, 20, p.3429. DOI: https://doi.org/10.3390/ijerph20043429

Zhu, S.M., Deng, Y.L., Ruan, Y.J., Guo, X.S., Shi, M.M., and Shen, J.Z., 2015. Biological denitrification using poly(butylene succinate) as carbon source and biofilm carrier for recirculating aquaculture system effluent treatment. Bioresource Technology, 192, pp.603-610. DOI: https://doi.org/10.1016/j.biortech.2015.06.021

Published

2024-09-17

How to Cite

Muhammad, H. A. (2024) “Micropollutant Control in Wastewater Treatment: A Review of Harnessing Nitrification and Denitrification Biotransformation of Micropollutant”, ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 12(2), pp. 130–138. doi: 10.14500/aro.11661.

Issue

Section

Review Articles

Similar Articles

<< < 1 2 3 > >> 

You may also start an advanced similarity search for this article.