High Reflectivity Compounds of Cadmium Sulfide/Magnesium Fluoride Distribution Bragg Reflectors

Design, Simulation, and Comparative Analysis

Authors

DOI:

https://doi.org/10.14500/aro.12258

Keywords:

Compounds of cadmium sulfide/magnesium fluoride, Distribution Bragg reflector, Full width at half maximum, Q-factor, Reflectance, Stopband

Abstract

This work investigates the optical performance of a distributed Bragg reflectors (DBRs) structure, designed with a Matlab program using inorganic compounds of cadmium sulfide (CdS) and magnesium fluoride (MgF2 ) with a central operational wavelength of 650 nm. Because CdS (high index) and MgF2 (low index) have very different refractive indices, the proposed DBR can reflect light effectively using fewer alternating layers. The Transfer Matrix Method simulation method indicates that the DBR structure reaches its maximum reflectivity with just six-layer pairs, emphasizing its optical efficiency and structural simplicity. A comparative analysis with other DBR structures demonstrates the superior performance of CdS/MgF2 DBR, which exhibits a broader usable stopband at around 181.82 nm, the highest bandwidth of 298.49 nm, and a relatively moderate Q-factor (2.18), indicative of an enhanced reflector response. These results establish CdS/MgF2 DBR as highly efficient reflectors that are well-suited for optical systems functioning in the visible spectrum.

Downloads

Download data is not yet available.

Author Biography

Khalid N. Sediq, Department of Physics, Faculty of Science and Health, Koya University, Koya 44023, Kurdistan Region – F.R. Iraq

The author declares no conflict of interest regarding the publication of this work.

References

Adachi, S., 1989. Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, Al x Ga1− x As, and In1− x Ga x As y P1− y. Journal of Applied Physics, 66, pp.6030-6040.

Alias, M.S., Alatawi, A.A., Chong, W.K., Tangi, M., Holguin-Lerma, J.A., Stegenburgs, E., Shakfa, M.K., Ng, T.K., Albadri, A.M., and Alyamani, A.Y., 2018. High reflectivity YDH/SiO2 distributed Bragg reflector for UV-C wavelength regime. IEEE Photonics Journal, 10, pp.1-8.

AL-Kuhaili, M., 2004. Optical properties of hafnium oxide thin films and their application in energy-efficient windows. Optical Materials, 27, pp.383-387.

Aspnes, D., Kelso, S., Logan, R., and Bhat, R., 1986. Optical properties of Al x Ga1− x As. Journal of Applied Physics, 60, pp.754-767.

Aspnes, D.E., and Studna, A., 1983. Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev. Physical Review B, 27, p.985.

Assafli, H.T., Abdulhadi, A.H., and Nassir, W.Y., 2016. Design high efficient reflectivity of distributed bragg reflectors. Iraqi Journal of Laser, 15, pp.13-18.

Barker, A. Jr., and Ilegems, M., 1973. Infrared lattice vibrations and free-electron dispersion in GaN. Physical Review B, 7, p.743.

Bieniewski, T., and Czyzak, S., 1963. Refractive indexes of single hexagonal ZnS and CdS crystals. Journal of the Optical Society of America, 53, pp.496-497.

Butt, M.A., Fomchenkov, S.A., Ullah, A., Habib, M., and Ali, R.Z., 2016. Modelling of multilayer dielectric filters based on TiO2/SiO2 and TiO2/MgF2 for fluorescence microscopy imaging. Компьютерная Оптика, 40, pp.674-678.

Byrnes, S.J., 2016. Multilayer Optical Calculations. arXiv preprint arXiv:1603.02720. Chaqmaqchee, F.A., 2016. Optical design of dilute nitride quantum wells vertical cavity semiconductor optical amplifiers for communication systems. ARO-The Scientific Journal of Koya University, 4, pp.8-12.

Chaqmaqchee, F.A.I., 2012. Electrically Pumped GaInNAs Vertical Cavity Semiconductor Optical Amplifiers for Operation at 1.3 [mu] m Wavelength. University of Essex, England.

Chaqmaqchee, F.A.I., 2022. Temperature stable 980 nm InGaAs/GaAsP vertical cavity surface emitting lasers for short-reach links. Journal of Optoelectronics and Advanced Materials, 24, pp.312-317.

Chaqmaqchee, F.A.I., Salh, S.A.A., and Sabri, M.F.M., 2020. Optical analysis of 1300 nm GaInNAsSb/GaAs vertical cavity semiconductor optical amplifier. Zanco Journal of Pure and Applied Sciences, 32, pp.87-92. Coldren, L.A., Corzine, S.W., and Mashanovitch, M.L., 2012. Diode Lasers and Photonic Integrated Circuits. John Wiley & Sons, New Jersey.

Cui, M., Guo, C., Yang, Z., Chen, L., Dai, Y., Xu, H., Guo, W., and Ye, J., 2022. Conductive SiO2/HfO2 distributed Bragg reflector achieved by electrical breakdown and its application in GaN-based light emitters. Journal of Applied Physics, 131, p.045301.

Dai, J., Gao, W., Liu, B., Cao, X., Tao, T., Xie, Z., Zhao, H., Chen, D., Ping, H., and Zhang, R. 2016. Design and fabrication of UV band-pass filters based on SiO2/Si3N4 dielectric distributed bragg reflectors. Applied Surface Science, 364, pp.886-891.

Dodge, M.J., 1984. Refractive properties of magnesium fluoride. Applied Optics, 23, pp.1980-1985. Fern, R., and Onton, A., 1971. Refractive index of AlAs. Journal of Applied Physics, 42, pp.3499-3500.

Gao, B., George, J.P., Beeckman, J., and Neyts, K., 2020. Design, fabrication and characterization of a distributed Bragg reflector for reducing the étendue of a wavelength converting system. Optics Express, 28, pp.12837-12846.

Haglund, E.P., Kumari, S., Westbergh, P., Gustavsson, J.S., Baets, R.G., Roelkens, G., and Larsson, A., 2016. 20-Gb/s modulation of silicon-integrated short-wavelength hybrid-cavity VCSELs. IEEE Photonics Technology Letters, 28, pp.856-859.

Jambunathan, R., and Singh, J., 1997. Design studies for distributed Bragg reflectors for short-cavity edge-emitting lasers. IEEE Journal of Quantum Electronics, 33, pp.1180-1189.

Jambunathan, R., and Singh, J., 2002. Design studies for distributed Bragg reflectors for short-cavity edge-emitting lasers. IEEE Journal of Quantum Electronics, 33, pp.1180-1189.

Kogelnik, H., and Shank, C.V., 1972. Coupled-wave theory of distributed feedback lasers. Journal of Applied Physics, 43, pp.2327-2335.

Kumar, R., Thakor, K., Gupta, S., Maripeddi, R., Nag, D., and Laha, A., 2019. Design and Optimization of Dielectric DBR for VCSEL, Targeting Emission Range of 520-550nm. Technical Report. Indian Institute of Technology Bombay. Ma, G., Shen, J., Zhang, Z., Hua, Z., and Tang, S.H., 2006. Ultrafast all-optical switching in one-dimensional photonic crystal with two defects. Optics Express, 14, pp.858-865.

Macleod, H.A., and Macleod, H.A., 2010. Thin-film Optical Filters. CRC Press, United States. Malitson, I.H., 1965. Interspecimen comparison of the refractive index of fused silica. Journal of the Optical Society of America, 55, pp.1205-1209.

Miao, W.C., Hong, Y.H., Hsiao, F.H., Chen, J.D., Chiang, H., Lin, C.L., Lin, C.C., Chen, S.C., and Kuo, H.C., 2023. Modified distributed Bragg reflectors for color stability in InGaN red micro-LEDs. Nanomaterials (Basel), 13, p.661.

Min, T., Zhuo-Ying, L., Yao-Lin, H., Jing-Chen, J., and Ye-Hui, P., 2022. Optimal design of thermal emitter based on DBR cavity model in thermal photovoltaic technology. Results in Optics, 9, p.100322.

Mohammed, Z.H., 2019 The fresnel coefficient of thin film multilayer using transfer matrix method tmm. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, p.032026.

Muallem, M., Palatnik, A., Nessim, G.D., and Tischler, Y.R., 2015. Room temperature fabrication of dielectric bragg reflectors composed of a caf2/zns multilayered coating. ACS Applied Materials and Interfaces, 7, pp.474-481.

Palo, E., and Daskalakis, K.S., 2023. Prospects in broadening the application of planar solution‐based distributed Bragg reflectors. Advanced Materials Interfaces, 10, p.2202206.

Pastrňák, J., and Roskovcová, L., 1966. Refraction index measurements on AlN single crystals. Physica Status Solidi (B), 14, pp.K5-K8.

Polyanskiy, M.N., 2024. Refractiveindex. info database of optical constants. Scientific Data, 11, p.94.

Rodríguez Lamoso, I., and Preu, S., 2025. High reflectivity, compact, and widely tunable distributed bragg reflector based on silicon-rich SiN x-SiO y at 80° C PECVD. Applied Sciences, 15, p.3330.

Sakoda, K., and Sakoda, K., 2005. Optical Properties of Photonic Crystals. Springer, Berlin. Sale, T.E., 1995. Vertical Cavity Surface Emitting Lasers. Research Studies Press, Wiley, Taunton, Somerset, England, New York.

Sediq, K.N., Muhammadsharif, F.F., and Muhammad, H.A., 2022. A study on tuning the optical properties of stacked SiN/SiO2 mirrors in distributed Bragg’s reflectors. Journal of Optics, 51, pp.937-942.

Sediq, K.N., Muhammadsharif, F.F., Ramadan, S.O., and Sedeeq, S.Z., 2023. Design and study of a nanocavity-based one-dimensional photonic crystal for potential applications in refractive index sensing. Aro-The Scientific Journal of Koya University, 11, pp.95-98.

Shaaban, I.E., Samra, A.S., Muhammad, S., and Wageh, S., 2022. Design of distributed bragg reflectors for green light-emitting devices based on quantum dots as emission layer. Energies, 15, p.1237.

Sharhan, A.A., 2020. Transfer matrix mathematical method for evaluation the DBR mirror for light emitting diode and laser. Journal of Physics: Conference Series. IOP Publishing, p.012018.

Troitskiĭ, Y.V., 2002. The energy conservation law for optical two-port devices. Optics and Spectroscopy, 92, pp.555-559.

Valligatla, S., Chiasera, A., Varas, S., Bazzanella, N., Rao, D.N., Righini, G.C., and Ferrari, M., 2012. High quality factor 1-D Er3+-activated dielectric microcavity fabricated by RF-sputtering. Optics Express, 20, pp.21214-21222.

Xu, K., Meng, Y., Chen, S., Li, Y., Wu, Z., and Jin, S., 2021. All-dielectric color f ilter with ultra-narrowed linewidth. Micromachines, 12, p.241.

Yariv, A., 1997. Optical Electronics in Modern Communications. Oxford University Press, Oxford.

Yeh, P., and Hendry, M., 1990. Optical Waves in Layered Media. American Institute of Physics, United States.

Zhang, C., Elafandy, R., and Han, J., 2019. Distributed Bragg reflectors for GaN-based vertical-cavity surface-emitting lasers. Applied Sciences, 9, p.1593.

Published

2025-09-05

How to Cite

Swara, J. A., Chaqmaqchee, F. A. and Sediq, K. N. (2025) “High Reflectivity Compounds of Cadmium Sulfide/Magnesium Fluoride Distribution Bragg Reflectors: Design, Simulation, and Comparative Analysis”, ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 13(2), pp. 160–166. doi: 10.14500/aro.12258.
Received 2025-05-07
Accepted 2025-08-09
Published 2025-09-05

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 5 6 7 8 9 10 

You may also start an advanced similarity search for this article.